Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes

Size: px
Start display at page:

Download "Organometallics Study Meeting Part 4. Reactions of Organometallic Complexes"

Transcription

1 rganometallics Study eeting art 4. eactions of rganometallic Complexes 1. asics 2011/4/28 oshino(d1) igand Exchange Dissosiative echanism ' n n-1 ' n-1 Fe(C) 5 (18e):hoto-promoteddissociationofigand Associative echanism Commonind 8 squareplanar16ecomplex(() 4 etc.) eactionratedoesnotdependonthe[']. T X T X X T retention TransEffect:EffectofTonrateofligandexchange C,CN,C 2 4 > 3, >C 3 >C 6 5, >r, >N 3, 2 Trans nfluence: arameter indicating how weak T makes -X bond,c 3,C 6 5 > 3,CN >C,C 2 4 >,r > >N 3, 2 Evaluated using t() complex -onding ligands show strong trans effect by stabillizing 5-coordinated structure. X Transmetallation n -X-' n -'X = transition metal '=gr,' 2,Sn' 3, 2 Zretc. X=halides,Acetc xidative Addition General A xidation number increases by 2. n (m)a- n (m) Coordination number increases by 2. ow valent, coordinatively unsaturated, electron rich complexes are active in oxidative addition. Vaska'scomplex[trans-r(C)(h 3 ) 2,r(),] 2 [Ni(0),(0),t(0),d 10,14e] xidativeadditionto 2 t 2 t t energy level increases when -t- bond bends(upto90 ). t U (6s, 6p) rbital nteractiion t (5d) identate phosphine ligand improve reactivity of oxidative addition. 1 *

2 xidative Addition to C-, C-C ond t C 2 C(C 3 ) 3 C(C 3 ) 4 t horc 4 t =h,c3 t(), t(0),d 10,14e t(), * h e 3 h(), h 2 * h e 3 h(), * h e 3 h(), xidativeadditiontoc-xondthroughs N 2echanism n -X n X [ n -] X etal:(0),t(c 3 ) 2,r()etc. alides:alkyl-x,allyl-x(sp 3 C-X) (0),d 10,14e D r Even18ecomplexcanreactthtoughS N 2mechanism. r r(),d 8,18e C C 3 D r C C 3 r(), r r h 3 D h 3 Stereo nversion at C Center. Trans Addition Allyl-X shows higher reactivity and -ally-complex is formed. Cy 3 Cy 3 (0),d 10,14e Ac Cy 3 Cy 3 (0),d 10,16e Ac Cy 3 Cy 3 Ac (), Cy 3 Cy 3 Ac (), xidativeadditiontosp 2 C-Xbond X X X trans isomer (0),d 10,14e eactivity X:>r>> : Electron Withdrawing Group > Electron Donating Group Alkenyl-X gives stereo-retained product. xidativeadditionthroughadicalechanism Alkyl-rt(Et 3 ) 2

3 1-3. eductive Elimination General A etro reaction of oxidative addition. n (m) n (m)a- 3-membered transition state. eactivity: Complex with lower d-orbital energy level shows higher reactivity. high Co(), h() Ni(), () are good species for reaductive elimination. low eactivity(igands) Alkyl(e<Et<nr<nu)<Aryl,Alkenyl< nly cis-ligands undergoes reductive elimination. Elimination of alkyl group requires strained TS. n Aryl, Alkenyl: -orbital can particilate n the formation of 3-membered TS. < < ydride() has spherical symmetry and form TS without strain, eductive Elimination from Group 10 metal() Complex ' (a) Dissociation path -' '(14e) are difficult to generate, but highly reactive to reductive elimination. cis- 2 -(alkyl) 2 ' (b) Direct path -' 2 ost complexes ' (c) Assosiation path Niiseasytoform 5 coordinated complexes. -' 3 ostnicomplexes 1-4. nsertion and Elimination C nsertion and Elimination n C n C n andcmustbecis. eversible process. Attackof toc'su. 3

4 CdoesnotmoveandrearrangetoCgroup. C C 3 C C CC 3 C CC 3 n n n C C C C C C C C C n(), n(),d 6,16e n(), =Cor 3 ore -donating, nucleophilic group have large K. C h h3 h(), K C h h3 h(),d 6,16e Electronwithdrawing ligand more strongly coodinate to. Espcially, - bond is far stronger than -C bond. Also C insertion to -C bond cannot proceed. Et,nr,n hc 2 C 2 C 3 pc 6 4 C 2 h C 2, K >50 ~17 3.4± <0.05 <0.02 nsertion of Alkene, Alkyne and -ydride Elimination A n C A D nsertion A D C -Elimination n nsertion A These processes are reversible. Alkyl complexes are easy to undergo -elimination. n -Elimination n Co Co Co e 3 CD 3 CD CD 3 3 CD CD 3 3 e 3 CD 3 D 3 C CD 3 Co(), Co(),d 6,16e Co(), Co(),d 8,18e Co nly -hydride eliminated product was observed. echanism * Nb * Nb(),d 2,18e * * Nb * Nb * Nb(),d 2,16e eaction with () Complex C 3 h 3 (), h 3 C 3 eactionproceededdissociatively.cationic(dppe)(ac)(c 3 CN) complexshowshigherreactivity. C 3 4

5 1-5. Cycloaddition Cycloaddition of Schrock Carbene e Ti Al e Ti(V),d 0,16e DA Ti C 2 Ti(V),d 0,16e Tebbe eagent Schrock Carbene [2 2 ] Ti Ti(V),d 0,16e The same reversible process is the key for olefin methathesis. Ti Ti(V),d 0,16e 2 C 2 Ti= xidative Cyclization ±C 2 4 Zr Zr h h Zr(V),d 0,16e Zr(),d 2,16e h h Zr Zr(V),d 0,16e ow valent alkene, alkyne complexes undergo this reaction eactions at igands cleophilic Attack to etal-alkene Complexes n 2 to 1 ()-alkene complexes have been well studied. : Alcohols, Amines, Enolates n cleophilic attack occured on opposite face to metal. cleophilic attack occured at more substituted carbon. etal with high oxidation state eactions of Allyl igands 1 -AllylComplexesshownucleophilicreactivity. h 2 h h 2 2 C 6 F 5 C 6 F C 6 F 5 5 h 2 h 2 h 2 (), (), (), 5

6 3 -AllylComplexesshowelectrophilicreactivity. (b) (a) n n : alonates, Amines n (c) (b) n n : Grignard eagents (a) (c) n Example of ath(c) ow valent (0) is unstabilized by -donating N ligand. e 2 N h N e 2 h e 2 N NaC(CN)(C 3 ) 2 N e 2 h h C(CN)(C 3 ) 2 ardnucleophiles,ei,,favorpath(c). etals which disfavor low valent states, Zr(V), W(V), t(), tend to react through path(c). eactions of C igands n C n The weaker -backdonation, the higher reactivity of C group. h 3 base h 3 t C t t t h 3 h 3 t(), t(), t(), = alcohols, amines emovalofcbytan Fe(C) 5 (C 3 ) 3 N Fe(0),d 8,18e (C) 4 Fe ( 3 C) 3 N Fe(0),d 8,18e C 2 Fe(C)4 N(C 3 ) 3 Fe(0),d 8,18e 2. omogenious Catalysis 2-1. somerization of lefin h() 2 N 2 N S h S reductive elimination N 2 h N2 2 N ligand exchange 2 N Takasago's enthol Synthesis NEt 2 Catalytic Cycle 96-99% ee [((S)-NA)h ] NEt 2 N 2 h N2 oxidative addition toc-bond N 2 h N2 6

7 2-2. ydrogenation h(h 3 ) oxidative addition h h3 S ligand exchange S h h3 h catalyzed hydrogenation proceeds through dihydride mechanism h S h3 reductive elimination Catalytic Cycle h h3 S nsertion h h3 S 2-3. ydroformylation Coorucat. C/ 2 C C inear product is more valuable. h-h 3 systemgivesgoodselectivity. rocessusingh 3 assolventexist. 2 h C 2 C 2 C 3 C 2 oxidative addition C C 2 C 2 C 3 2 h C insertion h(c) 2 reductive elimination Catalytic Cycle 2 h C C 2 C 2 C 3 C d 8,18e 2 h C d 8,18e insertion C 2 C 2 C 3 2 h C C 7

8 2-4. oechst-wacker xidation 2 (cat) Cu 2 (cat) 2 21/2 2 2, 2 2Cu 2 2Cu (0) () Catalytic Cycle () 2 2 roposal athways to Give roduct FromC 2 () C FromA () () A () (0) 3 () 2 (0) 3 eactionusingd 2 insteadof 2 gavenodeuteratedaldehyde. So pathway of non--catalyzed isomerization from was denied Carbonylation of ethanol C 3 h cat.,c C 3 C C 3 C 3 C C 3 C non-metallic cycle C C C h C h C oxidative addition reductive elimination rganometallic Cycle C CC 3 h C insertion CC 3 h C d 6,16e C 2-6. ther eactions eck eaction, Cross Coupling, lefin ethathesis etc. 8

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6 Chem 634 Introduction to Transition etal Catalysis eading: eg Ch 1 2 CS-B 7.1, 8.2 8.3, 11.3 Grossman Ch 6 Announcements Problem Set 1 due Thurs, 9/24 at beginning of class ffice our: Wed, 10:30-12, 220

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis rganometallic hemistry and omogeneous atalysis Dr. Alexey Zazybin Lecture N8 Kashiwa ampus, December 11, 2009 Types of reactions in the coordination sphere of T 3. Reductive elimination X-L n -Y L n +

More information

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. eaction chemistry of complexes Three general forms: 1. eactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b. Oxidative Addition c. eductive Elimination d. Nucleophillic

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones Chapter 20: Aldehydes and Ketones [Chapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ' ketone aldehyde f both aldehydes and ketones, the parent chain is the longest

More information

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera andout-9 ourse 201N 1 st Semester 2006-2007 Inorganic hemistry Instructor: Jitendra K. Bera ontents 3. rganometallic hemistry xidative Addition, Reductive Elimination, Migratory Insertion, Elimination

More information

Chapter 20: Aldehydes and Ketones

Chapter 20: Aldehydes and Ketones hapter 20: Aldehydes and Ketones [hapter 20 Sections: 20.1-20.7, 20.9-10.10, 20.13] 1. Nomenclature of Aldehydes and Ketones ketone ' aldehyde 2. eview of the Synthesis of Aldehydes and Ketones Br Br f

More information

Nucleophilic attack on ligand

Nucleophilic attack on ligand Nucleophilic attack on ligand Nucleophile "substitutes" metal hapticity usually decreases xidation state mostly unchanged Competition: nucleophilic attack on metal usually leads to ligand substitution

More information

Transition Metal Chemistry

Transition Metal Chemistry Transition Metal Chemistry 2 2011.12.2 Ⅰ Fundamental Organometallic Reactions Following four reactions are important formal reaction patterns in organotransition metal complexes, which would conveniently

More information

Three Type Of Carbene Complexes

Three Type Of Carbene Complexes Three Type f arbene omplexes arbene complexes have formal metal-to-carbon double bonds. Several types are known. The reactivity of the carbene and how it contributes to the overall electron counting is

More information

Additions to Metal-Alkene and -Alkyne Complexes

Additions to Metal-Alkene and -Alkyne Complexes Additions to tal-alkene and -Alkyne Complexes ecal that alkenes, alkynes and other π-systems can be excellent ligands for transition metals. As a consequence of this binding, the nature of the π-system

More information

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands Organometallic Reaction and Catalysis 14-1 Reactions Involving Gain or Loss of Ligands 14-2 Reactions Involving Modification of Ligands 14-3 Organometallic Catalysts 14-4 Heterogeneous Catalysts Inorganic

More information

Chapter 2 The Elementary Steps in TM Catalysis

Chapter 2 The Elementary Steps in TM Catalysis hapter 2 The Elementary Steps in TM atalysis + + ligand exchange A oxidative addition > n + A B n+2 reductive elimination < B n n+2 oxidative coupling + M' + M' transmetallation migratory insertion > (carbo-,

More information

deactivation or decomposition is therefore quantified using the turnover number.

deactivation or decomposition is therefore quantified using the turnover number. A catalyst may be defined by two important criteria related to its stability and efficiency. Name both of these criteria and describe how they are defined with respect to stability or efficiency. A catalyst

More information

Elementary Organometallic Reactions

Elementary Organometallic Reactions Elementary eactions CE 966 (Tunge) Elementary rganometallic eactions All mechanisms are simply a combination of elementary reactions. 1) Coordination -- issociation 2) xidative Addition -- eductive Elimination

More information

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ

Repeated insertion. Multiple insertion leads to dimerization, oligomerization or polymerization. κ 1: mainly dimerization κ Repeated insertion ultiple insertion leads to dimerization, oligomerization or polymerization. k prop Et Key factor: k CT / k prop = κ κ 1: mainly dimerization κ 0.1-1.0: oligomerization (always mixtures)

More information

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom Insertion Reactions xidative addition and substitution allow us to assemble 1e and 2e ligands on the metal, respectively. With insertion, and its reverse reaction, elimination, we can now combine and transform

More information

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute lefin Metathesis MP: ing-opening metathesis polymerization Thermodynamically favored for 3,4, 8, larger ring systems Bridging groups (bicyclic olefins) make ΔG polymerization more favorable as a result

More information

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) YDGEATI Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble) eterogeneous Catalysis Catalyst insoluble in reaction medium eactions take place

More information

Insertion and elimination. Peter H.M. Budzelaar

Insertion and elimination. Peter H.M. Budzelaar Peter H.. Budzelaar Insertion reactions If at a metal centre you have a) a σ-bound group (hydride, alkyl, aryl) b) a ligand containing a π-system (olefin, alkyne, C) the σ-bound group can migrate to the

More information

O CH 3. Mn CH 3 OC C. 16eelimination

O CH 3. Mn CH 3 OC C. 16eelimination igratory Insertion igratory Insertion/Elimination 1 A migratory insertion reaction is when a cisoidal anionic and neutral ligand on a metal complex couple together to generate a new coordinated anionic

More information

Suggested solutions for Chapter 40

Suggested solutions for Chapter 40 s for Chapter 40 40 PBLEM 1 Suggest mechanisms for these reactions, explaining the role of palladium in the first step. Ac Et Et BS () 4 2 1. 2. K 2 C 3 evision of enol ethers and bromination, the Wittig

More information

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols.

Carbon-heteroatom single bonds basic C N C X. X= F, Cl, Br, I Alkyl Halide C O. epoxide Chapter 14 H. alcohols acidic H C S C. thiols. hapter 13: Alcohols and Phenols 13.1 Structure and Properties of Alcohols Alkanes arbon - arbon Multiple Bonds arbon-heteroatom single bonds basic Alkenes X X= F, l,, I Alkyl alide amines hapter 23 nitro

More information

Organocopper Reagents

Organocopper Reagents rganocopper eagents General Information!!! why organocopper reagents? - Efficient method of C-C bond formation - Cu less electropositive than Li or Mg, so -Cu bond less polarized - consequences: 1. how

More information

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis Some artwig Chemistry Experimental Approaches and Detailed chanistic Analysis b. 1964 1986 A.B. Princeton U, Maitland Jones 1990.D. UC Berkeley, obert Bergman and ichard Anderson 1990-92 Post-doc, MIT,

More information

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Ch.16 Chemistry of Benzene: Electrophilic Aromatic Substitution Electrophilic aromatic substitution: E + E + + Some electrophilic aromatic substitution: X N 2 S 3 R C R alogenation Nitration Sulfonation

More information

Structure and Reactivity: Prerequired Knowledge

Structure and Reactivity: Prerequired Knowledge Structure and eactivity: Prerequired Knowledge!!! The concepts presented in this summary are required for lecture and examination!!! 1. Important Principles in rganic Chemistry In general, structures which

More information

Oxidative Addition and Reductive Elimination

Oxidative Addition and Reductive Elimination xidative Addition and Reductive Elimination red elim coord 2 ox add ins Peter.. Budzelaar xidative Addition Basic reaction: n + X Y n X Y The new -X and -Y bonds are formed using: the electron pair of

More information

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc

Chiral Catalyst II. Palladium Catalysed Allylic Displacement ( -allyl complexes) 1. L n Pd(0) 2. Nuc Chiral Catalyst II ast lecture we looked at asymmetric catalysis for oxidation and reduction Many other organic transformations, this has led to much investigation Today we will look at some others...

More information

Organometallics Study Meeting

Organometallics Study Meeting rganometallics Study eeting 04/21/2011.itsunuma 1. rystal field theory(ft) and ligand field theory(lft) FT: interaction between positively charged metal cation and negative charge on the non-bonding electrons

More information

Chapter 17: Carbonyl Compounds II

Chapter 17: Carbonyl Compounds II Chapter 17: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry

CHEM Core Chemistry 3. Reaction Mechanisms in Organometallic Chemistry E3012 - ore hemistry 3 eaction echanisms in Organometallic hemistry In an earlier section of this lecture course we considered the mechanisms of substitution reactions in organometallic species, and noted

More information

Chem 263 March 28, 2006

Chem 263 March 28, 2006 Chem 263 March 28, 2006 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Carbenes and Carbene Complexes I Introduction

Carbenes and Carbene Complexes I Introduction Carbenes and Carbene Complexes I Introduction A very interesting (honest) class of radical-like molecules Steadily becoming more important as they find far more synthetic applications We will primarily

More information

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation

Organometallic Study Meeting Chapter 17. Catalytic Carbonylation rganometallic Study Meeting Chapter 17. Catalytic Carbonylation 17.1 verview C or 3 3 C 3 C C 3 horrcat. Ar-X or alkene ' d cat. 2011/10/6 K.isaki or ' or N n 2 1 alkene, 2 Coorhcat. d cat. alkene C carbon

More information

Introduction & Definitions Catalytic Hydrogenations Dissolving Metal Reduction Reduction by Addition of H- and H+ Oxidation of Alcohols Oxidation of

Introduction & Definitions Catalytic Hydrogenations Dissolving Metal Reduction Reduction by Addition of H- and H+ Oxidation of Alcohols Oxidation of CEM 241- UNIT 4 xidation/reduction Reactions Redox chemistry 1 utline Introduction & Definitions Catalytic ydrogenations Dissolving Metal Reduction Reduction by Addition of - and + xidation of Alcohols

More information

Organometallic Catalysis

Organometallic Catalysis Organometallic Catalysis The catalysts we will study are termed homogeneous catalysts as they are dissolved in th e same solvent as the substrate. In contrast, heterogeneous catalysts, such as palladium

More information

Answers To Chapter 7 Problems.

Answers To Chapter 7 Problems. Answers To Chapter Problems.. Most of the Chapter problems appear as end-of-chapter problems in later chapters.. The first reaction is an ene reaction. When light shines on in the presence of light and

More information

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July 344 Organic Chemistry Laboratory Summer 2013 Lecture 6 Transition metal organometallic chemistry and catalysis July 30 2013 Summary of Grignard lecture Organometallic chemistry - the chemistry of compounds

More information

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions Chap 11. Carbonyl Alpha-Substitution eactions and Condensation eactions Four fundamental reactions of carbonyl compounds 1) Nucleophilic addition (aldehydes and ketones) ) Nucleophilic acyl substitution

More information

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320 I. Isolated, cumulated, and conjugated dienes A diene is any compound with two or C=C's is a diene. Compounds containing more than two

More information

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F Chemistry 253 roblem et 3 Due: Friday, ctober 15th ame TF 1. For the following products of cross coupling reactions and indicated bond disconnections, please indicate a reasonable cross coupling protocol

More information

Chapter 3. Alkenes And Alkynes

Chapter 3. Alkenes And Alkynes Chapter 3 Alkenes And Alkynes Alkenes ydrocarbons containing double bonds C C double bond the functional group center of reactivity Molecular Formula of Alkene Acyclic alkene: C n 2n Cyclic alkene: C n

More information

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D

b.p.=100 C b.p.=65 C b.p.=-25 C µ=1.69 D µ=2.0 D µ=1.3 D Alcohols I eading: Wade chapter 10, sections 10-1- 10-12 Study Problems: 10-35, 10-37, 10-38, 10-39, 10-40, 10-42, 10-43 Key Concepts and Skills: Show how to convert alkenes, alkyl halides, and and carbonyl

More information

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry E1502/203/1/2016 Tutorial letter 203/1/2016 General hemistry 1B E1502 Semester 1 Department of hemistry This tutorial letter contains the answers to the questions in assignment 3. FIRST SEMESTER: KEY T

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N1 Kashiwa Campus, October 9, 2009 What compounds we can call organometallic compounds? Compounds containing direct metal-carbon

More information

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS Second Edition ROBERT H. CRABTREE Yale University New Haven, Connecticut A Wiley-Interscience Publication JOHN WILEY & SONS New York / Chichester /

More information

M Strategies to introduce Free coordination sites

M Strategies to introduce Free coordination sites 2. emilability u d h eductive limination 3. eighboring group ffect 4. 1. o Strategies to introduce Free coordination sites F 3 C Symmetric estriction Steric estriction F 3 C CF 3 CF 3 Dynamic one air h

More information

EWG EWG EWG EDG EDG EDG

EWG EWG EWG EDG EDG EDG Functional Group Interconversions Lecture 4 2.1 rganic Synthesis A. Armstrong 20032004 3.4 eduction of aromatic systems We can reduce aromatic systems to cyclohexanes under very forcing hydrogenolytic

More information

Chapter 7: Alkenes: Reactions and Synthesis

Chapter 7: Alkenes: Reactions and Synthesis hapter 7: Alkenes: Reactions and Synthesis alcohol alkane halohydrin 1,2-diol 1,2-dihalide carbonyl halide halide Addition Y Y Elimination Electrophilic Addition Dehydrohalogenation: loss of from an alkyl

More information

acetaldehyde (ethanal)

acetaldehyde (ethanal) hem 263 Nov 2, 2010 Preparation of Ketones and Aldehydes from Alkenes zonolysis 1. 3 2. Zn acetone 1. 3 2. Zn acetone acetaldehyde (ethanal) Mechanism: 3 3 3 + - oncerted reaction 3 3 3 + ozonide (explosive)

More information

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation M.C. White, Chem 153 verview -282- Week of ovember 11, 2002 Functionalization of terminal olefins via migratory insertion /reductive elimination sequence ydrogenation ML n E ydrosilylation Si 3 Si 3 ML

More information

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016 Chapter 18 covers leaving groups that are directly attached to double-bonded sp 2 carbons. These molecules don t do most of the regular alkyl halide chemistry from Ch. 9 (S N1/ S N2/E1), but they can do

More information

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles

π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles π bonded ligands alkene complexes alkyne complexes allyl complexes diene complexes cyclopentadienyl complexes arene complexes metallacycles M Transition metal alkene complexes The report in 1825 by William

More information

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution

Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution John E. McMurry www.cengage.com/chemistry/mcmurry Chapter 16 Chemistry of Benzene: Electrophilic Aromatic Substitution Paul D. Adams University of Arkansas Substitution Reactions of Benzene and Its Derivatives

More information

CuI CuI eage lic R tal ome rgan gbr ommon

CuI CuI eage lic R tal ome rgan gbr ommon Common rganometallic eagents Li Et 2 Li Mg Et 2 Li alkyllithium rignard Mg Mg Li Zn TF ZnCl 2 TF dialkylzinc Zn 2 2 Zn Li CuI TF ganocuprate CuI 2 2 CuI common electrophile pairings ' Cl ' '' ' ' ' ' '

More information

Ligand Substitution Reactivity of Coordinated Ligands

Ligand Substitution Reactivity of Coordinated Ligands Reactivity of Coordinated Ligands 2 C 2 H 4 (0) + H + + + 2 2 e (Cu 2 Cu) H CH 3 CH H "βh elim" ins βh elim H Peter H.M. Budzelaar Why care about substitution? Basic premise about metalcatalyzed reactions:

More information

Chem 263 Nov 24, Properties of Carboxylic Acids

Chem 263 Nov 24, Properties of Carboxylic Acids Chem 263 ov 24, 2009 Properties of Carboxylic Acids Since carboxylic acids are structurally related to both ketones and aldehydes, we would expect to see some similar structural properties. The carbonyl

More information

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure Chapter 12 Alcohols from Carbonyl Compounds xidation-eduction & rganometallic Compounds Created by Professor William Tam & Dr. Phillis Chang Structure ~ 120 o ~ 120 o C ~ 120 o Carbonyl carbon: sp 2 hybridized

More information

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions

Chapter 15. Reactions of Aromatic Compounds. 1. Electrophilic Aromatic Substitution Reactions hapter 15 eactions of Aromatic ompounds 1. Electrophilic Aromatic Substitution eactions v verall reaction reated by Professor William Tam & Dr. Phillis hang opyright S 3 2 S 4 S 3 2. A General Mechanism

More information

Aldehydes and Ketones

Aldehydes and Ketones Aldehydes and Ketones Preparation of Aldehydes xidation of Primary Alcohols --- 2 P 1o alcohol ydroboration of a Terminal Alkyne, followed by Tautomerization --- 1. B 3, TF 2. 2 2, K 2 terminal alkyne

More information

A Summary of Organometallic Chemistry

A Summary of Organometallic Chemistry A Summary of Organometallic Chemistry Counting valence electrons (v.e.) with the ionic model 1. Look at the total charge of the complex Ph 3 P Cl Rh Ph 3 P PPh 3 OC CO 2 Fe OC CO Co + charge:0 charge:

More information

Carbenes and Olefin Metathesis

Carbenes and Olefin Metathesis arbenes and Olefin etathesis Peter H.. Budzelaar etal-carbon multiple bonds any transition metals form not only - single bonds but also = and (more rare) even bonds. omplexes containing an = bond are called

More information

Aldehydes and Ketones : Aldol Reactions

Aldehydes and Ketones : Aldol Reactions Aldehydes and Ketones : Aldol Reactions The Acidity of the a Hydrogens of Carbonyl Compounds: Enolate Anions Hydrogens on carbons a to carbonyls are unusually acidic The resulting anion is stabilized by

More information

Sonogashira: in situ, metal assisted deprotonation

Sonogashira: in situ, metal assisted deprotonation M.C. White, Chem 253 Cross-Coupling -120- Week of ctober 11, 2004 Sonogashira: in situ, metal assisted deprotonation catalytic cycle: ' (h 3 ) n d II The first report: h Sonogashira T 1975 (50) 4467. h

More information

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction

Lecture Notes Chem 51C S. King. Chapter 20 Introduction to Carbonyl Chemistry; Organometallic Reagents; Oxidation & Reduction Lecture Notes Chem 51C S. King Chapter 20 Introduction to Carbonyl Chemistry; rganometallic Reagents; xidation & Reduction I. The Reactivity of Carbonyl Compounds The carbonyl group is an extremely important

More information

N-Heterocyclic Carbenes (NHCs)

N-Heterocyclic Carbenes (NHCs) N-Heterocyclic Carbenes (NHCs) In contrast to Fischer and Schrock type carbenes NHCs are extremely stable, inert ligands when complexed to a metal centre. Similar to phosphine ligands they are electronically

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Metal Hydrides, Alkyls, Aryls, and their Reactions

Metal Hydrides, Alkyls, Aryls, and their Reactions Metal Hydrides, Alkyls, Aryls, and their Reactions A Primer on MO Theory σ-bonding in Organotransition Metal Complexes M-C Bond Energies in Organotransition Metal Complexes Thermodynamic Predictions

More information

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives Module 6 : General properties of Transition Metal Organometallic Complexes Lecture 2 : Synthesis and Stability Objectives In this lecture you will learn the following Understand the role lead by ligands

More information

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Oxidative Addition/Reductive Elimination 1. Oxidative Addition Oxidative Addition Oxidative Addition/Reductive Elimination 1 An oxidative addition reaction is one in which (usually) a neutral ligand adds to a metal center and in doing so oxidizes the metal, typically

More information

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Stable gold(iii) catalysts by oxidative addition of a carboncarbon Stable gold(iii) catalysts by oxidative addition of a carboncarbon bond Chung-Yeh Wu, Takahiro oribe, Christian Borch Jacobsen & F. Dean Toste ature, 517, 449-454 (2015) presented by Ian Crouch Literature

More information

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following

Module 10 : Reaction mechanism. Lecture 1 : Oxidative addition and Reductive elimination. Objectives. In this lecture you will learn the following Module 10 : Reaction mechanism Lecture 1 : Oxidative addition and Reductive elimination Objectives In this lecture you will learn the following The oxidative addition reactions. The reductive elimination

More information

Structure and Reactivity

Structure and Reactivity Structure and eactivity Fall Semester 2008 Supplementary Material Prof. Jérôme Waser BC 4306 021 693 93 88 jerome.waser@epfl.ch Assistant: avinia FernandezGonzalez BC 4409 021 693 94 49 davinia.fernandez@epfl.ch

More information

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation

11/5/ Conjugated Dienes. Conjugated Dienes. Conjugated Dienes. Heats of Hydrogenation 8.12 Sites of unsaturation Many compounds have numerous sites of unsaturation If sites are well separated in molecule they react independently If sites are close together they may interact with one another

More information

Reductive Elimination

Reductive Elimination Reductive Elimination Reductive elimination, the reverse of oxidative addition, is most often seen in higher oxidation states because the formal oxidation state of the metal is reduced by two units in

More information

Chapter 18: Carbonyl Compounds II

Chapter 18: Carbonyl Compounds II Chapter 18: Carbonyl Compounds II Learning bjectives: 1. ecognize and assign names to aldehydes and ketones. 2. Write the mechanism for nucleophilic addition and nucleophilic addition-elimination reactions

More information

Chiral Catalysis. Chiral Catalyst. Substrate. Chiral Catalyst

Chiral Catalysis. Chiral Catalyst. Substrate. Chiral Catalyst Chiral Catalysis Chiral (stoichiometric) reagents are a very important class of compound but... eed a stoichiometric quantity of the chiral component Unless it is cheap or recoverable this is not very

More information

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines

Direct, Catalytic Hydroaminoalkylation of Unactivated Olefins with N-Alkyl Arylamines Current Literature - May 12, 2007 Direct, Catalytic ydroaminoalkylation of Unactivated lefins with -Alkyl ylamines ' '' Ta[ 2 ] 5 (4-8 mol%), 160-165 o C 24-67h 66-95% ' '' S. B. erzon and J. F. artwig,

More information

Structure and Reactivity

Structure and Reactivity Structure and eactivity Fall Semester 2007 Summary Prof. Jérôme Waser C 4306 021 693 93 88 jerome.waser@epfl.ch Assistant: Simone onazzi C 4401 021 693 94 46 simone.bonazzi@epfl.ch Structure and eactivity

More information

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading rganic Tutorials 3 rd Year Michaelmas 2010 Transition Metals in rganic Synthesis: (General paper level) Reading 1. Lecture Course, and suggested references from this. 2. Clayden, Greaves, Warren and Wothers.

More information

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives)

Carbonyls (Ch ketones and aldehydes and carboxylic acids derivatives) arbonyls (h 16-19 ketones and aldehydes and carboxylic acids derivatives) +δ -δ ' - sp 2 - trigonal planar (120 0 ) - strongly polarized double bond eactivity? addition nucleophilic 1 Nucleophilic Addition

More information

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA

CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA CHAPTER 9 THEORY OF RESONANCE BY, G.DEEPA Conjugation in Alkadienes and Allylic Systems conjugation a series of overlapping p orbitals The Allyl Group allylic position is the next to a double bond 1 allyl

More information

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting

The Mechanistic Studies of the Wacker Oxidation. Tyler W. Wilson SED Group Meeting The Mechanistic Studies of the Wacker xidation Tyler W. Wilson SE Group Meeting 11.27.2007 Introduction xidation of ethene by (II) chloride solutions (Phillips, 1894) -First used as a test for alkenes

More information

Aldehydes and Ketones Reactions. Dr. Sapna Gupta

Aldehydes and Ketones Reactions. Dr. Sapna Gupta Aldehydes and Ketones Reactions Dr. Sapna Gupta Reactions of Aldehydes and Ketones Nucleophilic Addition A strong nucleophile attacks the carbonyl carbon, forming an alkoxide ion that is then protonated.

More information

Organo-transition Metal Chemistry

Organo-transition Metal Chemistry Prof. Dr. Burkhard König, nstitut für rganische Chemie, Universität egensburg 1 rgano-transition tal Chemistry 1. Some Basics Chemistry involves intermediates containing transition-metal carbon bonds tal-carbon

More information

Lecture 18. Oxidation and Reduction. Oxidation. Reduction O CH 4 CH 3 OH H C H. Chemistry 328N

Lecture 18. Oxidation and Reduction. Oxidation. Reduction O CH 4 CH 3 OH H C H. Chemistry 328N Lecture 18 xidation and Reduction C 4 C 3 C C C xidation Reduction March 27, 2018 Suppose you want to make this compound????? C + BrC 2 C 2 C?? CC 2 C 2 C 4-ydroxy-4-phenylbutanal It s an alcohol. Use

More information

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX).

(Neither an oxidation or reduction: Addition or loss of H +, H 2 O, HX). eactions of Alcohols Alcohols are versatile organic compounds since they undergo a wide variety of transformations the majority of which are either oxidation or reduction type reactions. xidation is a

More information

Part C- section 1 p-bonds as nucleophiles

Part C- section 1 p-bonds as nucleophiles Part C- section 1 p-bonds as nucleophiles Chemistry of Alkenes (Ch 8, 9, 10) - the double bond prevents free rotation - isomerism cis and trans - nomenclature E and Z (3 or 4 different substituents around

More information

Topic 9. Aldehydes & Ketones

Topic 9. Aldehydes & Ketones Chemistry 2213a Fall 2012 Western University Topic 9. Aldehydes & Ketones A. Structure and Nomenclature The carbonyl group is present in aldehydes and ketones and is the most important group in bio-organic

More information

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course:

Chem 263 Nov 7, elimination reaction. There are many reagents that can be used for this reaction. Only three are given in this course: hem 263 Nov 7, 2013 Preparation of Ketones and Aldehydes from Alcohols xidation of Alcohols [] must have at least 1 E elimination reaction [] = oxidation; removal of electrons [] = reduction; addition

More information

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR" 2R"OH R + H 2 O OR" 3/8/16

Lecture 15. More Carbonyl Chemistry. Alcohols React with Aldehydes and Ketones in two steps first O R'OH, H + OR 2ROH R + H 2 O OR 3/8/16 Lecture 15 More Carbonyl Chemistry R" R C + R' 2R" R C R" R' + 2 March 8, 2016 Alcohols React with Aldehydes and Ketones in two steps first R', + R R 1 emiacetal reacts further in acid to yield an acetal

More information

Organometallic Chemistry and Homogeneous Catalysis

Organometallic Chemistry and Homogeneous Catalysis Organometallic Chemistry and Homogeneous Catalysis Dr. Alexey Zazybin Lecture N6 Kashiwa Campus, November 27, 2009 Group VIB: Cr, Mo, W -Oxidation states from -2 to +6 -While +2 and +3 for Cr are quite

More information

Inorganic Chemistry Year 3

Inorganic Chemistry Year 3 Inorganic Chemistry Year 3 Transition Metal Catalysis Eighteen Electron Rule 1.Get the number of the group that the metal is in (this will be the number of d electrons) 2.Add to this the charge 1.Negative

More information

Journal Club Presentation by Remond Moningka 04/17/2006

Journal Club Presentation by Remond Moningka 04/17/2006 β-alkyl-α-allylation of Michael Acceptors through the Palladium-Catalyzed Three-Component Coupling between Allylic Substrate, Trialkylboranes, and Activated lefins Yoshinori Yamamoto, et al. J. rg. Chem.

More information

Strained Molecules in Organic Synthesis

Strained Molecules in Organic Synthesis Strained Molecules in rganic Synthesis 0. Introduction ~ featuring on three-membered rings ~ Tatsuya itabaru (M) Lit. Seminar 08068 for cyclobutadienes : see Mr. Yamatsugu's Lit. Sem. 069 eat of Formation

More information

Wilkinson s other (ruthenium) catalyst

Wilkinson s other (ruthenium) catalyst Wilkinson s other (ruthenium) catalyst Cl 3 ; 2 h 3, reflux 3h h 3 Cl h 3 h Cl 3 Good catalyst especially for 2 1-alkenes 2, base toluene Cl h 3 h 3 h 3 Et 3 Cl h 3 Cl h 3 h 3 R h 3 h 3 Cl h 3 R RC 2 C

More information

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and

Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of H X 2. Addition of H OH and addition of Y X 3. Addition to allene and Chapter 4 Electrophilic Addition to Carbon Carbon Multiple Bonds 1. Addition of X 2. Addition of and addition of Y X 3. Addition to allene and alkyne 4. Substitution at α-carbon 5. eactions via organoborane

More information

Chapter 8: Alkene Structure and Preparation via Elimination Reactions

Chapter 8: Alkene Structure and Preparation via Elimination Reactions Nature of the pi bond Chapter 8: Alkene Structure and Preparation via Elimination eactions [Sections: 8.1-8.13] C C 3 C C 3 bond length bond strength 2 C C 2 a C=C double bond is stronger than a C C single

More information

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H

Carbonyl Chemistry IV: Enolate Alkylations and Aldols. Aldol Madness O O O N M + substrate. aldehyde. (Z)-enolate H Carbonyl Chemistry IV: nolate Alkylations and Aldols Paul Bracher Chem 30 Section 9 Section Agenda 1) o office hours Thursday 2) The Great Joe Young is covering section next onday 3) andout: Carbonyl Chemistry

More information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions ALKANES Water-insoluble, low density C-C single bonds Higher MW -> higher BP, higher MP Branching -> lower BP, higher MP Forms cycloalkanes which can have ring strain Cyclohexane: chair vs. boat configuration

More information