Coupling the Chemistry in Earth System Models on multiple Scales (ChESS)

Size: px
Start display at page:

Download "Coupling the Chemistry in Earth System Models on multiple Scales (ChESS)"

Transcription

1 Coupling the Chemistry in Earth System Models on multiple Scales (ChESS) Patrick Jöckel

2 Outline Earth System Science a computational science Atmospheric Chemistry The Earth System Model EMAC DEISA/DECI Project ChESS: The lower boundary: coupling the ocean Towards smaller scales: nesting a regional model

3 Earth System Science a computational science

4 Figure of the heavenly bodies An illustration of the Ptolemaic geocentric system by the cosmographer and cartographer Bartolomeu Velho, 1568 (Bibliothèque Nationale, Paris)

5 Earth System Model = the Earth in a computer an artificial system (laboratory system) with the same characteristics as the terrestrial climate system description of all relevant processes in sufficient detail

6 atmospheric and oceanic (thermohaline) circulation File:Earth_Global _Circulation.jpg Thermohaline_Zirkulation

7 Sun thermal radiation radiation Earth orbit atmosphere hydrosphere cryosphere biosphere Pedopedosphäre sphere air ocean rivers lakes groundwater glaciers sea-ice snow vegetation soil litosphere anthrosphere rock sociovolcanos economy continents technology crust coupling : circulation of energy, momentum, constituents change of state variables by physical, chemical, biological, socio-economic processes

8 Mathematical formulation (e.g., atmospheric dynamics) Conservation of momentum Newton's 2. Law DV 1 2 V = g c p af Dt Conservation of mass Continuity equation: D V =0 Dt Conservation of energy 1. Law of thermodynamics: 1 c V T = Q Equation of state (air ~ ideal gas): p= Rg T Mm

9 Mathematical formulation (e.g., atmospheric dynamics) Conservation of momentum - Newton's 2. Law DV 1 2 V = g c p af Dt Conservation coupled of mass Continuity PDE system equation: non-linear D Vsystem =0 open (δq) Dt rotating frame of reference Conservation numerous of energy - 1. Law of processes onthermodynamics: a wide range of spatio-temporal scales 1 c V T = Q Equation of state (air ~ ideal gas): p= Rg T Mm

10 The characteristic time and space scales of the spectrum of Earth processes 1994) , Patrick Jöckel, DEISA PRACE(Barron, Symposium 2010, Barcelona

11 1950 (Charney, Fjørtoft, von Neumann): first numerical weather forecast on ENIAC (Electronic Numerical Integrator and Computer) forecast time: 24 hours computation: 24 hours

12 1950 (Charney, Fjørtoft, von Neumann): first numerical weather forecast on ENIAC (Electronic Numerical Integrator and Computer) forecast time: 24 hours computation: 24 hours 2008 (Lynch & Lynch): reconstruction on mobile-phone (JAVA-application): forecast time: 24 hours computation: < 1 second (!!!) Lynch & Lynch, Weather 63, ,

13 processing power 1 P Flops/s T Flops/s fastest computer(s) in the world 1 G Flops/s 1 M Flops/s mass product 1. numerical weather forecast

14

15 Challenges wide range of spatio-temporal scales combination of various algorithms in operator splitting all with special requirements, e.g. w.r.t. parallelisation load imbalancing issues in most cases historically grown ( legacy ) codes several decades of development very large codes (~ lines of code) porting / adaption to new hard-/software is an issue large output ~ TByte / simulated year (T42L90MA with complex chemistry)

16 Atmospheric Chemistry

17 The role of atmospheric chemistry absorption / emission of radiation differential heating/cooling forcing for dynamics urban photochemical smog greenhouse gases acid rain atmospheric chemistry stratospheric ozone depletion self cleansing of the atmosphere constituent cycles many interactions highly non-linear wide range of spatial and temporal scales

18 Atmospheric Chemistry: many processes gas phase anthropogenic emissions clouds aerosol Transformation Emission Deposition Transport natural emissions dry deposition wet deposition advection convection diffusion scavenging sedimentation OCEAN AND BIOSPHERE

19 Spatial and temporal scales of variability for atmospheric constituents. cf. Figure 1.17, page 41, Atmospheric Chemistry and Physics, J.H. Seinfeld & S.N. Pandis, 1997.

20 1 N2O + O( D) 36% 64% N2 + O2 very fast auto-catalytic cycles + hν O2 hν slow M+O2 O fast hν slow -O NO2+O2 O3 + NO +O - O2 hν OH+NO2 HO2+NO2 + OH 1 H2O + O( D) M HO2+O2 +O3 -O2 HNO3 HO2NO2 hν

21 radical family photolysis long range transport source gases reservoir species radical family washout & deposition photolysis mathematically described by a (stiff) system of coupled ODEs

22 Number* of sub-time steps of the ODE solver for the kinetic system T106L90MA ~ x x 90 (~80 km) ; Δt = 6 min 16-FEB :00 UTC *vertical average

23 Number of sub-time steps of the ODE solver for the kinetic system T106L90MA ~ x x 90 (~80 km) ; Δt = 6 min ~ 80 km 16-FEB :00 UTC ; 90 E surface

24 The Earth System Model EMAC

25 EMAC: ECHAM/MESSy Atmospheric Chemistry European Center HAmburg Model / Modular Earth Submodel System a General Circulation Model (GCM) of the atmosphere version 5 (Roeckner et. al., 2006) needs to be explained a bit further version 1 (Jöckel et al., 2005) MPI for Meteorology MPI for Chemistry DLR Institute for Atmospheric Physics University of Mainz Karlsruhe Institute of Technology Free University of Berlin Cyprus Institute... EMAC evaluated (Jöckel et. al, 2006)

26 different domains - atmosphere - hydrosphere - cryosphere - biosphere - pedosphere - litosphere - anthrosphere M O D U L A R I S A T I O N I N T E G R A T I O N simple and efficient interface structure process oriented approach! Comprehensive Earth System Model one code / flexible complexity transparent (user friendly) highly consistent single components easily exchangeable continuous further development always state of the art and applicable for scientific purposes

27 different domains - atmosphere - hydrosphere - cryosphere - biosphere - pedosphere - litosphere - anthrosphere M O D U L A R I S A T I O N I N T E G R A T I O N simple and efficient interface structure process oriented approach! Comprehensive Earth System Model one code / flexible complexity transparent (user friendly) highly consistent single components easily exchangeable continuous further development always state of the art and applicable for scientific purposes Standardisation

28 Base Model Layer: power supply Base Model Interface Layer: multiple socket outlet Submodel Interface Layer: connector Submodel Core Layer: the machinery...

29 MESSy is (a project providing)... an interface with infrastructure to couple 'processes' (=submodels) to a GCM (= base model) a set of processes coded as switchable submodels a (simple) coding standard... Ocean Atmosphere chemistry advection biology MESSy radiation dynamics clock/run control chemistry (base model)... microphysics standard interface land use vegetation Land surface soil convection... (Jöckel et al., ACP, 2005)

30 plug&play uncertainty w.r.t. process formulation ECHAM5 MESSy BMIL MESSy SMIL T1 / T2 / T3 EC / EC2 B1 / B2 ZH / ZHW 4 different convection schemes

31 average precipitation [mm/day] GPCP (=obs.) Tiedtke Nordeng ECMWF Zhang /McFarlane / Hack Bechtold (H. Tost, 2006)

32 Granularity (Example): Atmospheric Chemistry JVAL gas phase MECCA _AERO anthropogenic emissions Emission clouds aerosol PSC CLOUD SCAV DRYDEP Transformation dry deposition TRACER Deposition Transport natural emissions wet deposition advection convection diffusion ONLEM LNOX CONVECT sediofflem AIRSEA SEDI mentation CVTRANS TNUDGE OCEAN AND BIOSPHERE scavenging SCAV

33 consistent simulation of (dynamical and chemical) state of the atmosphere between surface and 0.01 hpa 4 year average ( , excl. 2002) of ozone (DJF) [μmol/mol] (Jöckel et al., ACP, 2006)

34 SH vortex split 2002 reproduced Total Ozone [DU] 26 Sep 2002 EMAC (S2) TOMS (Jöckel et al., ACP, 2006)

35 Example: tropospheric CO NOAA/ESRL EMAC (Jöckel et al., ACP, 2006)

36

37 DEISA/DECI Project ChESS: Part I: The lower boundary coupling the ocean

38 Atmospheric Chemistry: Input from the ocean gas phase anthropogenic emissions Emission clouds aerosol Transformation dry deposition TRACER Deposition Transport natural emissions wet deposition advection convection diffusion scavenging sedimentation OCEAN AND BIOSPHERE

39 alternative process descriptions: increasing consistency ECHAM5 MESSy OFFLEM emission flux consistent with prescribed oceanic emissions wind speed salinity ocean circulation

40 alternative process descriptions: increasing consistency emission flux consistent with ECHAM5 ECHAM5 MESSy MESSy OFFLEM OFFLEM AIRSEA prescribed oceanic emissions prescribed oceanic concentrations explicit calculation of air sea exchange wind speed salinity ocean circulation - + -/+

41 Vertical profiles of methanol (CH3OH) (Pozzer et al., ACP, 2007)

42 ECHAM5 ECHAM5 MESSy MPIOM MESSy OFFLEM OFFLEM AIRSEA HAMOCC prescribed oceanic emissions prescribed oceanic concentrations explicit calculation of air sea exchange explicit calculation of oceanic concentrations emission flux consistent with wind speed salinity ocean circulation - + -/

43 Chemistry in the Atmosphere Ocean System (Andrea Pozzer, Bastian Kern, Patrick Jöckel) MECCA/SCAV/ONLEM/ OFFLEM/DRYDEP/... ECHAM5 ATMOSPHERIC PHYSICS ATMOSPHERIC CHEMISTRY MESSy OCEAN PHYSICS MPIOM OCEAN CHEMISTRY HAMMOC

44 Processor ID # for 4 x 4 decomposition Atmosphere Ocean rotated grid (poles over land) Challenges: different grid-structures and parallel decompositions - requires mass-conserving transformations - communication overhead (MPI)

45 sea level [m] Water balance... year (const. pre-industrial climate forcing) (A. Pozzer)

46 Δ-Temperature [K] compared to Temperature Trend EMMAC (A. Pozzer)

47 simulated (5-year average) ocean surface (6 m) chlorophyll content mg/m3 (B. Kern)

48 simulated (5-year average) ocean surface (6 m) chlorophyll content dependency on nutrient influx by rivers (with without) mg/m3 (B. Kern)

49 pr el im in ar y!!! coupling to the atmosphere...

50 DEISA/DECI Project ChESS: Part II: Towards smaller scales nesting a regional model

51 Modeling of AtmospheriC CHemIstry And Transport from the global to the local scales (Astrid Kerkweg, Patrick Jöckel) 1. COSMO COSMO/MESSy 2. on-line (one-way) nesting of COSMO/MESSy into ECHAM5/MESSy field camapigns global regional local scale consistent dynamical AND chemical BC (with high frequency)

52 consistent boundary conditions ECHAM5/MESSy COSMO(7 km)/messy COSMO(2 km)/messy Tasks: implementation of MESSy infrastructure (+ submodels) into COSMO implementation of INT2COSMO as MESSy-submodel for on-line grid transformation implementation of the MESSy multi-model driver (MMD), based on MPI standard

53 ECHAM5 Multiple instances possible due to client server architecture of MMD... COSMO 1 COSMO 2 COSMO 2-1 COSMO 3 COSMO 3-1 COSMO COSMO 2-1-2

54 temperature at 500 hpa

55 Summary Earth System Science is a computational science... facing specific challenges as compared to other communities Consideration of chemical processes (in atmosphere, ocean,...) is essential for understanding constituent cycles (but introduces new challenges) DEISA provided/provides an ideal extreme computing environment required for further progress dynamical and chemical coupling of the atmosphere-ocean system nesting of small -scale model for bridging the scales first results are very promising and provide a proof-of-concept for the (modular) approach of the Modular Earth Submodel System (MESSy) Thanks to staff of RZG, SARA, LRZ (DEISA!), DKRZ for their support!

Some remarks on climate modeling

Some remarks on climate modeling Some remarks on climate modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Selected overheads by Doug Nychka Outline Hierarchy of atmospheric modeling strategies

More information

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION

CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION i CONTENTS 1 MEASURES OF ATMOSPHERIC COMPOSITION 1 1.1 MIXING RATIO 1 1.2 NUMBER DENSITY 2 1.3 PARTIAL PRESSURE 6 PROBLEMS 10 1.1 Fog formation 10 1.2 Phase partitioning of water in cloud 10 1.3 The ozone

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

ICON-ESM MPI-M s next-generation Earth system model

ICON-ESM MPI-M s next-generation Earth system model ICON-ESM MPI-M s next-generation Earth system model Climate and Earth system models are applied to simulate the past, present, and projected future climate, and to advance understanding of processes that

More information

Introduction to Climate ~ Part I ~

Introduction to Climate ~ Part I ~ 2015/11/16 TCC Seminar JMA Introduction to Climate ~ Part I ~ Shuhei MAEDA (MRI/JMA) Climate Research Department Meteorological Research Institute (MRI/JMA) 1 Outline of the lecture 1. Climate System (

More information

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth

Climate Modeling Research & Applications in Wales. John Houghton. C 3 W conference, Aberystwyth Climate Modeling Research & Applications in Wales John Houghton C 3 W conference, Aberystwyth 26 April 2011 Computer Modeling of the Atmosphere & Climate System has revolutionized Weather Forecasting and

More information

Model Systems at MPI-M. Marco Giorgetta

Model Systems at MPI-M. Marco Giorgetta Model Systems at MPI-M Marco Giorgetta Content What is a model in climate research as used here for IPCC? What is a model? Components of the climate system Climate models What is inside? Climate models

More information

Analysis of radiative feedbacks in model simulations including interactive chemistry

Analysis of radiative feedbacks in model simulations including interactive chemistry Analysis of radiative feedbacks in model simulations including interactive chemistry Michael Ponater Simone Dietmüller Vanessa Rieger Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute for Atmospheric

More information

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile

Climate models. René D. Garreaud. Departement of Geophysics Universidad de Chile Climate models René D. Garreaud Departement of Geophysics Universidad de Chile www.dgf.uchile.cl/rene My first toy model A system of coupled, non-linear algebraic equations X (t) = A X (t-1) Y (t) B Z

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

Analysis Methods in Atmospheric and Oceanic Science

Analysis Methods in Atmospheric and Oceanic Science Analysis Methods in Atmospheric and Oceanic Science AOSC 652 Ordinary Differential Equations Week 12, Day 1 1 Differential Equations are central to Atmospheric and Ocean Sciences They provide quantitative

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010 The Atmosphere All of it. In one hour. Mikael Witte 10/27/2010 Outline Structure Dynamics - heat transport Composition Trace constituent compounds Some Atmospheric Processes Ozone destruction in stratosphere

More information

D15: Simulation of a Dust Event over Cyprus

D15: Simulation of a Dust Event over Cyprus D15: Simulation of a Dust Event over Cyprus An episode of low visibility was observed over Cyprus in late September 2011. It appears that it was caused by an increase in the atmospheric dust concentration

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

Chapter 6: Modeling the Atmosphere-Ocean System

Chapter 6: Modeling the Atmosphere-Ocean System Chapter 6: Modeling the Atmosphere-Ocean System -So far in this class, we ve mostly discussed conceptual models models that qualitatively describe the system example: Daisyworld examined stable and unstable

More information

INTERACTIONS OF AEROSOLS AND GASES WITH CLOUDS AND PRECIPITATION IN THE ONLINE-COUPLED REGIONAL CHEMISTRY-TRANSPORT MODEL COSMO-ART

INTERACTIONS OF AEROSOLS AND GASES WITH CLOUDS AND PRECIPITATION IN THE ONLINE-COUPLED REGIONAL CHEMISTRY-TRANSPORT MODEL COSMO-ART INTERACTIONS OF AEROSOLS AND GASES WITH CLOUDS AND PRECIPITATION IN THE ONLINE-COUPLED REGIONAL CHEMISTRY-TRANSPORT MODEL COSMO-ART Christoph Knote* and Dominik Brunner Laboratory for Air Pollution / Environmental

More information

Atmospheric Composition Matters: To Air Quality, Weather, Climate and More

Atmospheric Composition Matters: To Air Quality, Weather, Climate and More Atmospheric Composition Matters: To Air Quality, Weather, Climate and More Burkholder et al., ES&T, 2017 2 Overarching Research Need: Improve Prediction Capabilities via Incorporating/Integrating Composition,

More information

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki

Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki Climate changes in Finland, but how? Jouni Räisänen Department of Physics, University of Helsinki 19.9.2012 Outline Some basic questions and answers about climate change How are projections of climate

More information

Components of the Climate System. Lecture 2: Earth s Climate System. Pop Quiz. Sub-components Global cycles What comes in What goes out

Components of the Climate System. Lecture 2: Earth s Climate System. Pop Quiz. Sub-components Global cycles What comes in What goes out Lecture 2: Earth s Climate System Components of the Climate System terrestrial radiation Atmosphere Ocean solar radiation Land Energy, Water, and Biogeochemistry Cycles Sub-components Global cycles What

More information

Lecture 2: Earth s Climate System

Lecture 2: Earth s Climate System Lecture 2: Earth s Climate System terrestrial radiation solar radiation Atmosphere Ocean Solid Earth Land Energy, Water, and Biogeochemistry Cycles Sub-components Global cycles What comes in What goes

More information

The PRECIS Regional Climate Model

The PRECIS Regional Climate Model The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over

More information

Observed State of the Global Climate

Observed State of the Global Climate WMO Observed State of the Global Climate Jerry Lengoasa WMO June 2013 WMO Observations of Changes of the physical state of the climate ESSENTIAL CLIMATE VARIABLES OCEANIC ATMOSPHERIC TERRESTRIAL Surface

More information

PROBLEMS Sources of CO Sources of tropospheric ozone

PROBLEMS Sources of CO Sources of tropospheric ozone 220 PROBLEMS 11. 1 Sources of CO The two principal sources of CO to the atmosphere are oxidation of CH 4 and combustion. Mean rate constants for oxidation of CH 4 and CO by OH in the troposphere are k

More information

FCAT Review Earths Systems

FCAT Review Earths Systems FCAT Review Earths Systems PARTS OF EARTHS SYSTEMS The Earth system has 5 main spheres: 1) Atmosphere The layer of gases that forms Earth s outermost layer. It is a mixture of gases- mostly nitrogen and

More information

Implementation of modules for wet and dry deposition into the ECMWF Integrated Forecast System

Implementation of modules for wet and dry deposition into the ECMWF Integrated Forecast System Implementation of modules for wet and dry deposition into the ECMWF Integrated Forecast System Johannes Flemming (ECMWF), Vincent Huijnen (KNMI) and Luke Jones (ECMWF) Deliverable D G-RG 4.6 1 Abstract

More information

Climate Change Models: The Cyprus Case

Climate Change Models: The Cyprus Case Climate Change Models: The Cyprus Case M. Petrakis, C. Giannakopoulos, G. Lemesios National Observatory of Athens AdaptToClimate 2014, Nicosia Cyprus Climate Research (1) Climate is one of the most challenging

More information

Climate Modeling and Downscaling

Climate Modeling and Downscaling Climate Modeling and Downscaling Types of climate-change experiments: a preview 1) What-if sensitivity experiments increase the optically active gases and aerosols according to an assumed scenario, and

More information

Original (2010) Revised (2018)

Original (2010) Revised (2018) Section 1: Why does Climate Matter? Section 1: Why does Climate Matter? y Global Warming: A Hot Topic y Data from diverse biological systems demonstrate the importance of temperature on performance across

More information

ATMOSPHERIC MODEL. Iracema Fonseca Albuquerque Cavalcanti

ATMOSPHERIC MODEL. Iracema Fonseca Albuquerque Cavalcanti ATMOSPHERIC MODEL Iracema Fonseca Albuquerque Cavalcanti José Paulo Bonatti CPTEC/INPE Silvio Nilo Figueroa- CPTEC/INPE Paulo Kubota CPTEC/INPE Henrique M.J. Barbosa- USP Solange Souza-CPTEC/INPE Christopher

More information

Climate 1: The Climate System

Climate 1: The Climate System Climate 1: The Climate System Prof. Franco Prodi Institute of Atmospheric Sciences and Climate National Research Council Via P. Gobetti, 101 40129 BOLOGNA SIF, School of Energy, Varenna, July 2014 CLIMATE

More information

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh

Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh SAGES Scottish Alliance for Geoscience, Environment & Society Modelling Climate Change Prof. Simon Tett, Chair of Earth System Dynamics & Modelling: The University of Edinburgh Climate Modelling Climate

More information

Measurements of Ozone. Why is Ozone Important?

Measurements of Ozone. Why is Ozone Important? Anthropogenic Climate Changes CO 2 CFC CH 4 Human production of freons (CFCs) Ozone Hole Depletion Human production of CO2 and CH4 Global Warming Human change of land use Deforestation (from Earth s Climate:

More information

The Challenge of. Guy Brasseur

The Challenge of. Guy Brasseur The Challenge of Monitoring and Predicting Chemical Weather Guy Brasseur Introduction: What is Chemical Weather? What is Chemical Weather? Local, regional, and global distributions of important trace gases

More information

Summary. The Ice Ages and Global Climate

Summary. The Ice Ages and Global Climate The Ice Ages and Global Climate Summary Earth s climate system involves the atmosphere, hydrosphere, lithosphere, and biosphere. Changes affecting it operate on time scales ranging from decades to millions

More information

Introduction to HadGEM2-ES. Crown copyright Met Office

Introduction to HadGEM2-ES. Crown copyright Met Office Introduction to HadGEM2-ES Earth System Modelling How the climate will evolve depends on feedbacks Ecosystems Aerosols Chemistry Global-scale impacts require ES components Surface temperature Insolation

More information

An Introduction to Climate Modeling

An Introduction to Climate Modeling An Introduction to Climate Modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline What is Climate & why do we care Hierarchy of atmospheric modeling strategies

More information

CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment...

CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment... CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment... 3 Measurement, Percent Deviation From Accepted Value Density... 6 Density

More information

Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple

Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple Earth systems the big idea guiding questions Chapter 1 & 2 Earth and Earth Systems review notes are in purple How can you describe Earth? What are the composition and the structure of the atmosphere? How

More information

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute

The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute The atmosphere: A general introduction Niels Woetmann Nielsen Danish Meteorological Institute Facts about the atmosphere The atmosphere is kept in place on Earth by gravity The Earth-Atmosphere system

More information

Austria s Information Portal Climate Change Getting climate science across

Austria s Information Portal Climate Change Getting climate science across Zentralanstalt für Meteorologie und Geodynamik Johann Hiebl, Barbara Chimani, Klaus Haslinger, Daniel Binder, Harald Bamberger, Ingeborg Auer Getting climate science across Overview 1. Climate service

More information

Chapter Introduction. Chapter Wrap-Up. Earth Systems

Chapter Introduction. Chapter Wrap-Up. Earth Systems Chapter Introduction Lesson 1 Lesson 2 Chapter Wrap-Up Earth Systems Interactions of Earth Systems How can you describe Earth? What do you think? Before you begin, decide if you agree or disagree with

More information

Regional climate modelling in the future. Ralf Döscher, SMHI, Sweden

Regional climate modelling in the future. Ralf Döscher, SMHI, Sweden Regional climate modelling in the future Ralf Döscher, SMHI, Sweden The chain Global H E H E C ( m 3/s ) Regional downscaling 120 adam 3 C HAM 4 adam 3 C HAM 4 trl A2 A2 B2 B2 80 40 0 J F M A M J J A S

More information

Earth System Science. A highly interdisciplinary field the scientific basis for many key decisions and policy issues human society faces.

Earth System Science. A highly interdisciplinary field the scientific basis for many key decisions and policy issues human society faces. Earth System Science A highly interdisciplinary field the scientific basis for many key decisions and policy issues human society faces. from: Johnson, Ruzek, Kalb, 2000 "Earth System Science and the Internet",

More information

Radiative forcing of fine ash and volcanic sulphate aerosol. sulphate aerosol after a very large Northern hemisphere mid-latitude eruption

Radiative forcing of fine ash and volcanic sulphate aerosol. sulphate aerosol after a very large Northern hemisphere mid-latitude eruption Radiative forcing of fine ash and volcanic sulphate aerosol after a very large Northern hemisphere mid-latitude eruption Ulrike Niemeier (1), Claudia Timmreck (1), Sebastian Rast (1), Marco Giorgetta (1),

More information

Weather & Climate. Sanjay S. Limaye Space Science & Engineering Center University of Wisconsin-Madison

Weather & Climate. Sanjay S. Limaye Space Science & Engineering Center University of Wisconsin-Madison Weather & Climate Sanjay S. Limaye Space Science & Engineering Center University of Wisconsin-Madison 1 What is Weather? Webster s New Collegiate Dictionary: state of the atmosphere with respect to heat

More information

The Study of the Atmosphere

The Study of the Atmosphere 1 The Study of the Atmosphere Learning Goals After studying this chapter, students should be able to distinguish between weather and climate (pp. 2 5); describe how the various components of the climate

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007.

Daniel J. Jacob, Models of Atmospheric Transport and Chemistry, 2007. 1 0. CHEMICAL TRACER MODELS: AN INTRODUCTION Concentrations of chemicals in the atmosphere are affected by four general types of processes: transport, chemistry, emissions, and deposition. 3-D numerical

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy

Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Updated Dust-Iron Dissolution Mechanism: Effects Of Organic Acids, Photolysis, and Dust Mineralogy Nicholas Meskhidze & Matthew Johnson First International Workshop on the Long Range Transport and Impacts

More information

THE EARTH S CLIMATE SYSTEM

THE EARTH S CLIMATE SYSTEM THE EARTH S CLIMATE SYSTEM Earth s Climate System is driven by interactions between the parts of our biosphere So.what is the Biosphere? a relatively thin layer of Earth that has conditions suitable for

More information

Geosphere Classwork. 5 th Grade PSI. 1. Define geosphere. 2. Where is the oldest part of the Earth located?

Geosphere Classwork. 5 th Grade PSI. 1. Define geosphere. 2. Where is the oldest part of the Earth located? Geosphere Classwork 1. Define geosphere. 2. Where is the oldest part of the Earth located? 3. What are the four layers of the Earth? List them in order from the outermost to the innermost. a. b. c. d.

More information

ATM S 111, Global Warming Climate Models

ATM S 111, Global Warming Climate Models ATM S 111, Global Warming Climate Models Jennifer Fletcher Day 27: July 29, 2010 Using Climate Models to Build Understanding Often climate models are thought of as forecast tools (what s the climate going

More information

Creating Meteorology for CMAQ

Creating Meteorology for CMAQ Creating Meteorology for CMAQ Tanya L. Otte* Atmospheric Sciences Modeling Division NOAA Air Resources Laboratory Research Triangle Park, NC * On assignment to the National Exposure Research Laboratory,

More information

Atmospheric modeling in the Climate System. Joe Tribbia NCAR.ESSL.CGD.AMP

Atmospheric modeling in the Climate System. Joe Tribbia NCAR.ESSL.CGD.AMP Atmospheric modeling in the Climate System Joe Tribbia NCAR.ESSL.CGD.AMP The climate represents a coupled system consisting of an atmosphere, hydrosphere, biosphere, and cryosphere What is CCSM? Bio Geochemistry

More information

Climate Modeling Dr. Jehangir Ashraf Awan Pakistan Meteorological Department

Climate Modeling Dr. Jehangir Ashraf Awan Pakistan Meteorological Department Climate Modeling Dr. Jehangir Ashraf Awan Pakistan Meteorological Department Source: Slides partially taken from A. Pier Siebesma, KNMI & TU Delft Key Questions What is a climate model? What types of climate

More information

Transport of Asian ozone pollution into surface air over the western U.S. in spring. Meiyun Lin

Transport of Asian ozone pollution into surface air over the western U.S. in spring. Meiyun Lin HTAP, NASA JPL, 2/2/2012 Transport of Asian ozone pollution into surface air over the western U.S. in spring Meiyun Lin Lin, M., A. M. Fiore, L. W. Horowitz, O. R. Cooper, V. Naik, J. S. Holloway, B. J.

More information

ATMOSPHERIC SCIENCE-ATS (ATS)

ATMOSPHERIC SCIENCE-ATS (ATS) Atmospheric Science-ATS (ATS) 1 ATMOSPHERIC SCIENCE-ATS (ATS) Courses ATS 150 Science of Global Climate Change Credits: 3 (3-0-0) Physical basis of climate change. Energy budget of the earth, the greenhouse

More information

ECMWF global reanalyses: Resources for the wind energy community

ECMWF global reanalyses: Resources for the wind energy community ECMWF global reanalyses: Resources for the wind energy community (and a few myth-busters) Paul Poli European Centre for Medium-range Weather Forecasts (ECMWF) Shinfield Park, RG2 9AX, Reading, UK paul.poli

More information

Note-taking continued

Note-taking continued continued Lesson 1 Earth Systems LA6223, SC6E74, SC6N15, MA6A36 Skim or scan the heading, boldfaced words, and pictures in the lesson Identify or predict three facts you will learn from the lesson Discuss

More information

(Global) CAMS system current and upcoming (and past) versions modelling aspects

(Global) CAMS system current and upcoming (and past) versions modelling aspects (Global) CAMS system current and upcoming (and past) versions modelling aspects Johannes Flemming, Zak Kipling, Vincent Huijnen, Samuel Remy, Anna Agusti- Panareda, CAMS development section at ECMWF, CAMS

More information

Climate Change Service

Climate Change Service Service Metadata for the Data Store Dick Dee, ECMWF C3S: data + expertise + operational Open and free access to climate data (observations, reanalyses, model predictions) Tools and best scientific practices

More information

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion

Chemistry 471/671. Atmospheric Chemistry III: Stratospheric Ozone Depletion Chemistry 471/671 Atmospheric Chemistry III: Stratospheric Ozone Depletion 2 The Chapman Mechanism O 2 + hn 2 O( 1 D) O( 1 D) + O 2 + M O 3 + M Exothermic O( 1 D) + O 3 2 O 2 O 3 + hn O( 1 D) + O 2 ( 1

More information

A diagnostic interface for ICON Coping with the challenges of high-resolution climate simulations

A diagnostic interface for ICON Coping with the challenges of high-resolution climate simulations DLR.de Chart 1 > Challenges of high-resolution climate simulations > Bastian Kern HPCN Workshop, Göttingen > 10.05.2016 A diagnostic interface for ICON Coping with the challenges of high-resolution climate

More information

Lithosphere: (Rocky Sphere) Solid, rocky, outer layer of the Earth. Includes the crust and part of the upper mantle. Lithosphere

Lithosphere: (Rocky Sphere) Solid, rocky, outer layer of the Earth. Includes the crust and part of the upper mantle. Lithosphere Lithosphere: (Rocky Sphere) Solid, rocky, outer layer of the Earth. Includes the crust and part of the upper mantle. Lithosphere Permafrost Permafrost Ground that is at a temperature of 0 or below for

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

The Art and Role of Climate Modeling

The Art and Role of Climate Modeling Institute of Coastal Research, GKSS Research Centre Geesthacht, Hans von Storch The Art and Role of Climate Modeling Overview: 1. Conceptual aspects of modelling 2. Conceptual models for the reduction

More information

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles.

Earth Science. Explain how Earth's biogeochemical cycles create a balance of materials. Examine the importance of biogeochemical cycles. Unit 1: DYNAMIC STRUCTURE OF EARTH Introduction to Understand that earth science is based upon the four sciences of astronomy, geology, meteorology, and oceanography. Identify topics studied within the

More information

Direct radiative forcing due to aerosols in Asia during March 2002

Direct radiative forcing due to aerosols in Asia during March 2002 Direct radiative forcing due to aerosols in Asia during March 2002 Soon-Ung Park, Jae-In Jeong* Center for Atmospheric and Environmental Modeling *School of Earth and Environmental Sciences, Seoul National

More information

Impacts of historical ozone changes on climate in GFDL-CM3

Impacts of historical ozone changes on climate in GFDL-CM3 Impacts of historical ozone changes on climate in GFDL-CM3 Larry Horowitz (GFDL) with: Vaishali Naik (GFDL), Pu Lin (CICS), and M. Daniel Schwarzkopf (GFDL) WMO (2014) Figure ADM 5-1 1 Response of tropospheric

More information

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems

The Atmosphere. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems. Topic 3: Global Cycles and Physical Systems The Atmosphere 1 How big is the atmosphere? Why is it cold in Geneva? Why do mountaineers need oxygen on Everest? 2 A relatively thin layer of gas over the Earths surface Earth s radius ~ 6400km Atmospheric

More information

What is the IPCC? Intergovernmental Panel on Climate Change

What is the IPCC? Intergovernmental Panel on Climate Change IPCC WG1 FAQ What is the IPCC? Intergovernmental Panel on Climate Change The IPCC is a scientific intergovernmental body set up by the World Meteorological Organization (WMO) and by the United Nations

More information

How reliable are selected methods of projections of future thermal conditions? A case from Poland

How reliable are selected methods of projections of future thermal conditions? A case from Poland How reliable are selected methods of projections of future thermal conditions? A case from Poland Joanna Wibig Department of Meteorology and Climatology, University of Łódź, Outline 1. Motivation Requirements

More information

ICON. The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling

ICON. The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling ICON The Icosahedral Nonhydrostatic model: Formulation of the dynamical core and physics-dynamics coupling Günther Zängl and the ICON deelopment team PDEs on the sphere 2012 Outline Introduction: Main

More information

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre, Oberpfaffenhofen

More information

Terrestrial Climate Change Variables

Terrestrial Climate Change Variables Terrestrial Climate Change Variables Content Terrestrial Climate Change Variables Surface Air Temperature Land Surface Temperature Sea Level Ice Level Aerosol Particles (acid rain) Terrestrial Climate

More information

ICON. The Icosahedral Nonhydrostatic modelling framework

ICON. The Icosahedral Nonhydrostatic modelling framework ICON The Icosahedral Nonhydrostatic modelling framework Basic formulation, NWP and high-performance computing aspects, and its perspective towards a unified model for seamless prediction Günther Zängl,

More information

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte

Graduate Courses Meteorology / Atmospheric Science UNC Charlotte Graduate Courses Meteorology / Atmospheric Science UNC Charlotte In order to inform prospective M.S. Earth Science students as to what graduate-level courses are offered across the broad disciplines of

More information

Land Surface Sea Ice Land Ice. (from Our Changing Planet)

Land Surface Sea Ice Land Ice. (from Our Changing Planet) Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice (from Our Changing Planet) Earth s s Climate System Solar forcing Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry

More information

Climate change outlook over the Mediterranean from the science respective

Climate change outlook over the Mediterranean from the science respective Climate change outlook over the Mediterranean from the science respective Ashraf Zakey(1), F. Giorgi(2) (1) The Egyptian Meteorological Authority (2) The International Center for Theoretical Physics (ICTP)-Italy

More information

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice Lecture 5: Land Surface and Cryosphere (Outline) Earth s Climate System Solar forcing Land Surface Sea Ice Land Ice Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry Cycles (from Our Changing

More information

1. Composition and Structure

1. Composition and Structure Atmospheric sciences focuses on understanding the atmosphere of the earth and other planets. The motivations for studying atmospheric sciences are largely: weather forecasting, climate studies, atmospheric

More information

Ozone: Earth s shield from UV radiation

Ozone: Earth s shield from UV radiation Outline Ozone: Earth s shield from UV radiation Review electromagnetic radiation absorptivity by selective gases temperature vs. height in atmosphere Ozone production and destruction natural balance anthropogenic

More information

Experiences of using ECV datasets in ECMWF reanalyses including CCI applications. David Tan and colleagues ECMWF, Reading, UK

Experiences of using ECV datasets in ECMWF reanalyses including CCI applications. David Tan and colleagues ECMWF, Reading, UK Experiences of using ECV datasets in ECMWF reanalyses including CCI applications David Tan and colleagues ECMWF, Reading, UK Slide 1 Main points Experience shows benefit of integrated & iterative approach

More information

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008

A Global Atmospheric Model. Joe Tribbia NCAR Turbulence Summer School July 2008 A Global Atmospheric Model Joe Tribbia NCAR Turbulence Summer School July 2008 Outline Broad overview of what is in a global climate/weather model of the atmosphere Spectral dynamical core Some results-climate

More information

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Day 1 of Global Warming Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The Atmosphere Atmosphere = the thin layer (1/100 th of Earth s diameter) of gases that surrounds

More information

Climate Modeling: From the global to the regional scale

Climate Modeling: From the global to the regional scale Climate Modeling: From the global to the regional scale Filippo Giorgi Abdus Salam ICTP, Trieste, Italy ESA summer school on Earth System Monitoring and Modeling Frascati, Italy, 31 July 11 August 2006

More information

Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP

Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP September 2012 Outline Mission Extended Range Outlooks (6-10/8-14)

More information

This image cannot currently be displayed. Course Catalog. Earth Science Glynlyon, Inc.

This image cannot currently be displayed. Course Catalog. Earth Science Glynlyon, Inc. This image cannot currently be displayed. Course Catalog Earth Science 2016 Glynlyon, Inc. Table of Contents COURSE OVERVIEW... 1 UNIT 1: DYNAMIC STRUCTURE OF EARTH... 1 UNIT 2: FORCES AND FEATURES OF

More information

The Copernicus Climate Change (C3) service: State of play

The Copernicus Climate Change (C3) service: State of play Enterprise and Industry The Copernicus Climate Change (C3) service: State of play B. Pinty (a) & J-N. Thépaut (b) (a) Copernicus G.2 unit (b) ECMWF CCI October2014 Legal frame & MS consultations Publica6on

More information

Aerosol forecasting and assimilation at ECMWF: overview and data requirements

Aerosol forecasting and assimilation at ECMWF: overview and data requirements Aerosol forecasting and assimilation at ECMWF: overview and data requirements Angela Benedetti Luke Jones ECMWF Acknowledgements: Jean-Jacques Morcrette, Carole Peubey, Olaf Stiller, and Richard Engelen

More information

Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)

Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) Geosci. Model Dev.,, 9 4, www.geosci-model-dev.net//9// doi:.594/gmd--9 Author(s). CC Attribution. License. Geoscientific Model Development Description and evaluation of GMXe: a new aerosol submodel for

More information

Curriculum Catalog

Curriculum Catalog 2017-2018 Curriculum Catalog 2017 Glynlyon, Inc. Table of Contents EARTH SCIENCE COURSE OVERVIEW...1 UNIT 1: DYNAMIC STRUCTURE OF EARTH... 1 UNIT 2: FORCES AND FEATURES OF EARTH... 1 UNIT 3: FEATURES OF

More information

Ocean model, Interconnections within the climate model

Ocean model, Interconnections within the climate model Ocean model, Interconnections within the climate model Vladimir Djurdjevic and Bora Rajkovic EXPERT WORKSHOP SEE RESEARCH FRAMEWORK IN REGIONAL CLIMATE MODELING FOR 2012-2017 Belgrade, Serbia, April 11-13,

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

climate system and its subcomponents: the atmosphere, ocean, land surface, Prof. Jin-Yi Yu ESS200A A general description of the Earth

climate system and its subcomponents: the atmosphere, ocean, land surface, Prof. Jin-Yi Yu ESS200A A general description of the Earth Earth System Climate () Course Time Lectures: Tu, Th 9:30-10:20 Discussion: 3315 Croul Hall Text Book The Earth System, Kump, Kasting, and Crane, Prentice-Hall Global Physical Climatology, Hartmann; Academic

More information

S6E1. Obtain, evaluate, and communicate information about current scientific views of the universe and how those views evolved. a.

S6E1. Obtain, evaluate, and communicate information about current scientific views of the universe and how those views evolved. a. S6E1. Obtain, evaluate, and communicate information about current scientific views of the universe and how those views evolved. a. Ask questions to determine changes in models of Earth s position in the

More information

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are

Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of. 2. The dark, cooler areas on the sun s surface are Name Period Date 8R MIDTERM REVIEW I. ASTRONOMY 1. Most stars are made mostly of 2. The dark, cooler areas on the sun s surface are 3. When hydrogen nuclei fuse they form 4. Einstein s equation is 5. The

More information