Alkali metal hydroxides and alkaline earth hydroxides

Size: px
Start display at page:

Download "Alkali metal hydroxides and alkaline earth hydroxides"

Transcription

1 15 Alkali metal hydroxides and alkaline earth hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide) Method number 1 Application Analytical principle Air analysis Ion chromatography Completed in June 2001 Summary The method permits the determination of the alkali metal and alkaline earth hydroxides, sodium hydroxide and calcium hydroxide, when present as particles in a concentration range of 0.1 to 2 times the currently valid threshold limit values [1], and of lithium hydroxide and potassium hydroxide in the same concentration range. For sampling, ambient air is drawn through a quartz fibre filter with a suitable sampling pump. For elution, the quartz fibre filters used for sampling are covered with diluted sulfuric acid and treated in an ultrasonic bath. Quantitative determination is carried out by ion chromatography and conductivity detection.

2 Analytical Methods 16 Characteristics of the method Accuracy: Table 1. Standard deviation s (relative) and mean variation u, n = 10 determinations. Substance Concentration Standard deviation Mean variation s (rel.) u mg/m 3 % % Lithium hydroxide Sodium hydroxide Potassium hydroxide Calcium hydroxide Limit of quantification: Lithium hydroxide: absolute 12.5 ng Li + = mg/m 3 LiOH Sodium hydroxide: absolute 25 ng Na + = mg/m 3 NaOH Potassium hydroxide: absolute 25 ng K + = mg/m 3 KOH Calcium hydroxide: absolute 25 ng Ca 2+ = mg/m 3 Ca(OH) 2 for a sampled air volume of 420 L. Recovery: Lithium hydroxide: % Sodium hydroxide: % Potassium hydroxide: % Calcium hydroxide: % Sampling recommendation: Sampling time: 2 hours Sampled air volume: 420 L Lithium hydroxide (LiOH) [CAS No ] Lithium hydroxide forms white crystals which are readily soluble in water. The molecular weight is 23.95, the melting point 450 8C.

3 17 Lithium hydroxide is used, for example, in batteries and photographic developers, in ceramic products and as CO 2 absorber. At present in Germany there is no threshold value for the substance in air. In Great Britain, for example, the threshold value for lithium hydroxide is 1 mg/m 3. Sodium hydroxide (caustic soda, NaOH) [CAS No ] Sodium hydroxide is available as white hygroscopic granules, lumps, flakes, pellets, pearls or bars. The molecular weight is 40.0, the melting point 318 8C. Sodium hydroxide dissolves very readily in water with the generation of much heat; the solution is strongly alkaline. The solid substance and the solution can cause severe corrosion of the skin, eyes and mucous membranes. Sodium hydroxide and sodium hydroxide solution are used in the chemical industry mainly as neutralizers, for saponification reactions, in the production of sodium compounds and for the digestion of bauxite. In addition, the compound is used, for example, in the soap and detergent industry, for cleaning fats, oils and petroleum, as digestion agent in analytical chemistry, in the synthesis of dyes and in the production of cellulose. The currently valid threshold value in air is 2 mg/m 3 for the inhalable fraction (I); according to TRGS 900, sodium hydroxide is classified in short time exposure limit category =1= [1]. Potassium hydroxide (caustic potash, KOH) [CAS No ] Potassium hydroxide forms colourless crystals, which are sold in the form of dry white bars, flakes, pellets or tablets. The molecular weight is 56.10, the melting point is 360 8C and the boiling point C. In air, the compound actively absorbs water and carbon dioxide. Potassium hydroxide dissolves readily in water with the generation of heat and forms alkaline potassium hydroxide solution. The strongly hygroscopic potassium hydroxide is used as a desiccant and as an absorbing agent for carbon dioxide. In addition, the compound is used, for example, in the production of dyes (alkali fusion), detergent base materials and soaps. At present in Germany there is no threshold value for potassium hydroxide in air. In many other European countries (e. g. Great Britain, Switzerland, Denmark, The Netherlands), however, there is a threshold value of 2 mg/m 3.

4 Analytical Methods 18 Calcium hydroxide (Ca(OH) 2 ) [CAS No ] Calcium hydroxide is sold as colourless crystals or as powder. The molecular weight is Calcium hydroxide dissolves to a small extent in water, but better in glycerol and sugar solution. Ca(OH) 2 irritates skin and mucous membranes. The main use of calcium hydroxide is in the preparation of mortar. In addition, the compound is used, for example, as binder for paint pigments, for waste water purification and in tanning. The currently valid threshold value in air is 5 mg/m 3 for the inhalable fraction (I) [1]. Authors: Examiners: D. Breuer, B. Heinrich R. Hebisch, A. Johnen

5 19 Alkali metal hydroxides and alkaline earth hydroxides (lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide) Method number 1 Application Analytical principle Air analysis Ion chromatography Completed in June 2001 Contents 1 General principles 2 Equipment, chemicals and solutions 2.1 Equipment 2.2 Chemicals 2.3 Solutions 2.4 Calibration standards 3 Sample collection and preparation 4 Operating conditions for ion chromatography 5 Analytical determination 6 Calibration 7 Calculation of the analytical result 8 Discussion of the method 8.1 Precision 8.2 Recovery 8.3 Limit of quantification 8.4 Shelf-life 8.5 Effect of higher humidity 8.6 Sources of error 8.7 Discussion 9 References

6 Analytical Methods 20 1 General principles The method permits the determination of the alkali metal and alkaline earth hydroxides, sodium hydroxide and calcium hydroxide, when present as particles in a concentration range of 0.1 to 2 times the currently valid threshold values [1], and of lithium hydroxide and potassium hydroxide in the same concentration range. For sampling, ambient air is drawn through a quartz fibre filter with a suitable sampling pump. For elution, the quartz fibre filters used for sampling are covered with diluted sulfuric acid and treated in an ultrasonic bath. Quantitative determination is carried out by ion chromatography and conductivity detection. 2 Equipment, chemicals and solutions 2.1 Equipment Pump for personal air sampling, flow rate 3.5 L/min Gasmeter Filter holder, diameter 37 mm, with sampling head for sampling the inhalable dust fraction Quartz fibre filter, diameter 37 mm, e. g. Ederol, from Binzer und Munktel, Battenberg Ion chromatograph with autosampler, column thermostat, suppressor and conductivity detector Data analysis unit Volumetric flasks made of polypropylene, 25 ml, 50 ml, 1000 ml Adjustable pipettors, 10±10000 µl Screw-cap polyethylene vessels, 20 ml Autosampler vials made of polypropylene with screw caps and silicon-ptfe septa Disposable filters for the filtration of aqueous samples, diameter 25 mm, pore size 0.45 µm, suitable for ion chromatography Ultrasonic bath Ultrapure water system 2.2 Chemicals Lithium standard solution: w (Li + ) = 1000 µg/ml, e.g. from Merck, Darmstadt Sodium standard solution: w (Na + ) = 1000 µg/ml, e.g. from Merck, Darmstadt Potassium standard solution: w (K + ) = 1000 µg/ml, e.g. from Merck, Darmstadt Calcium standard solution: w (Ca 2+ ) = 1000 µg/ml, e.g. from Merck, Darmstadt The standard solutions can be stored at a temperature of 4 8C for at least one year. Lithium chloride, anhydrous, e. g. from Fluka, Sigma Aldrich, Taufkirchen

7 21 Sodium chloride, ultrapure, e. g. from Merck, Darmstadt Potassium chloride, analytical grade, e. g. from Fluka, Sigma Aldrich, Taufkirchen Sulfuric acid, c (H 2 SO 4 ) = 2.5 mol/l e. g. Combi Titrisol, from Merck, Darmstadt 2.3 Solutions Eluent: c (H 2 SO 4 ) = mol/l 2 ml sulfuric acid is pipetted into a 1-litre volumetric flask and the flask is filled to the mark with ultrapure water (conductivity > 18.2 MO*cm). 2.4 Calibration standards Stock solution: w (Li + ) = 25 µg/ml w (Na + ) = 50 µg/ml w (K + ) = 50 µg/ml w (Ca 2+ )=50µg/mL 625 µl lithium standard solution and 1250 µl of each of the sodium, potassium and calcium standard solutions are pipetted into a 25 ml volumetric flask and the flask is filled to the mark with ultrapure water. Table 2. Pipetting scheme for calibration standards for a concentration range of 0.8±20 µg/ml. Calibration Volume of the Final volume of Concentration of the solution combined standard the calibration calibration solution solution solution (Li + ) (Na + ) (K + ) (Ca 2+ ) No. ml ml mg/l mg/l mg/l mg/l The volumes of the combined standard solution given in the table are pipetted into polypropylene volumetric flasks; these are filled to the mark with ultrapure water, sealed and shaken. The calibration solutions are transferred to autosampler vials and analysed. The combined standard solution can be stored at a temperature of + 4 8C for at least two months, the calibration solutions can be stored at room temperature for at least two weeks.

8 Analytical Methods 22 3 Sample collection and preparation A filter holder containing a quartz fibre filter is used for sampling. With a pump equipped with a flow regulator, air is drawn through the filter at a flow rate of 3.5 L/min, in accordance with the definition of the inhalable dust fraction. After sampling, the filter holder is closed with the plastic caps provided. For analysis, the quartz fibre filter is placed in a screw-cap vessel and covered with 10 ml elution solution. The vessels are closed, treated for 15 minutes in an ultrasonic bath and then left to stand for 30 minutes. With a disposable syringe, liquid is taken from the prepared sample and filtered into an autosampler vessel through a disposable filter. 4 Operating conditions for ion chromatography Apparatus: HPIC system from Dionex, Idstein Gradient pump GD 40 Electrochemical detector ED 40 Autosampler AS 3500 Chromatography software Peaknet 5.1 Precolumn: IonPac CG14, from Dionex, Idstein Length: 50 mm Internal diameter: 4 mm Column: IonPac CS14, from Dionex, Idstein Length: 250 mm Internal diameter: 4 mm Suppression: Cation self-regenerating suppressor CSRS-II 4 mm, from Dionex, Idstein Column temperature: 40 8C Mobile phase: Sulfuric acid c (H 2 SO 4 ) = mol/l Flow rate: 1.0 ml/min Injection volume: 25 µl System pressure: approx. 10 MPa Detector: Conductivity detector Figure 1 shows a chromatogram obtained under the conditions given above. 5 Analytical determination With an autosampler 25 µl sample solution is injected into the chromatograph and analysed under the conditions given above.

9 23 If the concentrations determined are not within the calibration range, the samples must be diluted appropriately and analysed again. 6 Calibration The calibration solutions described in Section 2.4 are used to draw a calibration curve. Volumes of 25 µl of each of the calibration solutions are injected and analysed as for the sample solutions. The peak areas obtained are plotted against the corresponding concentrations. The calibration functions for the cations are linear in the range from 0.3 mg/l to 3,0 mg/l for Li + and from 0.6 to 6.0 mg/l for Na +,K + and Ca 2+. Figure 2 shows examples of calibration curves for lithium, sodium, potassium and calcium. 7 Calculation of the analytical result The concentrations of lithium, sodium, potassium and calcium hydroxide in the workplace air are calculated using the concentrations of the substances in the solution calculated by the data analysis unit. The data analysis unit uses the calibration functions calculated from the calibration curve. The concentrations of the hydroxides in the workplace air are calculated from the concentrations, taking into account dilution steps and the sampled air volume. The following equations apply for the concentrations of the alkali metal and alkaline earth hydroxides in the workplace air: r ˆ F a 10 b V air 1000 Z f base 273 t g 273 t a where: r is the concentration by weight in the ambient air as a function of t a and p a F is the peak area a is the intercept of the calibration curve with the ordinate b is the gradient of the calibration curve in ml/µg f base is the stoichiometric conversion factor: cation? base 10 is the conversion factor for the elution volume of the measured sample in ml 1000 is the conversion factor: µg? mg V air is the sampled air volume in m 3 t g is the temperature in the gasmeter in 8C t a is the temperature of the ambient air in 8C Z is the recovery (to be taken into account if necessary)

10 Analytical Methods 24 8 Discussion of the method The characteristics of the method were determined according to the standard DIN EN 482 [2]. 8.1 Precision To determine the precision, ten quartz fibre filters were spiked with concentrations at the level of twice the limit of quantification, 0.1 times the MAK value, 0.2 times the MAK value and twice the MAK value for each of sodium and calcium hydroxide, and three corresponding concentrations of lithium and potassium hydroxide. These filters were dried in the air, processed and analysed. Table 3. Standard deviation s (relative) and mean variation u, n = 10 determinations. Substance Concentration Standard deviation Mean variation s (rel.) u mg/m 3 % % Lithium hydroxide Sodium hydroxide Potassium hydroxide Calcium hydroxide Recovery The recovery was determined using the results of the determination of the precision. The results were compared with the standard solutions used for calibration. The mean recoveries Z were: Lithium hydroxide: 1.01 Sodium hydroxide: 1.02 Potassium hydroxide: 1.00 Calcium hydroxide: 1.01

11 Limit of quantification Based on a 10-point calibration, the limits of quantification were calculated according to DIN [3]. For a sampled air volume of 420 L the limits of quantification are: Lithium hydroxide: mg/m 3 Sodium hydroxide: mg/m 3 Potassium hydroxide: mg/m 3 Calcium hydroxide: mg/m Shelf-life To determine the shelf-life, two series of quartz fibre filters were spiked with the hydroxides (low and high concentration). The samples were stored first of all for 7 days at room temperature, then in the refrigerator at + 4 8C. On days 1, 3, 6, 9, 13, 17, 21 and 27 two filters at each concentration were analysed. No significant changes in the hydroxide concentrations could be ascertained. 8.5 Effect of higher humidity The influence of the ambient conditions on sampling was investigated at a humidity of 70 %, established with a dynamic test gas apparatus. First of all, ten quartz fibre filters were spiked with a concentration in the middle of the determination range and dried at room temperature. Then, over a period of two hours, air with a humidity of 70 % was drawn through the loaded filters at a flow rate of 3.5 L/min. Humidity was not found to influence the results. 8.6 Sources of error Ion chromatographic determination is highly specific for lithium, sodium, potassium and calcium ions. At very high ammonium concentrations, the ammonium signal can overlap with the sodium signal. 8.7 Discussion The blank values of the quartz fibre filters must be checked regularly. The ubiquitous presence of sodium and calcium compounds leads to blank values being produced by numerous materials and equipment (chemicals, vessels). The blank values of all chemicals and equipment must therefore be carefully checked. As glassware yields high blank values, it may not be used for this analytical procedure.

12 Analytical Methods 26 When sampling hydroxides, other ubiquitous particulate lithium, sodium, potassium and calcium compounds are always collected too. Analytical differentiation is not possible. If electrochemical background compensation is used instead of chemical suppression, similar results are obtained. 9 References [1] Bundesministerium fçr Arbeit und Sozialverordnung (Eds) (2000) TRGS 900, Grenzwerte in der Luft am Arbeitsplatz ± Luftgrenzwerte. In: Technische Regeln und Richtlinien des Bundesministeriums fçr Arbeit zur Verordnung çber gefåhrliche Stoffe. BArbBl. 10/2000: 34±63 [2] Deutsches Institut fçr Normung e.v. (DIN) (1994) EN 482 ±Arbeitsplatzatmosphåre ± Allgemeine Anforderungen an Verfahren zur Messung von chemischen Arbeitsstoffen, Beuth Verlag, Berlin [3] Deutsches Institut fçr Normung e.v. (DIN) (1994) DIN ± Chemische Analytik ± Nachweis-, Erfassungs- und Bestimmungsgrenze. Beuth Verlag, Berlin Authors: Examiners: D. Breuer, B. Heinrich R. Hebisch, A. Johnen Fig. 1. Example of a chromatogram for the separation of the alkali metal and alkaline earth hydroxides analysed as cations (for the chromatography conditions see Section 4). The concentrations were 1.6 µg/ml for lithium and 3.2 µg/ml for ammonium, sodium, potassium, magnesium and calcium.

13 27 Fig. 2. Calibration curves for the alkali metal and alkaline earth hydroxides, analysed as cations.

Determination of Trace Cations in Power Plant Waters Containing Morpholine

Determination of Trace Cations in Power Plant Waters Containing Morpholine Application Note 8 Determination of Trace Cations in Power Plant Waters Containing Morpholine INTRODUCTION Morpholine and ammonium are used as additives in power plant waters. Morpholine acts as a corrosion

More information

Method for the determination of dimethyl sulfate

Method for the determination of dimethyl sulfate German Social Accident Insurance Deutsche Gesetzliche Unfallversicherung Analytical Subcommittee of the Chemistry Board of Experts* Carcinogenic substances Order number: BGI 505-7-05 Established methods:

More information

Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM

Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM IC Application Work AW CH6-1048-012011 Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM Branch: Chemical industry; Water, wastewater, environmental protection,

More information

ACETIC AND FORMIC ACIDS IN WORKPLACE ATMOSPHERES ppm for Acetic Acid, CH 3 COOH

ACETIC AND FORMIC ACIDS IN WORKPLACE ATMOSPHERES ppm for Acetic Acid, CH 3 COOH ACETIC AND FORMIC ACIDS IN WORKPLACE ATMOSPHERES Method no: ID-186SG Matrix: Air OSHA standard: 5.0 ppm for Formic Acid, HCOOH 10.0 ppm for Acetic Acid, CH 3 COOH Collection procedure: A known volume of

More information

Hexane isomers (except n-hexane) and methylcyclopentane

Hexane isomers (except n-hexane) and methylcyclopentane 1 Hexane isomers (except n-hexane) and methylcyclopentane Method number 1 Application Air analysis Analytical principle Gas chromatography Completed in July 2010 Summary This analytical method permits

More information

SpeedDigester K-436, K-439 Determination of Hydroxyproline in Meat after Acid Hydrolyzation (Photometric method)

SpeedDigester K-436, K-439 Determination of Hydroxyproline in Meat after Acid Hydrolyzation (Photometric method) 053/2010 SpeedDigester K-436, K-439 Determination of Hydroxyproline in Meat after Acid Hydrolyzation (Photometric method) 053/2010 SpeedDigester K-436 / K-439 SHORT NOTE Determination of Hydroxyproline

More information

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Thunyarat Phesatcha, Suparerk Tukkeeree, Jeff Rohrer 2 Thermo

More information

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System Application Update 55 Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free System Introduction Hydrogen peroxide is an essential chemical in the fabrication

More information

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers.

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers. Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers. 1 Scope This document describes a chromatographic method which allows the identification as well as the determination of

More information

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009.

--> Buy True-PDF --> Auto-delivered in 0~10 minutes. GB Translated English of Chinese Standard: GB5009. Translated English of Chinese Standard: GB5009.17-2014 www.chinesestandard.net Sales@ChineseStandard.net NATIONAL STANDARD OF GB THE PEOPLE S REPUBLIC OF CHINA National Food Safety Standard-Determination

More information

HYDROGEN CYANIDE 6017

HYDROGEN CYANIDE 6017 HYDROGEN CYANIDE 6017 HCN MW: 27.03 CAS: 74-90-8 RTECS: MW6825000 METHOD: 6017, Issue 1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA: 10 ppm (skim) NIOSH: STEL 4.7 ppm ACGIH: C 10 ppm (skin) (1 ppm

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

Determination of trace anions in concentrated hydrofluoric acid

Determination of trace anions in concentrated hydrofluoric acid APPLICATION NOTE 78 Determination of trace anions in concentrated hydrofluoric acid Authors Archava Siriraks Thermo Fisher Scientific, Sunnyvale, CA Keywords HF, ICS-5000 +, IonPac AS10, IonPac AC10, ion

More information

Diquat 1,1 -ethylene-2,2 -bipyridium dibromide salt Paraquat 1,1 -dimethyl-4,4 -bipyridium dichloride salt Initial Preparation

Diquat 1,1 -ethylene-2,2 -bipyridium dibromide salt Paraquat 1,1 -dimethyl-4,4 -bipyridium dichloride salt Initial Preparation EPA Method 549.2 Revision 1.0 Determination of Diquat and Paraquat in Drinking Water by Liquid-Solid Extraction and High Performance Liquid Chromatography with Ultraviolet Detection* UCT Products: ENVIRO-CLEAN

More information

Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets

Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets Test method for the determination of NDMA and NDEA by LC-MS/MS in Sartan containing film coated tablets Contact: Oliver el-atma Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Germany (OMCL

More information

Determination of Methylamine in Drug Products

Determination of Methylamine in Drug Products Determination of Methylamine in Drug Products Thunyarat Phesatcha, Suparerk Tukkeeree, and Jeff Rohrer 2 Thermo Fisher Scientific, Bangkok, Thailand; 2 Thermo Fisher Scientific, Sunnyvale, CA, USA Application

More information

British American Tobacco Group Research & Development. Method - Determination of ammonia in mainstream smoke

British American Tobacco Group Research & Development. Method - Determination of ammonia in mainstream smoke British American Tobacco Group Research & Development Method - Determination of ammonia in mainstream smoke 1 SCOPE OF APPLICATION The method is applicable to quantitative determination of the yields of

More information

CORESTA Recommended Method No. 83

CORESTA Recommended Method No. 83 Cooperation Centre for Scientific Research Relative to Tobacco Special Analytes Sub-Group CORESTA Recommended Method No. 83 DETERMINATION OF AMMONIA IN MAINSTREAM CIGARETTE SMOKE BY ION CHROMATOGRAPHY

More information

The analysis of organic acid content of additives, premix, feed, and water.

The analysis of organic acid content of additives, premix, feed, and water. The analysis of organic acid content of additives, premix, feed, and water. Contents Foreword Introduction Warnings 1. Scope 2 1.1 LOD and LOQ 3 2. Normative References 3 3. Definitions 3 3.1 Feed (or

More information

Technical Procedure for Concentration Determination of Methamphetamine in Liquids via HPLC

Technical Procedure for Concentration Determination of Methamphetamine in Liquids via HPLC Technical Procedure for Concentration Determination of 1.0 Purpose This procedure specifies the required elements for the preparation and use of the Agilent 1100/1200 series High Performance Liquid Chromatograph

More information

CORESTA Recommended Method No. 86

CORESTA Recommended Method No. 86 Cooperation Centre for Scientific Research Relative to Tobacco Tobacco and Tobacco Products Analytes Sub-Group CORESTA Recommended Method No. 86 DETERMINATION OF SELECT CARBONYLS IN TOBACCO AND TOBACCO

More information

POLYDEXTROSES. SYNONYMS Modified polydextroses; INS No DEFINITION DESCRIPTION. FUNCTIONAL USES Bulking agent, humectant, stabilizer, thickener

POLYDEXTROSES. SYNONYMS Modified polydextroses; INS No DEFINITION DESCRIPTION. FUNCTIONAL USES Bulking agent, humectant, stabilizer, thickener POLYDEXTROSES Prepared at the 51st JECFA (1998) and published in FNP 52 Add 6 (1998) superseding specifications prepared at the 44th JECFA (1995), published in FNP 52 Add 3 (1995). An ADI "not specified"

More information

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP))

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP)) 12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP)) O - O - O N + O N + O N NH N H N H O 1,3-bis(4-nitrophenyl)urea, 4,6-dimethyl-1H-pyrimidin-2-one C 13

More information

Quantitative determination of ethephon in soluble concentration (SL) by Ion chromatography

Quantitative determination of ethephon in soluble concentration (SL) by Ion chromatography Quantitative determination of ethephon in soluble concentration (SL) by Ion chromatography Author : Li Guoping Yu Rong Shui Rong Institute for the Control of Agrochemicals, Ministry of Agriculture, P.

More information

Determination of Tartaric Acid in Tolterodine Tartrate Drug Products by IC with Suppressed Conductivity Detection

Determination of Tartaric Acid in Tolterodine Tartrate Drug Products by IC with Suppressed Conductivity Detection Determination of Tartaric cid in Tolterodine Tartrate Drug Products by IC with Suppressed Conductivity Detection Suparerk Tukkeeree, Chanita Chantarasukon, and Jeff Rohrer Thermo Fisher Scientific, angkok,

More information

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE Translated English of Chinese Standard: GB5009.28-2016 www.chinesestandard.net Buy True-PDF Auto-delivery. Sales@ChineseStandard.net NATIONAL STANDARD OF THE GB PEOPLE S REPUBLIC OF CHINA GB 5009.28-2016

More information

Expanded capabilities in ammonium and amine detection

Expanded capabilities in ammonium and amine detection PRODUCT SPECIFICATIONS Thermo Scientifi c Dionex SC-CERS 500 Salt Converter-Cation Electrolytically Regenerated Suppressor Expanded capabilities in ammonium and amine detection Benefits Broadened ammonium

More information

Inline sample preparation for the determination of anions in sodium hydroxide

Inline sample preparation for the determination of anions in sodium hydroxide APPLICATION UPDATE 72331 Inline sample preparation for the determination of anions in sodium hydroxide Authors Hua Yang and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords Sample preparation,

More information

Annex 2 Formaldehyde

Annex 2 Formaldehyde Annex 2 Formaldehyde The 2 methods are analytical procedures for the determination of formaldehyde CH2O, PM/Ref. No 17260, and hexamethylenetetramine (HMTA) C6H12N4, PM/Ref. No 18670, in food simulants

More information

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Application Note Inorganic Ions, Water Testing, Minerals, Metals, Basic Chemicals Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Authors Anne Mack, Adam Bivens

More information

Determination of urea in ultrapure water by IC-MS/MS

Determination of urea in ultrapure water by IC-MS/MS APPLICATION NOTE 72482 Determination of urea in ultrapure water by IC-MS/MS Authors Soon Fatt Lee, 1 Fiona Teh Hui Boon, 1 Chris Cheah Hun Teong, 1 and Jeff Rohrer 2 ¹Thermo Fisher Scientific, Singapore

More information

Determination of Polymer Modifier in Asphalt

Determination of Polymer Modifier in Asphalt Standard Method of Test for Determination of Polymer Modifier in Asphalt AASHTO Designation: T xxx-xx (2005) 1. SCOPE 1.1. This method of test is used to determine the polymer content of an asphalt sample.

More information

GB/T Translated English of Chinese Standard: GB/T

GB/T Translated English of Chinese Standard: GB/T Translated English of Chinese Standard: GB/T18204.26-2000 www.chinesestandard.net Sales@ChineseStandard.net NATIONAL STANDARD OF THE GB PEOPLE S REPUBLIC OF CHINA GB/T 18204.26-2000 Methods for determination

More information

Cyanide, colorimetric, pyridine-pyrazolone

Cyanide, colorimetric, pyridine-pyrazolone Cyanide, colorimetric, pyridine-pyrazolone Parameters and Codes: Cyanide, dissolved, I-1300-85 mg/l as CN): 00723 Cyanide, total, I-3300-85 (mgll as CN): 00720 Cyanide, total-in-bottom-material, dry wt,

More information

PYRIPROXYFEN TECHNICAL

PYRIPROXYFEN TECHNICAL WHO/IS/TC/715/2001 TECHNICAL TECHNICAL 1. Specification 1.1 Description Interim specification WHO/IS/TC/715/2001 The material shall consist of pyriproxyfen together with related manufacturing impurities.

More information

METHOD 7199 DETERMINATION OF HEXAVALENT CHROMIUM IN DRINKING WATER, GROUNDWATER AND INDUSTRIAL WASTEWATER EFFLUENTS BY ION CHROMATOGRAPHY

METHOD 7199 DETERMINATION OF HEXAVALENT CHROMIUM IN DRINKING WATER, GROUNDWATER AND INDUSTRIAL WASTEWATER EFFLUENTS BY ION CHROMATOGRAPHY METHOD 7199 DETERMINATION OF HEXAVALENT CHROMIUM IN DRINKING WATER, GROUNDWATER AND INDUSTRIAL WASTEWATER EFFLUENTS BY ION CHROMATOGRAPHY 1.0 SCOPE AND APPLICATION 1.1 This method provides procedures for

More information

Separation of heat stable amine salts in methyldiethanolamine (MDEA) solutions using high-pressure IC

Separation of heat stable amine salts in methyldiethanolamine (MDEA) solutions using high-pressure IC TECHNICAL NOTE 122 Separation of heat stable amine salts in methyldiethanolamine (MDEA) solutions using high-pressure IC Authors Terri Christison and Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA,

More information

Analytical method related to authorised feed additive - 1i534

Analytical method related to authorised feed additive - 1i534 Title DETERMINATION OF MESO-TARTARIC ACID, (D- + L-TARTARIC ACID), OXALIC ACID, MONO- AND DIHYDROXYMALONIC ACID IN mta-solutions Subtitle Liquid chromatography 1 SCOPE Determination of 50-60 mg of meso-tartaric

More information

Chemistry *P41555A0120* P41555A. Unit: KCH0/4CH0 Paper: 2C. Edexcel Certificate Edexcel International GCSE. Monday 10 June 2013 Afternoon Time: 1 hour

Chemistry *P41555A0120* P41555A. Unit: KCH0/4CH0 Paper: 2C. Edexcel Certificate Edexcel International GCSE. Monday 10 June 2013 Afternoon Time: 1 hour Write your name here Surname Other names Edexcel Certificate Edexcel International GCSE Chemistry Unit: KCH0/4CH0 Paper: 2C Centre Number Candidate Number Monday 10 June 2013 Afternoon Time: 1 hour You

More information

CIPAC. CIPAC Free relevant impurities methods:

CIPAC. CIPAC Free relevant impurities methods: CIPAC COLLABORATIVE INTERNATIONAL PESTICIDES ANALYTICAL COUNCIL LIMITED Commission Internationale des Méthodes d'analyse des Pesticides (CIMAP) CIPAC Free relevant impurities methods: Methods for relevant

More information

Determination of Inorganic Cations and Ammonium in Environmental Waters by Ion Chromatography Using the IonPac CS16 Column

Determination of Inorganic Cations and Ammonium in Environmental Waters by Ion Chromatography Using the IonPac CS16 Column Application Note 4 Determination of Inorganic Cations and Ammonium in Environmental Waters by Ion Chromatography Using the IonPac CS6 Column INTRODUCTION The common alkali and alkaline earth cations are

More information

GAFTI Analytical method for ISO/TS 16179:2012 Detection and Determination of Organotin Compounds in Footwear and Apparel Materials by GC-MS

GAFTI Analytical method for ISO/TS 16179:2012 Detection and Determination of Organotin Compounds in Footwear and Apparel Materials by GC-MS GAFTI Analytical method for ISO/TS 16179:2012 Detection and Determination of Organotin Compounds in Footwear and Apparel Materials by GC-MS 1. Scope This method is applicable for determining the presence

More information

Egualen Sodium Granules

Egualen Sodium Granules Egualen Sodium Granules Dissolution Weigh accurately an amount of Egualen Sodium Granules, equivalent to about 5 mg of egualen sodium (C 15 H 17 NaO 3 S 1/3 H2O) according to the labeled amount,

More information

METHOTREXATE mg/m 3 (arbitrary). There is no OSHA PEL or AGGIH TLV for

METHOTREXATE mg/m 3 (arbitrary). There is no OSHA PEL or AGGIH TLV for METHOTREXATE Matrix: Air Control no.: T-PV2146-01-8804-CH Target Concentration: 0.04 mg/m 3 (arbitrary). There is no OSHA PEL or AGGIH TLV for methotrexate. Procedure: Samples are collected by drawing

More information

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis

ANALYTICAL METHOD DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Air sampling and analysis DETERMINATION OF VOLATILE ALDEHYDES IN AMBIENT AIR Page 1 of 11 Replaces: Dated: Author: Date: AM-No.: New New Nils Arne Jentoft 18.06.2014 0 CHANGES This procedure is new. 1 SCOPE This document describes

More information

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry APPLICATION NOTE Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry AN43227 Antonella Guzzonato 1, Shona McSheehy Ducos

More information

Technical Report. Determination of Nitrite and Nitrate in Smokeless Tobacco Products by Ion Chromatography and Continuous Flow Analysis

Technical Report. Determination of Nitrite and Nitrate in Smokeless Tobacco Products by Ion Chromatography and Continuous Flow Analysis Tobacco and Tobacco Products Analytes Sub-Group Technical Report Determination of Nitrite and Nitrate in Smokeless Tobacco Products by Ion Chromatography and Continuous Flow Analysis 2016 Collaborative

More information

ACETONE IN URINE BY UV CODE Z42010

ACETONE IN URINE BY UV CODE Z42010 ACETONE IN URINE BY UV CODE Z42010 BIOCHEMISTRY Acetone is a colorless, mobile, flammable liquid. It is readly soluble in water, ethanol, ether etc., and itself serves as an important solvent. Acetone

More information

National Research Council Institute for Ecosystem Study Verbania Pallanza - Italy

National Research Council Institute for Ecosystem Study Verbania Pallanza - Italy Tot-N UV220 pag. 1 National Research Council Institute for Ecosystem Study Verbania Pallanza - Italy Water Chemistry Laboratory Analytical Methods for internal use - http://www.idrolab.ise.cnr.it Gabriele

More information

Cyanide and sulfide analysis using amperometric detection and Metrosep A Supp /4.0

Cyanide and sulfide analysis using amperometric detection and Metrosep A Supp /4.0 Metrosep A Supp 10-100 /4.0 Branch Environment, Food, Beverages Keywords IC; 850; 858; Metrosep A Supp 10-100/4.0; Cyanide; Sulfide; 2.850.9110; DC Mode Summary The determination of sulfide and cyanide

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Method for the determination of 1,3-butadiene

Method for the determination of 1,3-butadiene Federation of the Employment Accidents Insurance Institutions of Germany (Hauptverband der Berufsgenossenschaften) Centre for Accident Prevention and Occupational Medicine Alte Heerstraße 111, 53757 Sankt

More information

METHYL ETHYL KETONE PEROXIDE 3508

METHYL ETHYL KETONE PEROXIDE 3508 METHYL ETHYL KETONE PEROXIDE 3508 C 8 H 16 O 4 MW: 176.21 CAS: 1338-23-4 RTECS: EL9450000; 21837 METHOD: 3508, Issue 2 EVALUATION: PARTIAL Issue 1: 15 August 1987 Issue 2: 15 August 1994 OSHA : NIOSH:

More information

1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction

1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction 1. Application 1,2-Dibromoethane (EDB) and 1,2-dibromo-3-chloropropane (DBCP), gas chromatography, microextraction Parameters and Codes: EDB and DBCP, whole water recoverable, O-3120-90 Parameter (µg/l)

More information

DISCLAIMER: This method:

DISCLAIMER: This method: Inorganic arsenic determination in fresh mussels using water bath extraction and anion exchange chromatography-inductively coupled plasma mass spectrometry DISCLAIMER: This method: - has to be considered

More information

CALCIUM LIGNOSULFONATE (40-65)

CALCIUM LIGNOSULFONATE (40-65) CALCIUM LIGNOSULFONATE (40-65) New specifications prepared at the 69 th JECFA (2008), published in FAO JECFA Monographs 5 (2008). An ADI of 0-20 mg/kg bw was established at the 69 th JECFA (2008). SYNONYMS

More information

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows

Colorimetric Method Method to 0.70 mg/l Ag Powder Pillows Silver DOC316.53.01134 Colorimetric Method Method 8120 0.02 to 0.70 mg/l Ag Powder Pillows Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

Standard Operating Procedures. Determination of Anions and/or Cations Extracted from Nylon Filters by Ion Chromatography (IC)

Standard Operating Procedures. Determination of Anions and/or Cations Extracted from Nylon Filters by Ion Chromatography (IC) Page 1 of 15 Standard Operating Procedures Determination of Anions and/or Cations Extracted from Nylon Filters by Ion Chromatography (IC) Analytical Sciences Department Innovation, Technology, and Development

More information

Carbonate content. SCAN-N 32:98 Revised White, green and black liquors and burnt lime sludge

Carbonate content. SCAN-N 32:98 Revised White, green and black liquors and burnt lime sludge Revised 1998 White, green and black liquors and burnt lime sludge Carbonate content 0 Introduction This SCAN-test Method replaces SCAN-N 32:88 from which it differs in that it, in addition to white and

More information

California Environmental Protection Agency Air Resources Board

California Environmental Protection Agency Air Resources Board California Environmental Protection Agency Air Resources Board PROCEDURE FOR THE ANALYSIS OF PARTICULATE ANIONS AND CATIONS IN MOTOR VEHICLE EXHAUST BY ION CHROMATOGRAPHY Standard Operating Procedure No.

More information

SOIL ORGANIC CONTENT USING UV-VIS METHOD

SOIL ORGANIC CONTENT USING UV-VIS METHOD Test Procedure for SOIL ORGANIC CONTENT USING UV-VIS METHOD TxDOT Designation: Tex-148-E Effective Date: March 2016 1. SCOPE 1.1 This method determines the soil organic content based on the amount of humic

More information

HPLC Praktikum Skript

HPLC Praktikum Skript HPLC Praktikum Skript Assistants: Gianluca Bartolomeo HCI D330, 3 46 68, bartolomeo@org.chem.ethz.ch Sahar Ghiasikhou HCI E330, 2 29 29, ghiasikhou@org.chem.ethz.ch 1. Introduction In chromatographic techniques,

More information

Determination of an anionic fluorochemical surfactant in a semiconductor etch bath

Determination of an anionic fluorochemical surfactant in a semiconductor etch bath APPLICATIN NTE 9 Determination of an anionic fluorochemical surfactant in a semiconductor etch bath Authors Mark Laikhtman and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA Keywords Ion chromatography,

More information

Determination of Orthophosphate Ion

Determination of Orthophosphate Ion Determination of Orthophosphate Ion Introduction Phosphorous, in the form of phosphate, is one of several important elements in the growth of plants. Excessive algae growth in water is stimulated by the

More information

Supplementary information 1. INSTRUCTIONS FOR STUDENTS

Supplementary information 1. INSTRUCTIONS FOR STUDENTS 1 2 Supplementary information 1. INSTRUCTIONS FOR STUDENTS 1.- SAFETY AND WASTE DISPOSAL Reactant CAS Pictogram * Hazards L-ascorbic acid 50-81-7 - Not a dangerous substance Hexadimethrine bromide 28728-55-4

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Pharmacia Sinica, 2011, 2 (2): 68-73 ISSN: 0976-8688 CODEN (USA): PSHIBD Method development and validation for determination of methane sulphonic

More information

Sodium Chloride - Analytical Standard

Sodium Chloride - Analytical Standard Sodium Chloride - Analytical Standard Determination of Fluorides Former numbering: ECSS/CN 311-1982 & ESPA/CN-E-110-1994 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes

More information

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE December 2008 CYCLOSERINE Final text for addition to The International Pharmacopoeia (November 2008) This monograph was adopted at the Forty-third WHO Expert Committee on Specifications for Pharmaceutical

More information

New Developments in Capillary Ion Chromatography using 4 μm Columns and Charge Detection

New Developments in Capillary Ion Chromatography using 4 μm Columns and Charge Detection New Developments in Capillary Ion Chromatography using 4 μm Columns and Charge Detection Barbara Shao, Terri Christison, Fei Pang, Cathy Tanner, and Frank Hoefler, Thermo Fisher Scientific, Sunnyvale,

More information

Soils, sludges and treated bio-waste Organic constituents - LAS by HPLC with fluorescence detection (LC-FLD) and mass selective detection (LC- MSD)

Soils, sludges and treated bio-waste Organic constituents - LAS by HPLC with fluorescence detection (LC-FLD) and mass selective detection (LC- MSD) ISO 2001 All rights reserved HORIZONTAL 13.0 April 2006 Second draft Soils, sludges and treated bio-waste Organic constituents - LAS by HPLC with fluorescence detection (LC-FLD) and mass selective detection

More information

Methods for the determination of vinyl chloride

Methods for the determination of vinyl chloride Federation of the Employment Accidents Insurance Institutions of Germany (Hauptverband der Berufsgenossenschaften) Centre for Accident Prevention and Occupational Medicine Alte Heerstraße 111, 53757 Sankt

More information

Method - Determination of aromatic amines in mainstream cigarette smoke

Method - Determination of aromatic amines in mainstream cigarette smoke British American Tobacco Group Research & Development Method - Determination of aromatic amines in mainstream cigarette smoke 1 SCOPE OF APPLICATION The method is applicaple to quantitative determination

More information

Determination of Sulfate and Chloride in Ethanol by Ion Chromatography

Determination of Sulfate and Chloride in Ethanol by Ion Chromatography Application Note 75 Determination of Sulfate and Chloride in Ethanol by Ion Chromatography Ethanol used as a blending agent in gasoline can be contaminated with chloride and sulfate that form plugging

More information

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION

VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION VALIDATION OF A UPLC METHOD FOR A BENZOCAINE, BUTAMBEN, AND TETRACAINE HYDROCHLORIDE TOPICAL SOLUTION Andrew J. Aubin and Tanya L. Jenkins Waters Corporation, Milford, MA, USA INTRODUCTION Benzocaine (4-Aminobenzoic

More information

Time Savings and Improved Reproducibility of Nitrate and Nitrite Ion Chromatography Determination in Milk Samples

Time Savings and Improved Reproducibility of Nitrate and Nitrite Ion Chromatography Determination in Milk Samples Application Note 79 Time Savings and Improved Reproducibility of Nitrate and Nitrite Ion Chromatography Determination in Milk Samples INTRODUCTION Cow s milk is of particular dietary value to infants,

More information

Analysis of various clays with Metrohm Combustion IC

Analysis of various clays with Metrohm Combustion IC Branch General analytical chemistry Keywords IC 881 / Metrosep A Supp 5-150/4.0 / MMS 5000 / 920 / Absorber Module / Combustion Module / combustion ion chromatography / CIC / matrix elimination / fluoride

More information

IonPac Trace Cation Concentrator

IonPac Trace Cation Concentrator for the IonPac Trace Cation Concentrator (TCC-LP1, TCC-ULP1 and TCC-XLP1) Page 1 of 17 PRODUCT MANUAL FOR TRACE CATION CONCENTRATOR (TCC) TCC-LP1 Column Low Pressure, 4 x 35 mm (P/N 046027) TCC -ULP1 Column

More information

Limit-test of NDMA and NDEA in Sartans. by GC-MS (Liquid-direct-injection)

Limit-test of NDMA and NDEA in Sartans. by GC-MS (Liquid-direct-injection) Limit-test of NDMA and NDEA in Sartans 1 Purpose and scope by GC-MS (Liquid-direct-injection) The method is used to test the permissible limits of N-nitrosodimethylamine and N- nitrosodiethylamine in various

More information

METHOD 8030A ACROLEIN AND ACRYLONITRILE BY GAS CHROMATOGRAPHY

METHOD 8030A ACROLEIN AND ACRYLONITRILE BY GAS CHROMATOGRAPHY METHOD 8030A ACROLEIN AND ACRYLONITRILE BY GAS CHROMATOGRAPHY 1.0 SCOPE AND APPLICATION 1.1 Method 8030 is used to determine the concentration of the following volatile organic compounds: Compound Name

More information

Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components

Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components APPLICATION UPDATE 157 Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components Authors Sumate Pengpumkiat, Weerapong Worawirunwong,

More information

BUTYL ALCOHOL in urine by GC-FID Code GC05510

BUTYL ALCOHOL in urine by GC-FID Code GC05510 BUTYL ALCOHOL in urine by GC-FID Code GC00 BIOCHEMISTRY Butanol (or n-butyl alcohol) is an alcohol which at room temperature is presented as a colorless liquid smelling of alcohol. It is an inflammatory

More information

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets Ascorbic Acid Titration of Vitamin C Tablets Introduction This experiment illustrates how titration, the process of slowly adding one solution to another until the reaction between the two is complete,

More information

Title Revision No date DETERMINATION OF HEAVY METALS (ARSENIC, CADMIUM, LEAD AND MERCURY) IN COSMETIC PRODUCTS

Title Revision No date DETERMINATION OF HEAVY METALS (ARSENIC, CADMIUM, LEAD AND MERCURY) IN COSMETIC PRODUCTS 1. SCOPE AND FIELD OF APPLICATION The method describes the determination of heavy metals (arsenic, cadmium, lead and mercury) in cosmetic products. 2. PRINCIPLE Organic matter in sample is digested by

More information

Ondansetron Hydrochloride Tablets

Ondansetron Hydrochloride Tablets Ondansetron Hydrochloride Tablets Dissolution Perform the test with 1 tablet of Ondansetron Hydrochloride Tablets at 50 revolutions per minute according to the Paddle method, using 900 ml of water

More information

Anethole. Gas chromatograhpy determination of trans-anethole in Spirit srinks of viti-vinicultural origin

Anethole. Gas chromatograhpy determination of trans-anethole in Spirit srinks of viti-vinicultural origin OIVMABS15 Anethole. Gas chromatograhpy determination of transanethole in Type II method SCOPE This method is suitable for the determination of transanethole in aniseedflavoured spirit drinks using capillary

More information

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS

Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS Macrolides in Honey Using Agilent Bond Elut Plexa SPE, Poroshell 120, and LC/MS/MS Application Note Food Testing and Agriculture Author Chen-Hao (Andy) Zhai and Rong-jie Fu Agilent Technologies (Shanghai)

More information

This protocol is a modified version of the DuBois assay (DuBois et al. 1956) for the quantification of total carbohydrate content of a sample.

This protocol is a modified version of the DuBois assay (DuBois et al. 1956) for the quantification of total carbohydrate content of a sample. Carbohydrate Analysis 1. Purpose This protocol is a modified version of the DuBois assay (DuBois et al. 1956) for the quantification of total carbohydrate content of a sample. 2. Principle Sulphuric acid

More information

Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV*

Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV* Determination of Carbonyl Compounds In Water by Dinitrophenylhydrazine Derivatization and HPLC/UV* EPA Method 8315A UCT Part Number: EUC1812M15 (Unendcapped C18-2000 mg/15 ml cartridge) March 2013 Method

More information

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC)

METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC) METHOD 7196A CHROMIUM, HEXAVALENT (COLORIMETRIC) 1.0 SCOPE AND APPLICATION 1.1 Method 7196 is used to determine the concentration of dissolved hexavalent chromium [Cr(VI)] in EP/TCLP characteristic extracts

More information

PRODUCT SAFETY SUMMARY (GPS) SODIUM-HYDROXIDE

PRODUCT SAFETY SUMMARY (GPS) SODIUM-HYDROXIDE This Product Safety Summary is intended to provide a general overview of the chemical substance in the context of ICCA (International Council of Chemical Associations) Global Product Strategy. The information

More information

GPS summary for Sodium Hypochlorite CAS: Brzeg Dolny

GPS summary for Sodium Hypochlorite CAS: Brzeg Dolny GPS summary for Sodium Hypochlorite CAS: 7681-52-9 Brzeg Dolny 01.07.2011 Zawartość Sodium hydroxide... 3 General Statement... 3 Chemical Identity... 3 Use and Applications... 3 Physical/Chemical Properties...

More information

USP 36 Official Monographs / Metformin carding the first 3 ml of filtrate. Transfer 25 ml of the Analysis

USP 36 Official Monographs / Metformin carding the first 3 ml of filtrate. Transfer 25 ml of the Analysis . USP 36 Official Monographs / Metformin 4271 System suitability each of 5 s, at about 20,000 rpm, and allow to soak for Sample: System suitability solution 2 min. Repeat these steps two additional times.]

More information

Determination of Adsorbable Organic Halogen in Wastewater

Determination of Adsorbable Organic Halogen in Wastewater Determination of Adsorbable Organic Halogen in Wastewater Jingli Hu, Jeff Rohrer, and Kirk Chassaniol Thermo Fisher Scientific, Sunnyvale, CA The world leader in serving science Outline AOX (Adsorbable

More information

METHOD 3520C CONTINUOUS LIQUID-LIQUID EXTRACTION

METHOD 3520C CONTINUOUS LIQUID-LIQUID EXTRACTION METHOD 3520C CONTINUOUS LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration

More information

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF Translated English of Chinese Standard: GB31604.11-2016 www.chinesestandard.net Buy True-PDF Auto-delivery. Sales@ChineseStandard.net NATIONAL STANDARD OF GB THE PEOPLE S REPUBLIC OF CHINA GB 31604.11-2016

More information

METHOD 3510B SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION

METHOD 3510B SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION METHOD 3510B SEPARATORY FUNNEL LIQUID-LIQUID EXTRACTION 1.0 SCOPE AND APPLICATION 1.1 This method describes a procedure for isolating organic compounds from aqueous samples. The method also describes concentration

More information

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856

Dimethylglyoxime Method Method to 6.0 mg/l Ni TNTplus 856 Nickel DOC316.53.01065 Dimethylglyoxime Method Method 10220 0.1 to 6.0 mg/l Ni TNTplus 856 Scope and application: For water and wastewater. Test preparation Instrument-specific information Table 1 shows

More information

METHOD 8033 ACETONITRILE BY GAS CHROMATOGRAPHY WITH NITROGEN-PHOSPHORUS DETECTION

METHOD 8033 ACETONITRILE BY GAS CHROMATOGRAPHY WITH NITROGEN-PHOSPHORUS DETECTION METHOD 80 ACETONITRILE BY GAS CHROMATOGRAPHY WITH NITROGEN-PHOSPHORUS DETECTION 1.0 SCOPE AND APPLICATION 1.1 Method 80 may be used to determine the concentration of acetonitrile (CAS No. 75-05-8) in aqueous

More information

CHAPTER - 3 ANALYTICAL PROFILE. 3.1 Estimation of Drug in Pharmaceutical Formulation Estimation of Drugs

CHAPTER - 3 ANALYTICAL PROFILE. 3.1 Estimation of Drug in Pharmaceutical Formulation Estimation of Drugs CHAPTER - 3 ANALYTICAL PROFILE 3.1 Estimation of Drug in Pharmaceutical Formulation 3.1.1 Estimation of Drugs ANALYTICAL PROFILE 84 3.1 ESTIMATION OF DRUG IN PHARMACEUTICAL FORMULATION. Agrawal A et al

More information

637. Thiamethoxam. HPLC method

637. Thiamethoxam. HPLC method 637. Thiamethoxam HPLC method CIPAC Collaborative Trial according to CIPAC Information Sheet N o 293 Dr. Sven Adolph Syngenta Crop Protection Münchwilen AG CH-4333 Münchwilen Switzerland May 212 page 1

More information