Analysis of various clays with Metrohm Combustion IC

Size: px
Start display at page:

Download "Analysis of various clays with Metrohm Combustion IC"

Transcription

1 Branch General analytical chemistry Keywords IC 881 / Metrosep A Supp 5-150/4.0 / MMS 5000 / 920 / Absorber Module / Combustion Module / combustion ion chromatography / CIC / matrix elimination / fluoride / chloride / sulfate / branch 1 Summary In this application work different types of clay samples have been analyzed for the fluoride, chloride and sulfur content. These clays are used to make tiles. Samples The samples were already grinded well and could be directly analyzed. Clay as a sample is suspected to have quite some alkali and earth alkali metal content. They can deteriorate the pyrolysis tube. Therefore to protect the pyrolysis tube tungsten oxide was used. Each sample was combusted with about 100 mg of tungsten oxide. The sample was mixed well with the tungsten oxide. Instruments 881 Compact IC pro Anion MCS IC conductivity detector Combustion Module Autosampler MMS Kit for solid sampling Absorber Module MagIC Net TM 2.4 Compact Metrosep A Supp 5-150/ Metrosep A Supp 4/5 Guard/ Metrosep A PCC 1 HC/ Metrosep I Trap 1-100/ Metrosep A Trap 1-100/ Reagents Ultrapure water, resistivity >18 MΩ cm (25 C), type I grade (ASTM D1193) Anion Standards for IC, TraceCert, from Sigma Aldrich Fluoride β(f - ) = 1 g/l in H2O, No Chloride β(cl - ) = 1 g/l in H 2O; No Bromide β(br - ) = 1 g/l in H 2O; No Sulfate β(so 4 ) = 1 g/l in H2O, No Sodium carbonate, Na 2CO 3, puriss. p.a 99.5%, Sigma Aldrich 71350, CAS Sodium bicarbonate, puriss. p.a. 99.7%, Sigma Aldrich 31437, CAS Sulfuric acid, H 2, ultrapure 96%, CAS , Merck Hydrogenperoxide, 30% H 2O 2, TraceCert, from Sigma Aldrich Tungsten(VI)oxide, WO 3, puriss, 99.9%, Fluka Solutions A stock solution with c(h 2) = 2 mol/l sulfuric acid was prepared out of the concentrated sulfuric acid. Eluent anions Suppressor regeneration solution Suppressor rinsing c(na 2CO 3) = 3.2 mmol/l c(nahco 3) = 1.0 mmol/l c(h 2) = 100 mmol/l detector outlet Absorber Solution 100 ppm H 2O 2 Page 1 of 11

2 Standard solutions One multi-ion standard ( 1) was prepared for the calibration with Metrohm intelligent Partial Loop Technique (MiPT). Calibration is achieved by adjusting the injection volumes. The standard injection volumes are set to 4 µl in the sample table. The true injection volume for the standards is calculated by MagIC Net by multiplication with the standard number. Calibartion A β [mg/l] F Cl Br For the concentration of F in sample No. 1 a second calibration was done to reach the percentage range. Calibration B β [mg/l] F Cl Br Check standard solutions A separate solution of all analytes has been prepared as check standard for both calibrations. Again the injection mode was the same as for the standards. This means the prepared check standard solution has the concentration of the respective 1 A B β [mg/l] Check 5 Check 25 F Cl Br β [mg/l] Check 5 Check 25 F Cl Br Parameters Ion chromatography Recording time 20 min Column Metrosep A Supp 5-150/4.0 Flow Polarity + Temp. coefficient Peri. pump rate ml/min 2.3 %/ C Sample loop 250 µl Inj. Vol. (Standards) µl Inj. Vol. (Sample) Temperature 30 C Parameters Combustion IC Argon (4.6) Oxygen (5.0) 5, 20, 60 µl depending on the sample 100 ml/min 300 ml/min Oven temperature 1050 C Post-combustion time Initial volume of absorption solution Water inlet Post-combustion rinse Final rinse after combustion finshed Calculation 240 sec 2 ml 0.1 ml/min 0.2 ml/min 1 ml Automatic integration with MagIC Net TM 2.4 using peak area for all components. Comments Due to the type of samples alkali and earth alkali metals are expected to be present. To minimize the deterioration of the pyrolysis tube 100 mg tungsten(vi)oxide was added. The blank value given by the tungsten(vi)oxide is very low (close to boat blanks) and is not relevant for these measurements. Date 20 th of December 2012 Author Christian Emmenegger Competence Center Ion Chromatography Metrohm International Headquarters Page 2 of 11

3 Appendix Setup Scheme Ion Chromatography Liquid Handling and Absorption Combustion Liquid handling of absorbing solution is performed by the 10 ml-dosino, i.e. the initial volume is set into the absorber vessel in advance of combustion. During combustion absorbing solution is dosed (0.2 ml/min) to the T-piece located at the end of the combustion tube to achieve immediate absorption of combusted products (Post-combustion rinse). The connection between absorption vessel and combustion tube is rinsed after combustion has finished with 1 ml (final rinse). Water inlet into the combustion tube for pyrohydrolytic environment is carried out by the 5 ml-dosino with a rate of 0.1 ml/min. As MagIC Net TM 2.4 exactly records all volumes added to the absorbing solution during and after combustion there is no need for the use of an internal standard. The transfer of samples and standards into the loop of the 920 Absorber Module was performed by the 5 ml-dosino using partial loop injection (MiPT) giving full flexibility to injection volumes in a range from 4 to 200 µl. Page 3 of 11

4 Results for Sample 1 The results in this section are given in mass per weight of the sample, therefore the units are mg/kg. Each sample was combusted three times. Sample N CTMNC No. 16 (with calibration A) No. Fluoride [mg/kg] Chloride [mg/kg] Sulfur [mg/kg] Sample weight [mg] average RSD [%] Sample N CTMNC No. 21 (with calibration A) No. Fluoride [mg/kg] Chloride [mg/kg] Sulfur [mg/kg] Sample weight [mg] average RSD [%] Sample N CTMNC No. 12 (with calibration A) No. Fluoride [mg/kg] Chloride [mg/kg] Sulfur [mg/kg] Sample weight [mg] average RSD [%] Sample N CTMNC No. 1 (with calibration B) No. Fluoride [mg/kg] Chloride [mg/kg] Sulfur [mg/kg] Sample weight [mg] average RSD [%] Page 4 of 11

5 Calibration A Page 5 of 11

6 Page 6 of 11

7 Calibration B Page 7 of 11

8 Page 8 of 11

9 Check Standards for Calibration A β [%] Recovery Check 5 Recovery Check 25 F Cl Br Check Standards for Calibration B β [%] Recovery Check 5 Recovery Check 25 F Cl Br Chromatograms The concentrations indicated refer to the liquid concentration in the absorption solution measured by the IC in mg/l. Standard 50 of Calibration A Page 9 of 11

10 Sample No. 16 (60 µl injection) Sample No. 21 (20 µl injection) Page 10 of 11

11 Sample No. 12 (20 µl injection) Sample No. 1 (5 µl injection) Page 11 of 11

Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM

Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM IC Application Work AW CH6-1048-012011 Anion and Cation analysis with Professional IC - automatic dilution and sample preparation with SPM Branch: Chemical industry; Water, wastewater, environmental protection,

More information

Cyanide and sulfide analysis using amperometric detection and Metrosep A Supp /4.0

Cyanide and sulfide analysis using amperometric detection and Metrosep A Supp /4.0 Metrosep A Supp 10-100 /4.0 Branch Environment, Food, Beverages Keywords IC; 850; 858; Metrosep A Supp 10-100/4.0; Cyanide; Sulfide; 2.850.9110; DC Mode Summary The determination of sulfide and cyanide

More information

Combustion Ion Chromatography. Fast and reliable determination of halogens and sulfur

Combustion Ion Chromatography. Fast and reliable determination of halogens and sulfur Combustion Ion Chromatography Fast and reliable determination of halogens and sulfur Combustion digestion and ion chromatography combined in one system 02 Combustion Ion Chromatography (CIC) extends the

More information

Sulfur speciation in mining leachates by ion exchange with direct UV detection, using a perchlorate mobile phase.

Sulfur speciation in mining leachates by ion exchange with direct UV detection, using a perchlorate mobile phase. direct UV detection, using a perchlorate mobile phase. Branch Branch 15: Mineral resources Branch 2: Water, wastewater, air, environmental protection Keywords IC / Metrohm 944 Professional UV/VIS Detector

More information

Combustion Ion Chromatography. Fast and reliable determination of halogens and sulfur using pyrohydrolysis

Combustion Ion Chromatography. Fast and reliable determination of halogens and sulfur using pyrohydrolysis Combustion Ion Chromatography Fast and reliable determination of halogens and sulfur using pyrohydrolysis Combustion digestion and ion chromatography combined in one system 02 Combustion Ion Chromatography

More information

Combustion Ion Chromatography. Fast and reliable determination of halogens and sulfur

Combustion Ion Chromatography. Fast and reliable determination of halogens and sulfur Combustion Ion Chromatography Fast and reliable determination of halogens and sulfur Combustion digestion and ion chromatography combined in one system 02 Combustion Ion Chromatography (CIC) extends the

More information

Suppression in anion chromatography. More sensitive analysis of anions and organic acids

Suppression in anion chromatography. More sensitive analysis of anions and organic acids Suppression in anion chromatography More sensitive analysis of anions and organic acids What is suppression? 02 Suppression plays a key role in the analysis of anions and organic acids using ion-exchange

More information

Air Monitoring. Semi-continuous determination of ambient air quality

Air Monitoring. Semi-continuous determination of ambient air quality Air Monitoring Semi-continuous determination of ambient air quality The Particle Into Liquid Sampler a simple solution for the determination of ions in aerosol particles 02 Combustion of fossil fuels for

More information

DETERMINATION OF TOTAL HALOGEN CONTENT IN HALOGEN-FREE FLUXES BY INDUCTIVELY COUPLED PLASMA AND SOME LIMITATIONS OF ION CHROMATOGRAPHY

DETERMINATION OF TOTAL HALOGEN CONTENT IN HALOGEN-FREE FLUXES BY INDUCTIVELY COUPLED PLASMA AND SOME LIMITATIONS OF ION CHROMATOGRAPHY As originally published in the SMTA Proceedings. DETERMINATION OF TOTAL HALOGEN CONTENT IN HALOGEN-FREE FLUXES BY INDUCTIVELY COUPLED PLASMA AND SOME LIMITATIONS OF ION CHROMATOGRAPHY Christopher J. Pontius,

More information

Ion chromatography. Ion chromatography

Ion chromatography. Ion chromatography Ion chromatography Ion chromatography - Contents Professional IC Systems 850 Professional IC Professional IC 850 introduction IC. 11 Professional IC ProfIC Systems How to choose the right ProfIC system

More information

Accurate and Reproducible Determination of Organic Halogens Using Combustion Ion Chromatography

Accurate and Reproducible Determination of Organic Halogens Using Combustion Ion Chromatography Accurate and Reproducible Determination of Organic Halogens Using Combustion Ion Chromatography Kirk Chassaniol Manager of IC Technical Sales Support Thermo Fisher Scientific 1 The world leader in serving

More information

Ion Analysis of Hydraulic Fluids in Fracking Process

Ion Analysis of Hydraulic Fluids in Fracking Process Ion Analysis of Hydraulic Fluids in Fracking Process Presented by Jay Gandhi *, PhD Metrohm USA NEMC-2013 1 NEMC-2013 2 What we will cover today Background Hydraulic Fracking Ion Analysis Applications

More information

881 Compact IC pro 882 Compact IC plus. Compact ion chromatography for intelligent, reliable and precise analysis

881 Compact IC pro 882 Compact IC plus. Compact ion chromatography for intelligent, reliable and precise analysis 881 Compact IC pro 882 Compact IC plus Compact ion chromatography for intelligent, reliable and precise analysis 881 Compact IC pro and 882 Compact IC plus the compact solution for routine analysis 02

More information

Determination of chlorine, bromine, and sulfur in polyethylene materials using combustion IC with a carbonate/bicarbonate eluent

Determination of chlorine, bromine, and sulfur in polyethylene materials using combustion IC with a carbonate/bicarbonate eluent APPLICATION UPDATE 72588 Determination of chlorine, bromine, and sulfur in polyethylene materials using combustion IC with a carbonate/bicarbonate eluent Authors Manali Aggrawal and Jeffrey Rohrer Thermo

More information

Determination of Chloride, Fluoride, Bromide, Nitrate, Sulphate and Phosphate in Water Sample...

Determination of Chloride, Fluoride, Bromide, Nitrate, Sulphate and Phosphate in Water Sample... I J P F A International Science Press Determination of Chloride, Fluoride, Bromide, Nitrate, Sulphate and Phosphate in Water Sample from Different Area of North Gujarat Region by Ion Chromatography Bharat

More information

Burning Through the Confusion: See How Combustion IC Provides Superior Halide Analysis

Burning Through the Confusion: See How Combustion IC Provides Superior Halide Analysis Burning Through the Confusion: See How Combustion IC Provides Superior Halide Analysis Jay Sheffer Metrohm USA Wednesday, October 17, 2018 Gulf Coast Conference Abstract # 187 Organic Halides in Crude

More information

Determination of trace anions in concentrated hydrofluoric acid

Determination of trace anions in concentrated hydrofluoric acid APPLICATION NOTE 78 Determination of trace anions in concentrated hydrofluoric acid Authors Archava Siriraks Thermo Fisher Scientific, Sunnyvale, CA Keywords HF, ICS-5000 +, IonPac AS10, IonPac AC10, ion

More information

Determination of Adsorbable Organic Halogen in Wastewater

Determination of Adsorbable Organic Halogen in Wastewater Determination of Adsorbable Organic Halogen in Wastewater Jingli Hu, Jeff Rohrer, and Kirk Chassaniol Thermo Fisher Scientific, Sunnyvale, CA The world leader in serving science Outline AOX (Adsorbable

More information

Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components

Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components APPLICATION UPDATE 157 Using a Reagent-Free ion chromatography system to monitor trace anion contamination in the extracts of electronic components Authors Sumate Pengpumkiat, Weerapong Worawirunwong,

More information

Determination of Tartaric Acid in Tolterodine Tartrate Drug Products by IC with Suppressed Conductivity Detection

Determination of Tartaric Acid in Tolterodine Tartrate Drug Products by IC with Suppressed Conductivity Detection Determination of Tartaric cid in Tolterodine Tartrate Drug Products by IC with Suppressed Conductivity Detection Suparerk Tukkeeree, Chanita Chantarasukon, and Jeff Rohrer Thermo Fisher Scientific, angkok,

More information

Separation of heat stable amine salts in methyldiethanolamine (MDEA) solutions using high-pressure IC

Separation of heat stable amine salts in methyldiethanolamine (MDEA) solutions using high-pressure IC TECHNICAL NOTE 122 Separation of heat stable amine salts in methyldiethanolamine (MDEA) solutions using high-pressure IC Authors Terri Christison and Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA,

More information

Dionex IonPac AS28-Fast-4µm column

Dionex IonPac AS28-Fast-4µm column CHROMATOGRAPHY Thermo Scientific Dionex IonPac AS-Fast-4µm Columns Product Specifications The Thermo Scientific Dionex IonPac AS-Fast-4µm column is a high-capacity, hydroxide-selective anionexchange column

More information

Determination of adsorbable organic halogen in wastewater using a combustion ion chromatography system

Determination of adsorbable organic halogen in wastewater using a combustion ion chromatography system APPLICATION NOTE 7333 Determination of adsorbable organic halogen in wastewater using a combustion ion chromatography system Authors Jingli Hu and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA

More information

Determination of urea in ultrapure water by IC-MS/MS

Determination of urea in ultrapure water by IC-MS/MS APPLICATION NOTE 72482 Determination of urea in ultrapure water by IC-MS/MS Authors Soon Fatt Lee, 1 Fiona Teh Hui Boon, 1 Chris Cheah Hun Teong, 1 and Jeff Rohrer 2 ¹Thermo Fisher Scientific, Singapore

More information

Inline sample preparation for the determination of anions in sodium hydroxide

Inline sample preparation for the determination of anions in sodium hydroxide APPLICATION UPDATE 72331 Inline sample preparation for the determination of anions in sodium hydroxide Authors Hua Yang and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords Sample preparation,

More information

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production

Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Determination of Tetrafluoroborate, Perchlorate, and Hexafluorophosphate in a Simulated Electrolyte Sample from Lithium Ion Battery Production Thunyarat Phesatcha, Suparerk Tukkeeree, Jeff Rohrer 2 Thermo

More information

883 Basic IC plus. The smallest Metrohm ion chromatograph

883 Basic IC plus. The smallest Metrohm ion chromatograph 883 Basic IC plus The smallest Metrohm ion chromatograph 883 Basic IC plus small but powerful 02 The 883 Basic IC plus completes the family of intelligent Metrohm ion chromatographs. Although it is the

More information

Intelligent Ion Chromatography. 850 Professional IC 872 Extension Module 858 Professional Sample Processor

Intelligent Ion Chromatography. 850 Professional IC 872 Extension Module 858 Professional Sample Processor Intelligent Ion Chromatography 850 Professional IC 872 Extension Module 858 Professional Sample Processor Professional ion chromatography 02 Metrohm ion chromatography Metrohm guarantees optimal solutions

More information

Problems with the measurement of NH 4 with Ion Chromatography

Problems with the measurement of NH 4 with Ion Chromatography Meeting of the heads of the Labs 17./18. September 2015, Vienna (Austria) Problems with the measurement of NH 4 with Ion Chromatography Nils König Northwest, Göttingen a. Instrumentation, software b. Calibration,

More information

881 Compact IC pro / 882 Compact IC plus for ion chromatography. Intelligent. Reliable. Precise.

881 Compact IC pro / 882 Compact IC plus for ion chromatography. Intelligent. Reliable. Precise. Ion analysis 881 Compact IC pro / 882 Compact IC plus for ion chromatography. Intelligent. Reliable. Precise. 881 Compact IC pro and 882 Compact IC plus. Intelligent. Reliable. Precise. Metrohm s top ion

More information

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System

Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free) System Application Update 55 Determination of Cations and Amines in Hydrogen Peroxide by Ion Chromatography Using a RFIC (Reagent-Free System Introduction Hydrogen peroxide is an essential chemical in the fabrication

More information

Time Savings and Improved Reproducibility of Nitrate and Nitrite Ion Chromatography Determination in Milk Samples

Time Savings and Improved Reproducibility of Nitrate and Nitrite Ion Chromatography Determination in Milk Samples Application Note 79 Time Savings and Improved Reproducibility of Nitrate and Nitrite Ion Chromatography Determination in Milk Samples INTRODUCTION Cow s milk is of particular dietary value to infants,

More information

The determination of trace anions in concentrated phosphoric acid

The determination of trace anions in concentrated phosphoric acid TECHNICAL NOTE The determination of trace anions in concentrated phosphoric acid Authors Edward Kaiser and Jeffrey Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords Ion chromatography, IC, IonPac

More information

Determination of Trace Anions in Concentrated Bases Using AutoNeutralization Pretreatment and Ion Chromatography

Determination of Trace Anions in Concentrated Bases Using AutoNeutralization Pretreatment and Ion Chromatography Application Note 9 Determination of Trace Anions in Concentrated Bases Using AutoNeutralization Pretreatment and Ion Chromatography Introduction The computer, semiconductor, and food industries need analytical

More information

Theory of Ion Chromatography

Theory of Ion Chromatography Theory of Ion Chromatography The ideal method for analyzing anions, cations and polar substances is ion chromatography. It can be used to reliably quantify substances throughout a wide concentration range.

More information

The Determination of Trace Anions in Concentrated Phosphoric Acid

The Determination of Trace Anions in Concentrated Phosphoric Acid Technical Note The Determination of Trace Anions in Concentrated Phosphoric Acid INTRODUCTION The determination of trace anions in phosphoric acid is hampered by a large excess of phosphate ion. Chloride

More information

Overcoming Challenging Matrices in Ion Chromatography

Overcoming Challenging Matrices in Ion Chromatography Overcoming Challenging Matrices in Ion Chromatography Presented by: Kirk Chassaniol Gulf Coast Conference 2014 October 14, 2014 Thermo Fisher Scientific NA IC Tech Support 1 The world leader in serving

More information

Determination of Sulfate and Chloride in Ethanol by Ion Chromatography

Determination of Sulfate and Chloride in Ethanol by Ion Chromatography Application Note 75 Determination of Sulfate and Chloride in Ethanol by Ion Chromatography Ethanol used as a blending agent in gasoline can be contaminated with chloride and sulfate that form plugging

More information

Determination of Trace Cations in Power Plant Waters Containing Morpholine

Determination of Trace Cations in Power Plant Waters Containing Morpholine Application Note 8 Determination of Trace Cations in Power Plant Waters Containing Morpholine INTRODUCTION Morpholine and ammonium are used as additives in power plant waters. Morpholine acts as a corrosion

More information

Determination of silicate in high-purity water using ion chromatography and online sample preparation

Determination of silicate in high-purity water using ion chromatography and online sample preparation PPLICTION NOTE 70 Determination of silicate in high-purity water using ion chromatography and online sample preparation uthors Weerapong Worawirunwong and Jeffrey Rohrer Thermo Fisher Scientific, Bangkok,

More information

Determination of Silicate in High Purity Water Using Ion Chromatography and AutoPrep

Determination of Silicate in High Purity Water Using Ion Chromatography and AutoPrep pplication Note 70 Determination of Silicate in High Purity Water Using Ion Chromatography and utoprep Introduction The water used in the manufacture of semiconductors and other modern electronic components

More information

861 Advanced Compact IC

861 Advanced Compact IC Ion analysis 861 Advanced Compact IC «MCS» 853 Metrohm CO 2 Suppressor New compact model

More information

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography

New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography New On-Line High-Pressure Electrolytic Eluent Generators for Ion Chromatography Yan Liu, Zhongqing Lu, and Chris Pohl, Thermo Fisher Scientific, Sunnyvale, CA USA Overview Purpose: In this work, new high-pressure

More information

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography

Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Application Note Inorganic Ions, Water Testing, Minerals, Metals, Basic Chemicals Analysis of Metals, Halides, and Inorganic Ions Using Hydrophilic Interaction Chromatography Authors Anne Mack, Adam Bivens

More information

Trace Level Determination of Bromate in Ozonated Drinking Water Using Ion Chromatography

Trace Level Determination of Bromate in Ozonated Drinking Water Using Ion Chromatography Trace Level Determination of Bromate in Ozonated Drinking Water Using Ion Chromatography Harpreet Dhillon and John Statler Thermo Fisher Scientific, Sunnyvale, CA, USA Application Note 11 Introduction

More information

Standard Operating Procedure for the Analysis of Chloride, Bromide and Sulfate in Fresh Waters by Ion Chromatography CCAL 50B.2

Standard Operating Procedure for the Analysis of Chloride, Bromide and Sulfate in Fresh Waters by Ion Chromatography CCAL 50B.2 Standard Operating Procedure for the Analysis of Chloride, Bromide and Sulfate in Fresh Waters by Ion Chromatography CCAL 50B.2 Cooperative Chemical Analytical Laboratory College of Forestry Oregon State

More information

columns IonPac AS17-C Anion Exchange Column

columns IonPac AS17-C Anion Exchange Column columns IonPac AS-C Anion Exchange Column The IonPac AS-C is a hydroxide-selective anion exchange column designed for fast gradient separation of inorganic anions. The key application for the AS-C column

More information

Application field / Industry branch:

Application field / Industry branch: Application field / Industry branch: Chemistry / Polymer Industry Electronics Energy Nutrition / Agriculture Geology / Mining Semiconductor Technology Clinical Chemistry / Medicine / Sanitation / Health

More information

Waters. Ion Chromatography

Waters. Ion Chromatography 808q Waters Ion Chromatography Method Anion Analysis Using Hydroxide Eluent and Indirect Conductivity Detection and EPA Method B-1011 for Nitrite and Nitrate Using UV Detection 2000 Required Instrumentation:

More information

USGS Troy WSC Laboratory Ion Chromatography SOP EPA 300.0, Rev Jordan Road SOP. No. 1 Rev. No. 1.7 Troy, NY Date 01/25/18 Page 1 of 7

USGS Troy WSC Laboratory Ion Chromatography SOP EPA 300.0, Rev Jordan Road SOP. No. 1 Rev. No. 1.7 Troy, NY Date 01/25/18 Page 1 of 7 Troy, NY 12180 Date 01/25/18 Page 1 of 7 USGS Water Science Center Laboratory, Troy, NY Ion Chromatography Standard Operating Procedure 1. Scope and Application 1.1 Analytes Chloride, Nitrate, and Sulfate

More information

TP Analytical Chemistry II 7 th, December 2012

TP Analytical Chemistry II 7 th, December 2012 ION CHROMATOGRAPHY TP Analytical Chemistry II 7 th, December 2012 Table of content: 1 Abstract... 3 2 Introduction... 3 3 Methodology... 3 4 Results... 3 4.1 Determination of the conductivity of the eluent...

More information

Ion Chromatography Validation for the Analysis of Anions in Gunshot Residue

Ion Chromatography Validation for the Analysis of Anions in Gunshot Residue Ion Chromatography Validation for the Analysis of Anions in Gunshot Residue Student Report Written for: Dr. Samide CH 424 November 22, 2010 Abstract The purpose of this study is to determine whether or

More information

SpeedDigester K-436, K-439 / KjelFlex K-360 Nitrogen Determination in Nitrate-Free Fertilizer according to the micro-kjeldahl Method 074/2011

SpeedDigester K-436, K-439 / KjelFlex K-360 Nitrogen Determination in Nitrate-Free Fertilizer according to the micro-kjeldahl Method 074/2011 SpeedDigester K-436, K-439 / KjelFlex K-360 Nitrogen Determination in Nitrate-Free Fertilizer according to the micro-kjeldahl Method 074/2011 074/2011 SpeedDigester K-436 / K-439 KjelFlex K-360 SHORT NOTE

More information

Accurate and Precise Automated Dilution and In-line Conductivity Measurement Using the AS-AP Autosampler Prior to Analysis by Ion Chromatography

Accurate and Precise Automated Dilution and In-line Conductivity Measurement Using the AS-AP Autosampler Prior to Analysis by Ion Chromatography Accurate and Precise Automated Dilution and In-line Conductivity Measurement Using the AS-AP Autosampler Prior to Analysis by Ion Chromatography Carl Fisher and Linda Lopez Thermo Fisher Scientific, Sunnyvale,

More information

Determination of Bromate in Bottled Mineral Water Using the CRD 300 Carbonate Removal Device

Determination of Bromate in Bottled Mineral Water Using the CRD 300 Carbonate Removal Device Determination of Bromate in Bottled Mineral Water Using the CRD 00 Carbonate Removal Device Thunyarat Phesatcha, Weerapong Worawirunwong, and Jeff Rohrer Thermo Fisher Scientific, Bangkok, Thailand; Thermo

More information

Metrohm Inline Sample Preparation. Ion chromatography analyses could not be easier

Metrohm Inline Sample Preparation. Ion chromatography analyses could not be easier Metrohm Inline Sample Preparation Ion chromatography analyses could not be easier Metrohm Inline Sample Preparation for precise and accurate analysis 02 Crystal clear, clinically pure, no bacteria and

More information

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems

High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems High-Pressure Electrolytic Carbonate Eluent Generation Devices and Their Applications in Ion Chromatography Systems Yan Liu, Zhongqing Lu, and Chris Pohl; Thermo Fisher Scientific, Sunnyvale, CA USA Overview

More information

Determination of an anionic fluorochemical surfactant in a semiconductor etch bath

Determination of an anionic fluorochemical surfactant in a semiconductor etch bath APPLICATIN NTE 9 Determination of an anionic fluorochemical surfactant in a semiconductor etch bath Authors Mark Laikhtman and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA Keywords Ion chromatography,

More information

Ion Analysis of Hydraulic Fluids in Fracking Process

Ion Analysis of Hydraulic Fluids in Fracking Process Ion Analysis of Hydraulic Fluids in Fracking Process Presented by Jay Gandhi *, PhD Metrohm USA Johnson Mathew USEPA R-6 Lab Houston TX 48th WCTOW - Vancouver Canada 1 Disclaimer working with USEPA *Reference

More information

Quantitative determination of ethephon in soluble concentration (SL) by Ion chromatography

Quantitative determination of ethephon in soluble concentration (SL) by Ion chromatography Quantitative determination of ethephon in soluble concentration (SL) by Ion chromatography Author : Li Guoping Yu Rong Shui Rong Institute for the Control of Agrochemicals, Ministry of Agriculture, P.

More information

Determination of Trace Anions in Organic Solvents

Determination of Trace Anions in Organic Solvents Application Note 8 Determination of Trace Anions in Organic Solvents INTRODUCTION In the manufacture of semiconductor materials, a great deal of attention is focused on minimizing sources of contamination.

More information

Determination of trace anions in basic solutions by single pass AutoNeutralization and ion chromatography

Determination of trace anions in basic solutions by single pass AutoNeutralization and ion chromatography APPLIATION NOTE 78 Determination of trace anions in basic solutions by single pass AutoNeutralization and ion chromatography Authors Soon Fatt Lee, Aaron Rose, Terri hristison, and Jeff Rohrer Thermo Fisher

More information

Thermo Scientific Dionex Ion Chromatography Solutions. Global water safety. bromate analysis in drinking water

Thermo Scientific Dionex Ion Chromatography Solutions. Global water safety. bromate analysis in drinking water Thermo Scientific Dionex Ion Chromatography Solutions Global water safety bromate analysis in drinking water Safe drinking water public health assurance As a vital limited resource required for survival,

More information

3. Chemical industry. Because of their modular design, the instruments in the TOC-L series can be equipped for any possible measurement

3. Chemical industry. Because of their modular design, the instruments in the TOC-L series can be equipped for any possible measurement 3. Chemical industry The most commonly used compound in the chemical industry is water not only as a solvent in processing, but also as an energy carrier in the cooling or heating cycle. As vast amounts

More information

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Analysis of Trace (mg/kg) Thiophene in Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application Petrochemical Authors James D. McCurry and Bruce D. Quimby Agilent Technologies

More information

Determination of trace anions in high-nitrate matrices by ion chromatography

Determination of trace anions in high-nitrate matrices by ion chromatography APPLICATION NOTE 7 Determination of trace anions in high-nitrate matrices by ion chromatography Authors Edward Kaiser and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Keywords Contamination,

More information

Keywords Haloacetic acids, Water analysis, 2-D ion chromatography, ICS-3000

Keywords Haloacetic acids, Water analysis, 2-D ion chromatography, ICS-3000 Evaluation of Various Anion-Exchange Chemistries for the Analysis of Haloacetic Acids in Drinking Water Using -D Matrix Elimination Ion Chromatography and Suppressed Conductivity Detection White Paper

More information

Quantification of Trace and Major Anions in Water by Ion Chromatography in a High-Throughput Laboratory

Quantification of Trace and Major Anions in Water by Ion Chromatography in a High-Throughput Laboratory Customer Application Note: 114 Quantification of Trace and Major Anions in Water by Ion Chromatography in a High-Throughput Laboratory Sébastien N. Ronkart, Ph.D.; Société wallonne des eaux, rue de la

More information

Determination of Hexavalent Chromium in Drinking Water Using Ion Chromatography

Determination of Hexavalent Chromium in Drinking Water Using Ion Chromatography Application Update 144 Determination of Hexavalent Chromium in Drinking Water Using Ion Chromatography INTRODUCTION Hexavalent chromium, Cr(VI), is the most toxic form of the metal chromium, a primary

More information

Direct Determination of Aluminium in Milk by Graphite Furnace Atomic Absorption Spectrometry

Direct Determination of Aluminium in Milk by Graphite Furnace Atomic Absorption Spectrometry Direct Determination of Aluminium in Milk by Graphite Furnace Atomic Absorption Spectrometry NOTICE: This method has been developed by the EURL-CEFAO using the facilities available in its laboratories.

More information

Determination of trace anions in concentrated glycolic acid

Determination of trace anions in concentrated glycolic acid TECHNICAL NOTE Determination of trace anions in concentrated glycolic acid Authors Edward Kaiser and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA Keywords Ion chromatography, IC, Dionex ICS- +,

More information

Automatic determination of the bromine number and the bromine index in petroleum products

Automatic determination of the bromine number and the bromine index in petroleum products Application Bulletin 177/5 e Automatic determination of the bromine number and the bromine Branch General analytical chemistry; organic chemistry; petrochemistry, biofuels; trace analysis; paints, lacquers,

More information

Determination of Total Bromine and Iodine Emission Spectrometric Method (ICP-OES) EuSalt/AS

Determination of Total Bromine and Iodine Emission Spectrometric Method (ICP-OES) EuSalt/AS Determination of Total Bromine and Iodine Page 2 of 5 1. SCOPE AND FIELD OF APPLICATION The present EuSalt Analytical Standard describes an inductively coupled plasma optical emission spectrometry method

More information

Determination of Pesticides in Aqueous Samples by On-Line Coupling Solid-Phase Extraction to Gas Chromatography with At-Column Concentrating Interface

Determination of Pesticides in Aqueous Samples by On-Line Coupling Solid-Phase Extraction to Gas Chromatography with At-Column Concentrating Interface Application Note No. 033 Determination of Pesticides in Aqueous Samples by On-Line Coupling Solid-Phase Extraction to Gas Chromatography with At-Column Concentrating Interface Ryoichi Sasano*, Takayuki

More information

ION CHROMATOGRAPHY SYSTEM S 150

ION CHROMATOGRAPHY SYSTEM S 150 ION CHROMATOGRAPHY SYSTEM S 150 WATER ANALYSIS ENVIRONMENTAL ANALYSIS ANION & CATION ANALYSIS ION CHROMATOGRAPHY IIon Chromatography is an analytical separation technique based on ionic interactions. Dissolved

More information

Determination of Trace Anions in Concentrated Hydrofluoric Acid

Determination of Trace Anions in Concentrated Hydrofluoric Acid Technical Note Determination of Trace Anions in Concentrated Hydrofluoric Acid INTRODUCTION There is a need for a reliable method to determine trace anions in hydrofluoric acid. The large excess of fluoride

More information

Determination of Trace Cations in Concentrated Acids Using AutoNeutralization Pretreatment and Ion Chromatography

Determination of Trace Cations in Concentrated Acids Using AutoNeutralization Pretreatment and Ion Chromatography Application Note 9 Determination of Trace Cations in Concentrated Acids Using AutoNeutralization Pretreatment and Ion Chromatography INTRODUCTION Determination of cations in concentrated acid is important

More information

Fine Particles: Why We Care

Fine Particles: Why We Care Fine Particles: Why We Care Visibility/Radiative Forcing Health Effects A function of chemical composition PM2.5 Mostly 1) Sulfate 2) Carbonaceous - Organic - Elemental (Soot) 3) Metals, minerals, Metals,

More information

Determination of trace anions in high-purity waters by high volume/direct injection ion chromatography

Determination of trace anions in high-purity waters by high volume/direct injection ion chromatography APPLICATION NOTE 113 Determination of trace anions in high-purity waters by high volume/direct injection ion chromatography Author Edward Kaiser Thermo Fisher Scientific, Sunnyvale, CA Keywords Trace ionic

More information

anion-exchange column

anion-exchange column columnsionpac ASA Anion-Exchange Column The IonPac ASA is a carbonateselective anion-exchange column designed for the fast separation of inorganic anions, including fluoride, chlorite, bromate, chloride,

More information

Determination of Trace Anions in Concentrated Glycolic Acid

Determination of Trace Anions in Concentrated Glycolic Acid Technical Note Determination of Trace Anions in Concentrated Glycolic Acid INTRODUCTION There is a need for a reliable method to determine trace chloride and sulfate in glycolic acid. The presence of these

More information

Determination of Organic Acids and Inorganic Anions in Lithium-Containing Boric Acid-Treated Nuclear Power Plant Waters

Determination of Organic Acids and Inorganic Anions in Lithium-Containing Boric Acid-Treated Nuclear Power Plant Waters Application Update 5 Determination of Organic Acids and Inorganic Anions in Lithium-Containing Boric Acid-Treated Nuclear Power Plant Waters INTRODUCTION For nuclear power plants using a pressurized water

More information

Determination of Zinc, Cadmium, Lead and Copper in Effluent Sample

Determination of Zinc, Cadmium, Lead and Copper in Effluent Sample Determination of Zinc, Cadmium, Lead and Copper in Effluent Sample Branch: General analytical chemistry, water, waste water, environmental protection Key Words 797 / polarography / VA / 8 / Zn / Cd / Pb

More information

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry

Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry APPLICATION NOTE Speciation of Bromine Compounds in Ozonated Drinking Water using Ion Chromatography and Inductively Coupled Plasma Mass Spectrometry AN43227 Antonella Guzzonato 1, Shona McSheehy Ducos

More information

Application Bulletin

Application Bulletin No. 292e Application Bulletin Of interest to: Plating industry, semiconductor industry, automotive industry, aeronautic industry, electroless nickel plating, hypophosphite, alkalinity P 9, 10 Determination

More information

Pelagia Research Library

Pelagia Research Library Available online at www.pelagiaresearchlibrary.com Der Pharmacia Sinica, 2011, 2 (2): 68-73 ISSN: 0976-8688 CODEN (USA): PSHIBD Method development and validation for determination of methane sulphonic

More information

Determination of chloride and sulfate in bio-ethanol by ion chromatography

Determination of chloride and sulfate in bio-ethanol by ion chromatography Indian Journal of Chemical Technology Vol. 23, January, 2016 pp. 65-70 Determination of chloride and sulfate in bio-ethanol by ion chromatography Tatjana Tomić 1, *, Martina Milčić 2, Nada Uzorinac Nasipak

More information

High performance liquid chromatography

High performance liquid chromatography Analytical Physical Practica High performance liquid chromatography Version 1, Group M14 Jorge Ferreiro, Studiengang Chemieingenieur 4. Semester, fjorge@student.ethz.ch Natalja Früh, Studiengang Interdisziplinäre

More information

Metrohm Inline Sample Preparation. Making your ion chromatography more efficient

Metrohm Inline Sample Preparation. Making your ion chromatography more efficient Metrohm Inline Sample Preparation Making your ion chromatography more efficient Metrohm Inline Sample Preparation for precise and accurate analysis 02 Crystal clear, clinically pure, no bacteria and no

More information

Direct Determination of Small Organic Acids in Sea Water by IC-MS

Direct Determination of Small Organic Acids in Sea Water by IC-MS Direct Determination of Small Organic Acids in Sea Water by IC-MS Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA Application Note Key Words MSQ Plus Single Quadrupole Mass

More information

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Supporting information Removal of Alkali and Transition Metal Ions from Water with

More information

Application Note 187. Brian DeBorba and Jeff Rohrer Thermo Scientific, Sunnyvale, CA, USA

Application Note 187. Brian DeBorba and Jeff Rohrer Thermo Scientific, Sunnyvale, CA, USA Determination of Sub-μg/L Bromate in Municipal and Natural Mineral Waters Using Preconcentration with Two-Dimensional Ion Chromatography and Suppressed Conductivity Detection Brian DeBorba and Jeff Rohrer

More information

Determination of trace anions in organic solvents using matrix elimination and preconcentration

Determination of trace anions in organic solvents using matrix elimination and preconcentration APPLICATION UPDATE Determination of trace anions in organic solvents using matrix elimination and preconcentration Authors Terri Christison and Jeff Rohrer Thermo Fisher Scientific Sunnyvale, CA Keywords

More information

Tex-620-J, Determining Chloride and Sulfate Contents in Soil

Tex-620-J, Determining Chloride and Sulfate Contents in Soil Contents in Soil Contents: Section 1 Overview...2 Section 2 Sample Preparation...3 Section 3 Ion Chromatography Method...5 Section 4 Wet Chemical Method...9 Section 5 Archived Versions...15 Texas Department

More information

Automation in ion chromatography. Save time and money through automated sample preparation and analysis

Automation in ion chromatography. Save time and money through automated sample preparation and analysis Automation in ion chromatography Save time and money through automated sample preparation and analysis Automation for more analytical reliability 02 In ion chromatography anions, cations, carbohydrates

More information

The analysis of organic acid content of additives, premix, feed, and water.

The analysis of organic acid content of additives, premix, feed, and water. The analysis of organic acid content of additives, premix, feed, and water. Contents Foreword Introduction Warnings 1. Scope 2 1.1 LOD and LOQ 3 2. Normative References 3 3. Definitions 3 3.1 Feed (or

More information

3. Chemical industry. Because of their modular design, the instruments in the TOC-L series can be equipped for any possible measurement

3. Chemical industry. Because of their modular design, the instruments in the TOC-L series can be equipped for any possible measurement 3. Chemical industry The most commonly used compound in the chemical industry is water not only as a solvent in processing, but also as an energy carrier in the cooling or heating cycle. As vast amounts

More information

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers.

Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers. Draft Method proposal: determination of glucoheptonic acid (HGA) in fertilizers. 1 Scope This document describes a chromatographic method which allows the identification as well as the determination of

More information

TERTIARY BUTYLHYDROQUINONE

TERTIARY BUTYLHYDROQUINONE SYNONYMS TBHQ, INS No 319 DEFINITION TERTIARY BUTYLHYDROQUINONE Prepared at the 49th JECFA (1997), published in FNP 52 Add 5 (1997) superseding specifications prepared at the 44th JECFA (1995), published

More information

For new orders of the following parts discussed in this manual, please use the updated part numbers listed below.

For new orders of the following parts discussed in this manual, please use the updated part numbers listed below. Errata Product Manual for Dionex IonPac UTAC2 and AC-ER 065376-0 For new orders of the following parts discussed in this manual, please use the updated part numbers listed below. Part Old Part Number in

More information