Chapter 21 Coordination chemistry: reactions of complexes

Size: px
Start display at page:

Download "Chapter 21 Coordination chemistry: reactions of complexes"

Transcription

1 CHEM 511 chapter 21 page 1 of 7 Chapter 21 Coordination chemistry: reactions of complexes Reactions of Complexes Typically measure ligand substitution reactions in solution (usually water) Lability and Inertness Labile: complexes with half-lives under 1 minute Inert: complexes with half-lives longer than 1 minute (better term is non-labile) Figure 20.1 shows lifetimes for exchange of water Generalizations 1. All complexes of s-block elements are extremely labile, except Be 2+ and Mg 2+ (Why not Be 2+ /Mg 2+ )?) 2. All M 3+ ions of the f-block elements are very labile 3. d 10 ions with low oxidation numbers are very labile (Why?) 4. M 2+ complexes are moderately labile, and Cu 2+ is very labile (Why for Cu 2+?) 5. M 3+ complexes are less labile than M 2+ (Why?) 6. d 3 and low-spin d 6 octahedral complexes of first row d-metals are inert (nonlabile), chelates are particularly nonlabile (Why? Why?) 7. In 4d and 5d metals, complexes are usually inert (Why?)

2 CHEM 511 chapter 21 page 2 of 7 Lifetime of complex is also dependent on the incoming ligand, thus we define the term nucleophilicity: the rate of attack on a complex by a given Lewis base relative to the rate of attack by a reference Lewis base. Mechanisms of Substitution Three Main Types Dissociative SN1 mechanism Depends on leaving group Intermediate possibly detected? Associative SN2 mechanism Depends on leaving group AND nucleophile Intermediate possibly detected? Interchange No true intermediate exists the leaving group and entering group exchange in a single step by forming an activated complex, but not a true intermediate Evidence for associative vs. intermediate mechanism: 1. Is the intermediate observed in other, similar reactions?

3 CHEM 511 chapter 21 page 3 of 7 2. Is there a change in stereochemistry? Consider cis-[ptl2(pr3)2] transformed to trans-[ptlx(pr3)2] This process happens in many trigonal bipyramidal complexes. How can this process be stopped or slowed down?

4 CHEM 511 chapter 21 page 4 of 7 Rate Determining Step (rds) Rate laws are dependent on the slowest step in the mechanism and each type of mechanism involves formation of one bond and breaking of another. A mechanism may be associative, but the bond breaking step may be the rds. Aa, Da mechanisms Ad, Dd mechanisms Ia, Id mechanisms Look for dependence on incoming ligand (Y). Associative mechanisms are very dependent on Y Dissociative mechanisms are largely independent of Y Square planar substitutions Generally expect associative mechanism for these structures (why?) but sometimes it is more complicated. The trans effect: the effect of a spectator ligand upon the rate of substitution of ligands opposite to it (i.e., the trans position). This is a kinetic factor only doesn t change which ligand will substitute

5 CHEM 511 chapter 21 page 5 of 7 Two influences: ground state (σ-bonding) and transition state (π-bonding) Ligands trans to each other use the same metal orbitals to bond a stronger σ-donor on one side, weakens the ligand opposite it. σ-donor: OH - < NH3 < Cl - < Br - < CN -, CO, CH3 - < I - < SCN - < PR3 < H - In the transition state, strong π-acceptors will pull incoming electron density out of the metal to stabilize the metal π-acceptor: Br - < I - < NCS - < NO2 - < CN - < CO, C2H4 Polarizability of ligands can also play a role: Cl - < Br - < I - EX. Starting with [Pt(NH3)4] 2+ what happens in HCl? Ex. Starting with [PtCl4] 2- what happens in NH3?

6 CHEM 511 chapter 21 page 6 of 7 Steric effects on square planar complexes Bulky ligands, especially cis, will slow down reaction rates Data for cis-[ptcll(pet3)2] +, where Cl - is exchanged for H2O L Pyridine 2-methylpyridine 2,6-dimethylpyridine Rate constant (s -1 ) What type of mechanism does this support (A or D)? Stereochemistry of square planar Substitution usually keeps the same geometry, though if the transition state lifetime is long, pseudorotation may occur Only long-lived associative mechanism intermediates will form the necessary 5-coordinate species to be stereomobile.

7 CHEM 511 chapter 21 page 7 of 7 Redox chemistry between complexes Two main mechanisms for inorganic, aqueous species. Outer sphere electron transfer Minimal change occurs with the coordination of the redox centers Occurs when complexes are inert towards ligand substitution. EX. Fe II (CN) Ir IV Cl 6 2- Fe III (CN) Ir III Cl 6 3- Ligands can affect rate of transfer (Fe 2+ + Co 3+ Fe 3+ + Co 2+ ) Fe(H 2O) Co(H 2O) 6 3+ k(rate) = 10 Fe(o-phen) Co(H 2O) 6 3+ k(rate) = o-phen is Inner sphere electron transfer The two complexes form a bridged species Involves a change in the inner coordination sphere Co III Cl(NH 3) Cr II (H 2O) H 2O + 5H + Co II (H 2O) Cr III Cl(H 2O) NH 4 Ligand effect HO 2C-CH=CH-CO - 2 k(relative rate) = 10 7 HO 2CCH 2CH 2CO - 2 k(relative rate) = 1 Also, I - > Br - > Cl -

Mechanisms of Inorganic Reactions HS -26

Mechanisms of Inorganic Reactions HS -26 Mechanisms of Inorganic Reactions HS -26 A. Ligand Substitution Reactions Octahedral Co(III), Cr(III) Dissociative mechanism Square Planar Pt(II) Associative mechanism trans effect in Pt(II) complexes

More information

Kinetics and reaction mechanisms in coordination compounds

Kinetics and reaction mechanisms in coordination compounds Kinetics and reaction mechanisms in coordination compounds Square planar complexes Three pathways by which one ligand can replace another Nucleophilic substitutions in square planar complexes (with Y being

More information

Complexes that undergo complete ligand exchange within 1 minute at 25 C are labile. Henry Taube ( ), Nobel laureate of 1983

Complexes that undergo complete ligand exchange within 1 minute at 25 C are labile. Henry Taube ( ), Nobel laureate of 1983 Complexes that undergo complete ligand exchange within 1 minute at 25 C are labile. Henry Taube (1915-2005), Nobel laureate of 1983 Which d n configuration should provide inert octahedral complexes? Inert

More information

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms

Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms Inorganic Chemistry with Doc M. Fall Semester, 2012 Day 21. Transition Metals Complexes V: Reaction Mechanisms Name(s): Element: Topics: 1. Substitution reactions: dissociative v. associative 4. Pseudorotation

More information

Lecture 12 Octahedral Substitution Reactions

Lecture 12 Octahedral Substitution Reactions 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington ecture 12 Octahedral Substitution Reactions The most extensively studied reactions of coordination compounds Measuring rates of water exchange in

More information

Advanced Inorganic Chemistry. Alireza Gorji Department of Chemistry, Yazd University. Introduction.

Advanced Inorganic Chemistry. Alireza Gorji Department of Chemistry, Yazd University. Introduction. Advanced Inorganic Chemistry Alireza Gorji Department of Chemistry, Yazd University Introduction 2 1 Kinetics vs. Thermodynamics Thermodynamics Kinetics G = H -T S G = H -T S G = -RTlnK G= -RTlnk Large

More information

Lecture 11 Reaction Types and Mechanisms for Inorganic Complexes

Lecture 11 Reaction Types and Mechanisms for Inorganic Complexes 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 11 Reaction Types and Mechanisms for Inorganic Complexes Variations in reactivity Reaction types substitution, dissociation, addition and

More information

Organometallic Rections 1: Reactions at the Metal

Organometallic Rections 1: Reactions at the Metal E Organometallic Rections 1: Reactions at the Metal Three major classes of reactions: 1 Ligand Substitution associative (cf. S N 2) dissociative (cf. S N 1) interchange (not dealt with in this course)

More information

CHEM Core Chemistry 3. Inorganic Reaction Mechanisms

CHEM Core Chemistry 3. Inorganic Reaction Mechanisms CHEM3012 - Core Chemistry 3 Inorganic Reaction Mechanisms 5. Mechanisms of electron transfer between metal ions This section of the course is concerned with the mechanisms of electron transfer reactions,

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect 5.03, Inorganic Chemistry Prof. Daniel G. ocera Lecture 15 Apr 11: Substitution Reactions and the Trans Effect A substitution reaction is one in which an existing ligand on a metal center is replaced by

More information

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a.

Transition Metals and Coordination Chemistry. 1. In the transition metals section chemical similarities are found within a and across a. Transition Metals and Coordination Chemistry 1. In the transition metals section chemical similarities are found within a and across a. 2. What are 2 transition metals that have unique electron configurations?

More information

(1) Solvent interactions Water is a ligand itself so it can become involved in the chemistry: Overall reaction: [L 5 MX] + Y [L 5 MY] + X

(1) Solvent interactions Water is a ligand itself so it can become involved in the chemistry: Overall reaction: [L 5 MX] + Y [L 5 MY] + X (1) Solvent interactions Water is a ligand itself so it can become involved in the chemistry: Overall reaction: [L 5 MX] + Y [L 5 MY] + X 270 1.(slow) [L 5 MX] + H 2 O [L 5 M(H 2 O)] + X 2. (fast) [L 5

More information

Coordination and Special Materials Chemistry. Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth. Part 2

Coordination and Special Materials Chemistry. Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth. Part 2 Coordination and Special Materials Chemistry Elective I/II: WS 2005/6 (Lecture) H.J. Deiseroth Part 2 Coordination Chemistry: Spectroscopy -microstates and spectroscopic symbols (RS and jj coupling), see

More information

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry

489--Lectures 3 and 4. Fundamentals of Inorganic Chemistry 489--Lectures 3 and 4 Fundamentals of Inorganic Chemistry (with special relevance to biological systems) Some slides courtesy of Prof. Xuan Zhao (U. Memphis) and Prof. Yi Lu (U. Illinois) Fundamentals

More information

- an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes

- an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes 10.4 Angular Overlap - an approach to bonding that is useful for making estimates of E of orbitals in coordination complexes - estimate the strength of interaction b/w ligand orbitals & metal d orbitals

More information

Coordination Number Six

Coordination Number Six Coordination Number Six 241 Octahedral is a very important geometry. It is the starting point for the shapes of most transition metal complexes. 1. Regular octahedron all distances are EQUIVALENT 2. Distorted

More information

Orbitals and energetics

Orbitals and energetics Orbitals and energetics Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating radionuclide complexes Structure

More information

Chapter 25 Transition Metals and Coordination Compounds Part 1

Chapter 25 Transition Metals and Coordination Compounds Part 1 Chapter 25 Transition Metals and Coordination Compounds Part 1 Introduction The transition elements are defined as: those metallic elements that have a partially but incompletely filled d subshell or easily

More information

Chemistry 324 Final Examination

Chemistry 324 Final Examination Chem 324 Final Examination 2008 December 11, 2008 Page 1 of 8 Chemistry 324 Final Examination Thursday, December 11, 2008 Instructor: Dave Berg Answer all questions in the booklet provided; additional

More information

Downloaded from

Downloaded from 1 Class XII: Chemistry Chapter 9: Coordination Compounds 1. Difference between coordination compound and double bond: Coordination compound A coordination compound contains a central metal atom or ion

More information

Chapter 20 d-metal complexes: electronic structures and properties

Chapter 20 d-metal complexes: electronic structures and properties CHEM 511 Chapter 20 page 1 of 21 Chapter 20 d-metal complexes: electronic structures and properties Recall the shape of the d-orbitals... Electronic structure Crystal Field Theory: an electrostatic approach

More information

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms

Electronic structure Crystal-field theory Ligand-field theory. Electronic-spectra electronic spectra of atoms Chapter 19 d-metal complexes: electronic structure and spectra Electronic structure 19.1 Crystal-field theory 19.2 Ligand-field theory Electronic-spectra 19.3 electronic spectra of atoms 19.4 electronic

More information

RDCH 702 Lecture 4: Orbitals and energetics

RDCH 702 Lecture 4: Orbitals and energetics RDCH 702 Lecture 4: Orbitals and energetics Molecular symmetry Bonding and structure Molecular orbital theory Crystal field theory Ligand field theory Provide fundamental understanding of chemistry dictating

More information

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds

CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds CBSE Class-12 Chemistry Quick Revision Notes Chapter-09: Co-ordination Compounds Co-ordination compounds: a) A coordination compound contains a central metal atom or ion surrounded by number of oppositely

More information

The following molecules are related:

The following molecules are related: Isolobal Analogy Inclusion of the ligand η-c 5 H 5 - which, as a donor of 3 π-electron pairs formally occupies 3 coordination sites, yields the analogies: The following molecules are related: 1 Isolobal

More information

Coordination compounds - Isomerism

Coordination compounds - Isomerism Coordination compounds - Isomerism K.Sridharan Dean School of Chemical & Biotechnology SASTRA University Thanjavur 613 401 Page 1 of 9 Table of Contents 1 Types of isomerism... 3 1.1 Types of isomerism...

More information

Transition Metal Elements and Their Coordination Compounds

Transition Metal Elements and Their Coordination Compounds Fernando O. Raineri Office Hours: MWF 9:30-10:30 AM Room 519 Tue. 3:00-5:00 CLC (lobby). Transition Metal Elements and Their Coordination Compounds 2 Compounds. Naming and Geometry. 1 3 p.1046a 4 Fig.

More information

σ Bonded ligands: Transition Metal Alkyls and Hydrides

σ Bonded ligands: Transition Metal Alkyls and Hydrides σ Bonded ligands: Transition Metal Alkyls and Hydrides Simplest of organo-transitionmetal species Rare until and understanding of their stability in the 60 s and 70 s Metal alkyls can be considered as

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2018 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2018 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015

OChem 1 Mechanism Flashcards. Dr. Peter Norris, 2015 OChem 1 Mechanism Flashcards Dr. Peter Norris, 2015 Mechanism Basics Chemical change involves bonds forming and breaking; a mechanism describes those changes using curved arrows to describe the electrons

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become acidic

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

Schedule. Lecture 7: M-M bonds δ-bonds and bonding in metal clusters

Schedule. Lecture 7: M-M bonds δ-bonds and bonding in metal clusters Schedule Lecture 7: M-M bonds δ-bonds and bonding in metal clusters Lecture 8: Rates of reaction Ligand-exchange reactions, labile and inert metal ions Lecture 9: Redox reactions Inner and outer-sphere

More information

Chemistry Instrumental Analysis Lecture 11. Chem 4631

Chemistry Instrumental Analysis Lecture 11. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 11 Molar Absorptivities Range 0 to 10 5 Magnitude of e depends on capture cross section of the species and probability of the energy-absorbing transition. e

More information

Q.1 Predict what will happen when SiCl 4 is added to water.

Q.1 Predict what will happen when SiCl 4 is added to water. Transition etals F325 1 The aqueous chemistry of cations Hydrolysis when salts dissolve in water the ions are stabilised by polar water molecules hydrolysis can occur and the resulting solution can become

More information

Structure of Coordination Compounds

Structure of Coordination Compounds Chapter 22 COORDINATION CHEMISTRY (Part II) Dr. Al Saadi 1 Structure of Coordination Compounds The geometry of coordination compounds plays a significant role in determining their properties. The structure

More information

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction

Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Reactions of Alkyl Halides with Nucleophiles and Bases a substitution reaction Nucleophilic substitution and base induced elimination are among most widely occurring and versatile reaction types in organic

More information

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9

I. Multiple Choice Questions (Type-I) ] 2+, logk = [Cu(NH 3 ) 4 O) 4. ] 2+, logk = 8.9 Unit 9 COORDINATION COORDINA COMPOUNDS I. Multiple Choice Questions (Type-I) 1. Which of the following complexes formed by Cu 2+ ions is most stable? (i) Cu 2+ + 4NH 3 [Cu(NH 3 ] 2+, logk = 11.6 (ii) Cu

More information

FINAL EXAMINATION 12/17/93.

FINAL EXAMINATION 12/17/93. INORGANIC CHEMISTRY 413/571 FINAL EXAMINATION 12/17/93. DR. J. SHERIDAN Write all answers in the answer book. WRITE NEATLY. This will help me to understand your answers and maybe get you a few more points!

More information

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published

Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level. Published Cambridge Assessment International Education Cambridge International Advanced Subsidiary and Advanced Level CHEMISTRY 970/42 Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 00 Published

More information

Chapter 21: Transition Metals and Coordination Chemistry

Chapter 21: Transition Metals and Coordination Chemistry Chapter 21: Transition Metals and Coordination Chemistry Mg, Cr, V, Co Pt Fe complexes O2 Mo and Fe complexes: nitrogen fixation Zn: 150 Cu, Fe: Co: B12 21.1 Transition Metals show great similarities within

More information

Coordination Chemistry II: Bonding

Coordination Chemistry II: Bonding d x2-y2 b 1g e g d x2-y2 b 1g D 1 t 2 d xy, d yz, d zx D t d d z2, d x2-y2 D o d z2 a 1g d xy D 2 d z2 b 2g a 1g e d z2, d x2-y2 d xy, d yz, d zx d xy b 2g D 3 t 2g e g d yz, d zx e g d yz, d zx 10 Coordination

More information

The d-block elements. Transition metal chemistry is d-orbitals/electrons

The d-block elements. Transition metal chemistry is d-orbitals/electrons The d-block elements d-block elements include Sc-Zn, Y-Cd, a(or u)-hg. Transition metal chemistry is d-orbitals/electrons H&S, Fig 1.1, p. 15 Properties of transition metal ions are very sensitive to the

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2.

CHEMISTRY Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to Fe 2 O 3 Cr 2 O 3 Co 2 O 3 TiO 2. CdS Fe 2 3 Cr 2 3 Co 2 3 Ti 2 Mn 3 (P 4 ) 2 Fe 3+ Co 2+ Ni 2+ Cu 2+ Zn 2+ CHEMISTRY 1000 iron copper Topic #3: Colour in Chemistry Fall 2017 Dr. Susan Findlay See Exercises 12.1 to 12.3 Cr 2 3 Cu 2 Co

More information

NAME: 3rd (final) EXAM

NAME: 3rd (final) EXAM 1 Chem 64 Winter 2003 AME: 3rd (final) EXAM THIS EXAM IS WORTH 100 POITS AD COTAIS 9 QUESTIOS THEY ARE OT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIOS AD ALLOCATE YOUR TIME ACCORDIGLY IF YOU DO'T

More information

Crystal Field Theory

Crystal Field Theory Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield reasonable

More information

18-Jul-12 Chemsheets A

18-Jul-12 Chemsheets A www.chemsheets.co.uk 18-Jul-12 Chemsheets A2 038 1 SECTIN 1 - INTRDUCTIN 1) ELECTRN STRUCTURE & DEFINITIN F TRANSITIN METALS 2s 3s 1s 2p 3p 1s 4s fills before 3d. 4s also empties before 3d. 4s 3d Give

More information

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10

2 electrons 2s 2 2p 6. 8 electrons (octet rule) 3s 2 3p 6 3d 10 Main Group and Transition Metal Chemistry: Reading: Moore chapter 22, sections 22.1, 22.6 Questions for Review and Thought: 14, 16, 24, 26, 30, 34, 36, 42, 48, 50, 58, 60. Key ncepts and Skills: definition

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 23 Study Guide Concepts 1. In the transition metals, the ns orbital fills before the (n-1)d orbitals. However, the ns orbital

More information

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding

Bonding in Octahedral and Tetrahedral Metal Complexes. Predict how the d orbitals are affected by the Metal- Ligand Bonding Bonding in Octahedral and Tetrahedral Metal Complexes 327 Molecular Orbital Theory and Crystal Field/Ligand Field Theory Predict how the d orbitals are affected by the Metal- Ligand Bonding d z 2, d x

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Acid-Base Strength. Chapter 6. Monday, November 2, 2015

Acid-Base Strength. Chapter 6. Monday, November 2, 2015 Acid-Base Strength Chapter 6 Monday, November 2, 2015 Acid-Base Strength We ve seen that the reactivity of acids and bases can be viewed through the HSAB Model or the EC Model. Both of these models try

More information

Coordination Compounds

Coordination Compounds Coordination Compounds 1. What is a coordination compound composed of? a. Metal Ion b. Ligand c. Counter Ion 2. What is a complex ion? The metal ion and ligand combination. 3. What is a counter ion? An

More information

IMPORTANT: Complete this section immediately.

IMPORTANT: Complete this section immediately. School of Chemistry, Durban s CHEM261: APPLIED INORGANIC CHEMISTRY FOR CHEMICAL ENGINEERS Duration: 2 hours Total marks: 100 External Examiner: Internal Examiner: Dr M Bala University of KwaZulu- Natal

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation #

Practice Problems: Transition Elements and Coordination Chemistry. # Ligands Coordination # Oxidation # Practice Problems: Transition Elements and Coordination Chemistry 1. Complete the valence level orbital notation for the following monatomic ions. KEY CHEM 1B a) Ag + b) Co 3+ 4d 5s 3d 4s c) Fe 3+ d) Cr

More information

BASICS OUTLINE 8/23/17. Start reading White (CH 1) QoD Schedule

BASICS OUTLINE 8/23/17. Start reading White (CH 1) QoD Schedule BASICS Start reading White (CH 1) QoD Schedule OUTLINE Periodic table & electronic configurations. Periodic properties: ionic radius, electron negativity, 1st ionization potential Covalent & ionic bonding

More information

Drawing Lewis Structures

Drawing Lewis Structures Chapter 2 - Basic Concepts: molecules Bonding models: Valence-Bond Theory (VB) and Molecular Orbital Theory (MO) Lewis acids and bases When both of the electrons in the covalent bond formed by a Lewis

More information

CHEM 121 Introduction to Fundamental Chemistry. Summer Quarter 2008 SCCC. Lecture 5.

CHEM 121 Introduction to Fundamental Chemistry. Summer Quarter 2008 SCCC. Lecture 5. CHEM 121 Introduction to Fundamental Chemistry Summer Quarter 2008 SCCC Lecture 5 http://seattlecentral.edu/faculty/lcwest/che121 Forces Between Particles Noble Gas Configurations Ionic Bonding Ionic Compounds

More information

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons

B. Electron Deficient (less than an octet) H-Be-H. Be does not need an octet Total of 4 valence electrons B. Electron Deficient (less than an octet) e.g. BeH 2 H-Be-H Be does not need an octet Total of 4 valence electrons Not the same as unsaturated systems that achieve the 8e - (octet) through the formation

More information

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122)

Basic Organic Chemistry Course code : CHEM (Pre-requisites : CHEM 11122) Basic Organic Chemistry Course code : CHEM 12162 (Pre-requisites : CHEM 11122) Chapter 01 Mechanistic Aspects of S N2,S N1, E 2 & E 1 Reactions Dr. Dinesh R. Pandithavidana Office: B1 222/3 Phone: (+94)777-745-720

More information

Transition Metal Complexes

Transition Metal Complexes 2P32 Principles of Inorganic Chemistry Dr. M. Pilkington Lecture 4 - Transition Metal Complexes Transition Metal Complexes: Definitions and Terminology. Isomerism in Transition Metal Complexes: Structural

More information

How alkyl halides react

How alkyl halides react Chapter 10 1 How alkyl halides react δ+ δ- RCH 2 -X X= halogen X = higher EN C = lower EN This polar carbon-halogen bond causes alkyl halide to undergo S N and elimination reaction. 2 The mechanism of

More information

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Crystal Field Theory. Chapter 20 Coordination Chemistry: Bonding Theories Crystal Field Theory Chapter 0 Review of the Previous Lecture 1. We discussed different types of isomerism in coordination chemistry Structural or constitutional

More information

Crystal Field Theory

Crystal Field Theory 6/4/011 Crystal Field Theory It is not a bonding theory Method of explaining some physical properties that occur in transition metal complexes. Involves a simple electrostatic argument which can yield

More information

MARK SCHEME for the October/November 2015 series 9701 CHEMISTRY

MARK SCHEME for the October/November 2015 series 9701 CHEMISTRY CAMBRIDGE INTERNATIONAL EXAMINATIONS Cambridge International Advanced Level MARK SCHEME for the October/November 015 series 9701 CHEMISTRY 9701/4 Paper 4 (A Structured Questions), maximum raw mark 100

More information

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota

Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR. St. Olaf College Northfield, Minnesota Inorganic Chemistry GARY L. MIESSLER DONALD A. TARR St. Olaf College Northfield, Minnesota Contents PREFACE xiii 1 INTRODUCTION TO INORGANIC CHEMISTRY 1 1-1 What Is Inorganic Chemistry? 1 1-2 Contrasts

More information

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom.

Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Ligands: an ion or molecule capable of donating a pair of electrons to the central atom via a donor atom. Unidentate ligands: Ligands with only one donor atom, e.g. NH3, Cl -, F - etc. Bidentate ligands:

More information

Coordination compounds

Coordination compounds Coordination compounds Multiple choice questions 1. In the complex formation, the central metal atom / ion acts as a) Lewis base b) Bronsted base c) Lewis acid d) Bronsted acid 2. The groups satisfying

More information

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid

Acid-Base -Bronsted-Lowry model: -Lewis model: -The more equilibrium lies to the right = More [H 3 O + ] = Higher K a = Lower pk a = Stronger acid Revision Hybridisation -The valence electrons of a Carbon atom sit in 1s 2 2s 2 2p 2 orbitals that are different in energy. It has 2 x 2s electrons + 2 x 2p electrons are available to form 4 covalent bonds.

More information

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University Lecture Presentation Chapter 24 Transition Metals and Coordination Compounds Sherril Soman Grand Valley State University Gemstones The colors of rubies and emeralds are both due to the presence of Cr 3+

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Introduction to Inorganic Chemistry

Introduction to Inorganic Chemistry Introduction to Inorganic Chemistry What is inorganic chemistry? Inorganic Chemistry Organimetallic Bioinorganic Organic vs Inorganic Introduction to Inorganic Chemistry Organic vs Inorganic Introduction

More information

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes Bonding in Transition Metal Complexes 1) Crystal Field Theory (ligand field theory) Crystal Field Theory Treat igands as negative charges (they repel the e- in the d orbitals deals only with d orbitals

More information

Ligand Substitution Reactivity of Coordinated Ligands

Ligand Substitution Reactivity of Coordinated Ligands Reactivity of Coordinated Ligands 2 C 2 H 4 (0) + H + + + 2 2 e (Cu 2 Cu) H CH 3 CH H "βh elim" ins βh elim H Peter H.M. Budzelaar Why care about substitution? Basic premise about metalcatalyzed reactions:

More information

CH4. Acids and Bases

CH4. Acids and Bases CH4. Acids and Bases 1 Bronsted-Lowry Bronsted-Lowry definitions: Acid = proton donor; Base = proton acceptor HF (aq) + H 2 O BL acid BL base H 3 O + (aq) + F - (aq) Fluoride ion is the conjugate base

More information

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg

Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Chem 324 Midterm 1 Fall 2011 Version 1 Page 1 of 9 Chemistry 324 Midterm 1 KEY Wednesday, October 19, 2011 Instructor: D. J. Berg Name: Answer all questions on the paper (use the back if necessary). There

More information

Transition Metals and Coordination Chemistry

Transition Metals and Coordination Chemistry Transition Metals and Coordination Chemistry Transition Metals Similarities within a given period and within a given group. Last electrons added are inner electrons (d s, f s). 20_431 Ce Th Pr Pa d U

More information

ORGANIC - BROWN 8E CH.4 - ACIDS AND BASES.

ORGANIC - BROWN 8E CH.4 - ACIDS AND BASES. !! www.clutchprep.com CONCEPT: FREE ENERGY DIAGRAMS Atoms save energy by forming bonds. Free energy diagrams show overall changes in potential energy during reactions. Free energy diagrams give us information

More information

UNIT 9 Topic: Coordination Compounds

UNIT 9 Topic: Coordination Compounds UNIT 9 Topic: Coordination Compounds 1. State the postulates of Werner s theory of coordination compounds. Postulates: 1. Central metal ion in a complex shows two types of valences - primary valence and

More information

Chapter 20 Electrochemistry

Chapter 20 Electrochemistry Chapter 20 Electrochemistry Electrochemical Cell Consists of electrodes which dip into an electrolyte & in which a chem. rxn. uses or generates an electric current Voltaic (Galvanic) Cell Spont. rxn. -

More information

PAPER No.7 : Inorganic Chemistry-II MODULE No.1 : Crystal Field Theory

PAPER No.7 : Inorganic Chemistry-II MODULE No.1 : Crystal Field Theory Subject Chemistry Paper No and Title Module No and Title Module Tag 7, Inorganic Chemistry II 1, Crystal Field Theory CHE_P7_M1 TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction to Crystal Field Theory

More information

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4

51. Pi bonding occurs in each of the following species EXCEPT (A) CO 2 (B) C 2 H 4 (C) CN (D) C 6 H 6 (E) CH 4 Name AP Chemistry: Bonding Multiple Choice 41. Which of the following molecules has the shortest bond length? (A) N 2 (B) O 2 (C) Cl 2 (D) Br 2 (E) I 2 51. Pi bonding occurs in each of the following species

More information

CHEMISTRY 112 FINAL EXAM June 24, 2013 FORM A 1. The following data was obtained for a reaction. The slope of the line is!2.8 " 10 3 K and the intercept is!0.44. What is the activation energy of the reaction?

More information

- A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged.

- A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged. POLARITY and shape: - A polar molecule has an uneven distribution of electron density, making it have ends (poles) that are slightly charged. POLARITY influences several easily observable properties. -

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20

Coordination Chemistry: Bonding Theories. Molecular Orbital Theory. Chapter 20 Coordination Chemistry: Bonding Theories Molecular Orbital Theory Chapter 20 Review of the Previous Lecture 1. Discussed magnetism in coordination chemistry and the different classification of compounds

More information

Inorganic Chemistry Year 3

Inorganic Chemistry Year 3 Inorganic Chemistry Year 3 Transition Metal Catalysis Eighteen Electron Rule 1.Get the number of the group that the metal is in (this will be the number of d electrons) 2.Add to this the charge 1.Negative

More information

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College.

18.3 Electrolysis. Dr. Fred Omega Garces. Chemistry 201. Driving a non-spontaneous Oxidation-Reduction Reaction. Miramar College. 18.3 Electrolysis Driving a non-spontaneous Oxidation-Reduction Reaction Dr. Fred Omega Garces Chemistry 201 Miramar College 1 Electrolysis Voltaic Vs. Electrolytic Cells Voltaic Cell Energy is released

More information

Complexes. Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds.

Complexes. Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds. Complexes Commonly, transition metals can have molecules or ions that bond to them. These give rise to complex ions or coordination compounds. Coordination Compounds Coordinate covalent bond both electrons

More information

Unit 8: Redox and Electrochemistry

Unit 8: Redox and Electrochemistry May 20, 2014 Unit 8: Redox and Electrochemistry http://www.firefly.org/firefly-pictures.html Oxidation Number numbers assigned to atoms that allow us to keep track of electrons. Rule #1: Oxidation number

More information

Chapter 25 Transition Metals and Coordination Compounds Part 2

Chapter 25 Transition Metals and Coordination Compounds Part 2 Chapter 25 Transition Metals and Coordination Compounds Part 2 Bonding in Coordination Compounds Valence Bond Theory Coordinate covalent bond is between: completely filled atomic orbital and an empty atomic

More information

Transition Elements. pranjoto utomo

Transition Elements. pranjoto utomo Transition Elements pranjoto utomo Definition What is transition metal? One of which forms one or more stable ions which have incompletely filled d orbitals. 30Zn? Definition Zink is not transition elements

More information

Rearrangement: a single reactant rearranges its

Rearrangement: a single reactant rearranges its Chapter 5: An overview of organic reactions 5.1 Kinds of organic reactions Even though there are hundreds of reactions to study, organic chemistry is governed by only a few key ideas that determine chemical

More information

Half Cell / redox potentials. Context. Task. Evaluation

Half Cell / redox potentials. Context. Task. Evaluation Half Cell / redox potentials Context Students often struggle when asked to apply redox potentials and to combine reduction half equations correctly. This activity aims to involve all the individuals in

More information

1. Which response contains all the molecules below that violate the octet rule, and no others? SF 4, SiCl 4, H 2Te, AsF 5, BeI 2

1. Which response contains all the molecules below that violate the octet rule, and no others? SF 4, SiCl 4, H 2Te, AsF 5, BeI 2 Chem 1100 Pre-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which response contains all the molecules below that violate the octet rule, and no

More information

Organic Chemistry. Alkenes (2)

Organic Chemistry. Alkenes (2) For updated version, please click on http://ocw.ump.edu.my Organic Chemistry Alkenes (2) by Dr. Seema Zareen & Dr. Izan Izwan Misnon Faculty Industrial Science & Technology seema@ump.edu.my & iezwan@ump.edu.my

More information

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability

11/9/15. Intermolecular hydrogen bond: Hydrogen bond: Intramolecular hydrogen bond: Induced dipole moment, polarisability Induced dipole moment, polarisability in electric field: Van der Waals forces Intermolecular forces other than covalent bonds or other than electrostatic interactions of ions induced d. moment µ * = α

More information

Organometallic Study Meeting#11 Chapter 5. Ligand Substitution Reactions

Organometallic Study Meeting#11 Chapter 5. Ligand Substitution Reactions rganometallic Study eeting#11 Chapter 5. igand Substitution Reactions 5.1 Introdution 011/6/18 K.isaki igand Substitution = A reaction in which a free ligand replaces a coordinated ligand Dissociative

More information