EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS

Size: px
Start display at page:

Download "EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS"

Transcription

1 of 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS THE GREEN PLANTS 55 EMBRYOPHYTA- LAND PLANTS 59 DIVERSITY OF NONVASCULAR LAND PLANTS 62 Liverworts 62 Mosses 65 Hornworts 69 Polysporangiophytes/Pan-Tracheophyta 70 REVIEW QjESTIONS 71 EXERCISES 72 REFERENCES FOR FURTHER STUDY 72 THE GREEN PLANTS The green plants, formally called the Viridiplantae or Chiorobionta, are a monophyletic group of eukaryotic organ isms that includes what have traditionally been called green algae plus the land plants or embryophytes (Figure 3.1). Like all eukaryotes, the Viridiplantae have cells with membrane-bound organelles, including a nucleus (containing chromosomes composed of linear chains of DNA bound to proteins, that are sorted during cell division by mitosis), micro tubules, mitochondria, an endoplasmic reticulum, vesicles, and golgi bodies. Although the interrelationships of the non land plant Viridiplantae will not be covered in detail here, it is important to realize that some of the evolutionary innova tions, or apomorphies, that we normally associate with land plants actually arose before plants colonized the land. Several apomorphies unite the Viridiplantae (Figure 3.1). One possible novelty for this group is a cellulosic cell wall (Figure 3.2A). Cellulose, like starch, is a polysaccharide, but one in which the glucose sugar units are bonded in the beta-l,4 position (=3-1,4-g1ucopyranoside). This slight change in chemical bond position results in a very different molecule. Cellulose is secreted outside the plasma membrane as micro scopic fiber-like units called microfibrils that are further intertwined into larger fibril units, forming a supportive meshwork. The function of cellulose is to impart rigidity to the cells, acting as a sort of cellular exoskeleton. The evolu tion of a cellulosic cell wall was a preamble to the further evolution of more complex types of growth, particularly of self-supporting shoot systems. It is not clear if a cellulosic cell wall constitutes an apomorphy for the Viridiplantae alone, as it may have evolved much earlier, constituting an apomorphy for the Viridiplantae plus one or more other groups; in any case, its adaptive significance seems clear. Perhaps the primary apomorphy for the Viridiplantae is a specialized type of chloroplast (Figure 3.2). As discussed in Chapter 1, chloroplasts are one of the major defining charac teristics of traditionally defined plants ; their adaptive sig nificance as organelles functioning in photosynthesis, the conversion - light energy to chemical energy, is unques tioned. Chloroplasts in the Viridiplantae, the green plants, differ from those of most other organisms, such as the red and brown algae, in (1) containing chlorophyll b in addition to chloro phyll a, the former of which acts as an accessory pigment in light capture; (2) having thylakoids, the chlorophyll-containing membranes, that are stacked into grana, which are pancakelike aggregations (see Figure 3.2B,C); and (3) manufacturing as a storage product true starch, a polymer of glucose sugar units (= polysaccharide) in which the glucose molecules are chemically bonded in the alpha-1,4 position (ci-l,4- glucopyranoside). Thus, all green plants, from filamentous green algae in a pond or tide pooi to giant sequoia or Elsevier Inc. All rights reserved. doi: /B

2 - -i.thylakoid i : Green Algae (a paraphyletic group) IE fi true starch storage compound parenchyma antheridium sporophyte/embryo (alternation of generations) cuticle = Embryophytes Land Plants Charophytes Plants Streptophytes Chiorophytes 1i Viridiplantae [Chiorobionta] Green reinhardtii, a unicellular green alga, showing granum of chioroplast. (Photo courtesy of Rick Bizzoco.) chloroplasts. B. Diagram of chloroplast structure of green plants, showing thylakoids and grana. C. Electron micrograph of Chlamydomonas FIGURE 3.2 A. Elodea, whole leaf in face view, showing apomorphies of the Viridiplantae: a cellulosic cell wall and green plant -7:- : granum..- - and Mishler et al. (1994). Important apomorphies discussed in the text are listed beside thick hash marks. FIGURE 3.1 Cladogram of the green plants (Viridiplantae or Chlorobionta), modified from Bremer (1985), Mishler and Churchill (1985), cellulose in cell wall (may have evolved earlier & thus not a synapomorphy for Chlorobionta alone) thylakoids stacked in grana Unique green plant chloroplast features chlorophyll b (chlorophyll a is ancestral) archegonium 56 CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS

3 (2n) (2n) A meiosis Zygote B Zygote fertilization meiosis // fertilization (n) (n) (n) (n) (n) Spores (Adult) Gamete Gamete Spores Egg Sperm Isogamy mitosis Multicelled Stage HAPLOID (n) quotation marks) and are defined as the primarily aquatic plant streptophytes. Green algae occur in a tremendous (Figure 3.3A) with or without flagella, thalloid forms (Figure 3.3B), motile and nonmotile colonies (Figure 3.3C), and nonmotile filaments (Figure 3.3D). Many have flagellated motile are a paraphyletic group (which is why the name is placed in or Streptophyceae (Figure 3.1). The traditional green algae the intracellular cohabitation of an independently living, uni were modified from those that evolved via endosymbiosis, The Viridiplantae as a whole are classified as two sister Viridiplantae, consisting of all chiorophytes and the non land data imply that chioroplasts found in the green plants today cellular prokaryote inside a eukaryotic cell (see Chapter 1). groups: chiorophytes, or Chlorophyceae, and streptophytes, variety of morphological forms. These include single cells ing what is termed a haplontic (or haplobiontic ) life cycle spores, each of which may germinate and develop into a new is free-living, then divides by meiosis to form four haploid ing in a diploid (2n) zygote (Figure 3.4A). The zygote, which gametes that are isomorphic, that is, that look identical. Within the streptophyte lineage that gave rise to the land The primitive type of green plant sexual reproduction (Figure 3.4A). plants, a few innovations evolved that may have been soil (or even on snow!) or in other terrestrial but moist algae inhabit fresh and marine waters and some live in or on Fertilization occurs by union of two of these gametes, result Eucalyptus trees have this same type of chloroplast. Recent cells in at least one phase of their life history. Green habitats. haploid individual, which produces more gametes, complet Rick Bizzoco.) B. Ulva, a thalloid form. C. Volvox, a colonial form. D. Spirogyra, a filamentous form. Above: vegetative form, with large, strains and nonmotile zygotes. spiral chloroplasts. Below: reproductive conjugation stage, showing + and FIGURE 3.3 Examples of non land plant Viridiplantae. A. Chiarnydornonas reinhardtii, a unicellular form. (Photo courtesy of 1/ Oogamy HAPLONTIC UNIT II EVOLUTIONANDDIVERSITYOFPLANT5 57 FIGURE 3.4 Haplontic life cycles in some of the green plants. A. Isogamy. B. Oogamy. HAPLONTIC // Multicelled Stage HAPLOH) (n) VI seems to have been the production of flagellate, haploid (n) mating

4 58 CHAPTER 3 EVOLUTION AND DIVERSiTY OF GREEN AND LAND PLANTS preadaptations to survival on land. First of these was the evolution of oogamy, a type of sexual reproduction in which one gamete, the egg, becomes larger and nonflagellate; the other gamete is, by default, called a sperm cell (Figure 3.4B). Oogamy is found in all land plants but independently evolved in many other groups, including many other algae and in the animals. Several other apomorphies of and within the Viridiplantae include ultrastructural specializations of flagella and some features of biochemistry. Although these have been valuable in elucidating phylogenetic relationships, their adaptive significance is unclear, and they will not be considered further here. An apomorphy for the charophytes, a dade within the streptophytes that includes Coleochaete (Figure 3.5B), Charales (Figure 3.5C E), and the land plants (Figure 3.1), are plasmodesmata. Plasmodesmata are essentially pores in the primary (10) cell wall through which membranes traverse between cells, allowing for transfer of compounds between cells (Figure 3.5A). Plasmodesmata may function in more efficient or rapid transport of solutes, including regulatory and growth-mediating compounds, such as hormones. Members of the Charales, such as the genera Chara and Nitella, are perhaps the closest living relatives to the land plants. These fresh water, aquatic organisms have a haplontic life cycle, and consist of a central axis bearing whorls of lat eral branches (Figure 3.5D) or (if small) leaves on the hap bid body. Some Charales are capable of precipitating calcium carbonate as an outer layer of the plant body (accounting for the common names brittleworts or stoneworts ). Members of the Charales grow by means of a single apical cell, similar to that of some land plants and representing a possible syna pomorphy with them. However, the Charales differ from land plants in lacking true parenchyma (see later discussion). The Charales have specialized male and female gametangia, termed antheridia and oogonia (Figure 3.5C,D). The oogonia are distinctive in having a spirally arranged group of outer tube cells (Figure 3.5D); fossilized casts of oogonia retain the outline of these tube cells (Figure 3.5E). Oogonia and antheridia of the Charales resemble the archegonia and FIGURE 3.5 A. Diagram of plasmodesmata in cellulosic cell wall, an apomorphy of some green plants, including the land plants. B. Coleochaete sp., a close relative to the embryophytes. (Photo courtesy of Linda Graham.) C E. Charales. C. Nitella sp., oogonia and antheridia. D. Chara sp., oogonium and antheridium. Note spiral tube cells of oogonia. E. Tectochara helicteres, a fossil oogonium from the Eocene, showing remnants of spiral tube cells.

5 UNIT II EVOLUTION AND DIVERSITY OF PLANTS Embryophyta land plants Pan-Tracheophytal Polysporangiophytes - t t Tracheophytes vascular plants gametophytic leaves pseudo-elaters in sporangium gametophyte leafy (in some) elaters in sporangium columella in sporangium sporophyte branched with multiple sporangia oil bodies sporophyte photosynthetic, nutritionally independent archegonium antheridium parenchyma cuticle stomates sporophyte/embryo (alternation of generations) aerial sporophyte axis t = extinct FIGURE 3.6 One hypothesis of relationships of the land plants (Embryophyta), with major apomorphies indicated. After Qiu et al. (2007), some apomorphies after Bremer (1985); Mishler and Churchill (1985); Mishler et al. (1994). antheridia of land plants (see later discussion) in having an outer layer of sterile cells, but the gametangia of the two groups are generally thought not to be directly homologous because of major differences in structure and development. However, members of the Charales retain the egg and zygote (although the latter only briefly) on the plant body. This retention of egg and zygote on the haploid body may repre sent a transition to their permanent retention on the gameto phyte of land plants (see later discussion). EMBRYOPHYTA- LAND PLANTS The Embryophyta, or embryophytes (commonly known as land plants), are a monophyletic assemblage within the green plants (Figures 3.1, 3.6). The first colonization of plants on land during the Silurian period, ca. 400 million years ago, was concomitant with the evolution of several important fea tures. These shared, evolutionary novelties (Figure 3.6) con stituted major adaptations that enabled formerly aquatic green plants to survive and reproduce in the absence of a sur rounding water medium. One major innovation of land plants was the evolution of the embryo and sporophyte (Figure 3.6). The sporophyte is a separate diploid (2n) phase in the life cycle of all land plants. The corresponding haploid, gamete-producing part of the life cycle is the gametophyte. The life cycle of land plants, having both a haploid gametophyte and a diploid sporophyte, is an example of a haplodiplontic (also called diplobiontic ) life cycle, commonly called alternation of generations (Figure 3.7). Note that alternation of generations does not necessarily mean that the two phases occur at differ ent points in time; at any given time, both phases may occur in a population. The sporophyte can be viewed as forming from the zygote by the delay of meiosis and spore production. Instead of mei osis, the zygote undergoes numerous mitotic divisions, which result in the development of a separate entity. The embryo is defined as an immature sporophyte that is attached to or sur rounded by the gametophyte. In many land plants, such as the

6 60 CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS HAPLODIPLONTIC LIFE CYCLE ( Alternation of Generations ) z mitosis, growth, & differentiation Embryo /% mitosis, growth, & dfferenuation Sporophyte Body mitosis, growth, & differentiation Sporangium initosis, growth, & differentiation Zygote SPOROPHYTE GENERATION (2N) Sporocyte (Sperm nonflagellate in Conifers, Gnetales, and Angiosperms) fertilization Egg Sperm ) GAMETOPHYTE GENERATION (N) rneiosis lost by reduction and modificationf Archegonium Antheridium in the Angiosperms and some Gnetales mitosis, growth, & differentiation Gametophyte Body / Spores mitosis, growth, & differentiation FIGURE 3.7 Haplodiplontic alternation of generations in the land plants (embryophytes). seed plants, the embryo will remain dormant for a period of time and will begin growth only after the proper environmen tal conditions are met. As the embryo grows into a mature sporophyte, a portion of the sporophyte differentiates as the spore-producing region. This spore-producing region of the sporophyte is called the sporangium. The sporangium is enveloped by a sporangial wall, which consists of one or more layers of sterile, non-spore-producing cells. A sporan gium contains sporogenous tissue, which matures into sporo cytes, the cells that undergo meiosis. Each sporocyte produces, by meiosis, four haploid spores (Figure 3.7). One adaptive advantage of a sporophyte generation as a separate phase of the life cycle is the large increase in spore production. In the absence of a sporophyte, a single zygote (the result of fertilization of egg and sperm) will produce four spores. The elaboration of the zygote into a sporophyte and sporangium can result in the production of literally millions of spores, a potentially tremendous advantage in reproductive output and increased genetic variation. Another possible adaptive value of the sporophyte is associated with its diploid ploidy level. The fact that a sporo phyte has two copies of each gene may give this diploid phase an increased fitness in either of two ways: (1) by potentially pre ventiiig the expression of recessive, deleterious alleles (which, in the sporophyte, may be shielded by dominant alleles, but which, in the gametophyte, would always be expressed); and (2) by permitting increased genetic variability in the sporophyte generation (via genetic recombination from two parents ) upon which natural selection acts, thus increasing the potential for evolutionary change. A second innovation in land plants was the evolution of cutin and the cuticle (Figure 3.8). A cuticle is a protective layer that is secreted to the outside of the cells of the epider mis (Gr. epi, upon + derma, skin ), the outermost layer of land plant organs. The epidermis functions to provide FIGURE 3.8 cuticle cell wall epidernial cell The cuticle, an apombrphy for the land plants.

7 UNIT II EVOLUTION AND DIVERSITY OF PLANTS 61 mechanical protection of inner tissue and to inhibit water loss. The cuticle consists of a thin, homogeneous, transparent layer of cutin, a polymer of fatty acids, and functions as a sealant, preventing excess water loss. Cutin also impregnates the outer cellulosic cell walls of epidermal cells; these are known as a cutinized cell wall. The adaptive advantage of cutin and the cuticle is obvious: prevention of desiccation outside the ancestral water medium. In fact, plants that are adapted to very dry environments will often have a particu larly thick cuticle (as in Figure 3.8) to inhibit water loss. A third apomorphy for the land plants was the evolution of parenchyma tissue (Figure 3.9). All land plants grow by means of rapid cell divisions at the apex of the stem, shoot, and thallus or (in most vascular plants) of the root. This region of actively dividing cells is the apical meristem. The apical meristem of liverworts, hornworts, and mosses (discussed later), and of the monilophytes (see Chapter 4) have a single apical cell (Figure 3.9), probably the ancestral condition for the land plants. In all land plants the cells derived from the apical meristem region form a solid mass of tissue known as parenchyma (Gr. para, beside + enchyma, an infusion ; in reference to a concept that parenchyma infuses or fills up space beside and between the other cells). Parenchyma tissue consists of cells that most resemble the unspecialized, undif ferentiated cells of actively dividing meristematic tissue. Structurally, parenchyma cells (1) are elongate to isodiamethc; (2) have a primary (1 ) cell wall only (rarely a secondary wall); and (3) are living at maturity and potentially capable of continued cell divisions. Parenchyma cells function in single apical cell FIGURE 3.9 Equisetum shoot apex, showing parenchymatous growth form, from an apical meristem. metabolic activities such as respiration, photosynthesis, lat eral transport, storage, and regeneration/wound healing. Parenchyma cells may further differentiate into other special ized cell types. It is not clear if the evolution of both apical growth and true parenchyma is an apomorphy for the land plants alone, as shown here (Figure 3.6). Both may be inter preted to occur in certain closely related green plants, includ ing the Charales. Correlated with the evolution of parenchyma may have been the evolution of a middle lamella in land plants. The middle lamella is a pectic-rich layer that develops between the primary cell walls of adjacent cells (Figure 3.5A). Its function is to bind adjacent cells together, perhaps a prerequisite to the evolution of solid masses of parenchyma tissue. Another evolutionary innovation for the land plants was the antheridium (Figure 3. ba). The antheridium is a type of specialized gametangium of the haploid (n) gametophyte, one that contains the sperm-producing cells. It is distin guished from similar structures in the Viridiplantae in being surrounded by a layer of sterile cells, the antheridial wall. The evolution of the surrounding layer of sterile wall cells, which is often called a sterile jacket layer, was probably adaptive in protecting the developing sperm cells from desic cation. In all of the nonseed land plants, the sperm cells are released from the antheridium into the external environment and must swim to the egg in a thin film of water. Thus, a wet environment is needed for fertilization to be effected in the nonseed plants, a vestige of their aquatic ancestry. Members of the Charales also have a structure termed an antheridium, which has an outer layer of sterile cells (Figure 3.5C,D). However, because of its differing anatomy, the Charales antheridium may not be homologous with that of the land plants, and thus may have evolved independently. Another land plant innovation was the evolution of the archegonium, a specialized female gametangium (Figure 3. lob). The archegonium consists of an outer layer of sterile cells, termed the venter, that immediately surround the egg, plus others that extend outward as a tube-like neck. The archegonium is stalked in some taxa; in others the egg is rather deeply embedded in the parent gametophyte. The egg cell is located inside and at the base of the archegonium. Immediately above the egg is a second cell, called the ventral canal cell, and above this and within the neck region there may be several neck canal cells. The archegonium may have several adaptive functions. It may serve to protect the developing egg. It may also function in fertilization. Before fertilization occurs, the neck canal cells and ventral canal cell break down and are secreted from the terminal pore of the neck itself; the chemical compounds released function as an

8 62 CHAPTER 3 EVOLUTION AND DIVERSITY OF GREEN AND LAND PLANTS antheridial wall (sterile jacket layer) neck sperm cells neck A B / FIGURE 3.10 A. Antheridia. B. Archegonia. Both are apomorphies of land plants. attractant, acting as a homing device for the swimming sperm. Sperm cells enter the neck of the archegonium and fertilize the egg cell to form a diploid (2n) zygote. In addition to effecting fertilization, the archegonium serves as a site for embryo/sporophyte development and the establishment of a nutritional dependence of the sporophyte upon gametophytic tissue. The land plants share other possible apomorphies: the presence of various ultrastructural modifications of the sperm cells, flavonoid chemical compounds, and a proliferation of heat shock proteins. These are not discussed here. DIVERSITY OF NONVASCULAR LAND PLANTS During the early evolution of land plants, three major, monophyletic lineages diverged before the vascular plants (discussed in Chapter 4). These lineages may collectively be called the nonvascular land plants or bryophytes and include the liverworts, mosses, and hornworts. Bryophytes are a paraphyletic group, defined by the absence of derived features; the name, placed in quotation marks, is no longer formally recognized. Liverworts, mosses, and hornworts differ from the vascular plants in lacking true vascular tissue and in having the tophyte as the dominant, photosynthetic, persistent, and freeliving phase of the life cycle. It is likely that the ancestral gametophyte of the land plants was thalloid in nature, similar to that of the hornworts and many liverworts. The sporophyte game of the liverworts, mosses, and hornworts is relatively small, ephemeral, and attached to and nutritionally dependent upon the gametophyte (see later discussion). The relationships of the liverworts, mosses, and hornworts to one another and to the vascular plants remain unclear. Many different relationships among the three lineages have been proposed, one recent of which is seen in Figure 3.6. LIVERWORTS Liverworts, also traditionally called the Hepaticae, are one of the monophyletic groups that are descendents of some of the first land plants. Today, liverworts are relatively minor ponents of the land plant flora, growing mostly in moist, shaded areas (although some are adapted to periodically dry, hot habitats). Among the apomorphies of liverworts are (1) distinctive oil bodies and (2) specialized structures called elaters, elongate, nonsporogenous cells with spiral wall enings, found inside the sporangium. Elaters are hygroscopic, meaning that they change shape and move in response to changes in moisture content. Elaters function in spore dispersal; as the sporangium dries out, the elaters twist out of the capsule, carrying spores with them (Figures 3.11, 3.12K). There are two basic morphological types of liverwort gametophytes: thalloid and leafy (Figures ). Thalloid liverworts consist of a a flattened mass of tissue; this is likely the ancestral form, based on cladistic studies. As in hornworts and mosses, the gametophyte bears uniseriate, filamentous processes that function in anchorage and absorption. Pores in the upper surface of the rhizoids, thallus, com thick

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations

-plant bodies composed of tissues produced by an apical meristem. -spores with tough walls. -life history of alternation of generations Chapter 21-Seedless Plants Major modern plant groups All groups of land-adapted plants have a common set of characteristics: -plant bodies composed of tissues produced by an apical meristem -spores with

More information

Diversity of Plants How Plants Colonized the Land

Diversity of Plants How Plants Colonized the Land Chapter 29, 30. Diversity of Plants How Plants Colonized the Land 1 The first plants For more than 3 billion years, Earth s terrestrial surface was lifeless life evolved in the seas 1st photosynthetic

More information

Nonvascular Plants. Believed to have evolved from green-algae. Major adaptations in going from water to land. Chlorophylls a & b and cartenoids

Nonvascular Plants. Believed to have evolved from green-algae. Major adaptations in going from water to land. Chlorophylls a & b and cartenoids Nonvascular Plants Believed to have evolved from green-algae Chlorophylls a & b and cartenoids Store starch within chloroplasts Cell wall made up mostly of cellulose Major adaptations in going from water

More information

The Producers: The Plant Kingdom An Introduction to Plants and the Mosses

The Producers: The Plant Kingdom An Introduction to Plants and the Mosses The Producers: The Plant Kingdom An Introduction to Plants and the Mosses Mosses Phylum Bryophyta - ~12,000 species Liverworts - Phylum Hepaticophyta - ~8,500 species Hornworts - Phylum Anthocerophyta

More information

Biology 11 Kingdom Plantae: Algae and Bryophyta

Biology 11 Kingdom Plantae: Algae and Bryophyta Biology 11 Kingdom Plantae: Algae and Bryophyta Objectives By the end of the lesson you should be able to: State the 3 types of algae Why we believe land plants developed from algae Lifecycle of a bryophyte

More information

Domain Eukarya: Kingdom Plantae non-vascular plants

Domain Eukarya: Kingdom Plantae non-vascular plants Domain Eukarya: Kingdom Plantae non-vascular plants Land plants descended from a green algae ancestor Some key characteristics of land plants are shared with green algae, like Multicellular, eukaryotic,

More information

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts

Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts Chapter 20 Nonvascular Plants: Mosses, Liverworts, and Hornworts Major plant groups Topics Bryophyte adaptations synapomorphies Alternation of generation in Bryophytes Phylum Hepaticophyta Phylum Bryophyta

More information

Botany: Part I Overview of Plants & Plant Structure

Botany: Part I Overview of Plants & Plant Structure Botany: Part I Overview of Plants & Plant Structure Plant evolution Plant Evolution Chlorophytes Bryophytes (nonvascular plants) Seedless vascular plants Gymnosperms Angiosperms Chlorophytes are a green

More information

Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land

Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land Plants Review 1. List the 6 general characteristics of plants. 2. What did plants probably evolve from? 3. What are some advantages for life on land for a plant? 4. What are the 3 main groups of plants?

More information

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue.

Unit 2B- The Plants. Plants can be classified according to the presence or absence of vascular tissue. Unit 2B- The Plants Botany is the study of plants. All plants are said to have a common ancestor; (ie.) it is thought that plants have evolved from an ancient group of green algae. Plants and green algae

More information

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM

Kingdom Plantae. Biology : A Brief Survey of Plants. Jun 22 7:09 PM Kingdom Plantae Biology 2201 6.1 6.2 : A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as

More information

Plant Diversity & Evolution (Outline)

Plant Diversity & Evolution (Outline) Plant Diversity & Evolution (Outline) Review the Life cycle of Fungi Characteristics of organisms in the Kingdom Plantae. Evolution of plants: Challenges and adaptations to living on land Highlights of

More information

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations

What is a Plant? Plant Life Cycle. What did they evolve from? Original Habitat 1/15/2018. Plant Life Cycle Alternation of Generations What is a Plant? Multicellular Eukaryotic Autotrophic (photosynthesis) Has cell walls containing cellulose Lack mobility (sessile) Display Alternation of Generations in their life cycle Introduction to

More information

Some History: In the life cycle of the kelp Laminaria. One way to separate algae from protozoa is that. Rocks of Cambrian Age (ca.

Some History: In the life cycle of the kelp Laminaria. One way to separate algae from protozoa is that. Rocks of Cambrian Age (ca. One way to separate algae from protozoa is that a. Protozoa are photosynthetic, while algae are not. b. Algae are photosynthetic, while protozoa are not. c. Protozoa are prokaryotic, while algae are eukaryotic.

More information

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution

CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND. Section A: An Overview of Land Plant Evolution CHAPTER 29 PLANT DIVERSITY I: HOW PLANTS COLONIZED LAND Section A: An Overview of Land Plant Evolution 1. Evolutionary adaptations to terrestrial living characterize the four main groups of land plants

More information

Chapter 29: Plant Diversity I How Plants Colonized Land

Chapter 29: Plant Diversity I How Plants Colonized Land Chapter 29: Plant Diversity I How Plants Colonized Land 1. Evolutionary History of Plants 2. General Features of Plants 3. Survey of the Plant Kingdom A. Nonvascular Plants B. Seedless Vascular Plants

More information

Topic 2: Plants Ch. 16,28

Topic 2: Plants Ch. 16,28 Topic 2: Plants Ch. 16,28 Characteristics of Plants p. 316 1. Multicellular eukaryotic organisms 2. Composed of tissues, organs and organ systems. 3. Cell walls made of cellulose. 4. Store energy as starch.

More information

Plant Evolution & Diversity

Plant Evolution & Diversity Plant Evolution & Diversity Ancestors of plants were probably charophytes (green algae) Chlorophyll a and b, beta carotene Similar thylakoid arrangements Identical cell walls Starch as a storage carbohydrate

More information

Comparing Plants & Animals

Comparing Plants & Animals Section 6.1 Comparing Plants & Animals p. 164-168 Major Similarities: They are both multi-cellular, eukaryotes. Their sizes both range from microscopic to very large. Major Differences: How they obtain

More information

Introduction to the Plant Kingdom - 1

Introduction to the Plant Kingdom - 1 Introduction to the Plant Kingdom - 1 The Plant Kingdom comprises a large and varied group of organisms that have the following characteristics in common. All plants are: Eukaryotic Photosynthetic Multicellular

More information

Chapter 29 Plant Diversity I: How Plants Colonized Land

Chapter 29 Plant Diversity I: How Plants Colonized Land Chapter 29: Plant Diversity I: How Plants Colonized Land Chapter 29 Plant Diversity I: How Plants Colonized Land Name Period Concept 29.1 Land plants evolved from green algae 1. Plants colonized land about

More information

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years

CHAPTERS 16 & 17: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 2012 PROKARYOTES PROKARYOTES. Fig Lived alone on Earth for over 1 billion years CHAPTERS 6 & 7: PROKARYOTES, FUNGI, AND PLANTS Honors Biology 0 PROKARYOTES Lived alone on Earth for over billion years Most numerous and widespread organisms (total biomass of prokaryotes is ten times

More information

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers

Announcements. Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology. Study: Display case outside HCK 132 with labeled conifers Announcements Lab Quiz #1 on Monday: (30pts) conifers + cones, vegetative morphology Study: Display case outside HCK 132 with labeled conifers Movie: Sexual Encounters of the Floral Kind Intro to Keying/Greenhouse

More information

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor

Kingdom: Plantae. Domain Archaea. Domain Eukarya. Domain Bacteria. Common ancestor Kingdom: Plantae Domain Eukarya Domain Bacteria Domain Archaea Domain Eukarya Common ancestor The First Plants For more than 3 billion years, Earth s terrestrial surface was lifeless life evolved in the

More information

Kingdom Plantae. A Brief Survey of Plants

Kingdom Plantae. A Brief Survey of Plants Kingdom Plantae A Brief Survey of Plants The study of plants is called botany. Plants are believed to have evolved from green algae. The main plant (land) characteristics are as follows: 1. Common cellular

More information

Biol 203 Botany Sample Exam. Name:

Biol 203 Botany Sample Exam. Name: Biol 203 Botany Sample Exam Name: Section I. Multiple choice. Check any and all correct items; this means: there may be no correct response for you to check, or there might be more than one correct item

More information

Plants. and their classi.ication

Plants. and their classi.ication + Plants and their classi.ication +Why are plants important? n Photosynthesis Carbon dioxide + water + energy à sugar + oxygen 6CO 2 + 6H 2 O à C 6 H 12 O 6 + 6O 2 n Food (green tea, fruits, seeds, roots,

More information

Major groups of algae

Major groups of algae Algae general features. All are protists They require moist environments because they lack a cuticle They lack vascular tissues Algae are photosynthetic and reproduce both sexually and asexually Major

More information

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT

1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT Page 1 1 Mosses and other bryophytes are like ferns in that both bryophytes and ferns exhibit each of the following traits EXCEPT A haploid spores. B specialized cells and tissues. C vascular tissue for

More information

Test Lesson 18 Plants - Answer Key Page 1

Test Lesson 18 Plants - Answer Key Page 1 Test Lesson 18 Plants - Answer Key Page 1 1. Algae are. A. protists B. early plants C. multicellular eukaryotes D. forms of euglenia 2. Algae reproduce by what two methods? A. conjugation and meiosis B.

More information

Test Lesson 18 Plants Page 1

Test Lesson 18 Plants Page 1 Test Lesson 18 Plants Page 1 1. Algae are. A. protists B. early plants C. multicellular eukaryotes D. forms of euglenia 2. Algae reproduce by what two methods? A. conjugation and meiosis B. binary fission

More information

Introduction to Bryophyta

Introduction to Bryophyta Introduction to Bryophyta Botany Department, Brahmanand PG College, Bryophyta (Greek Bryon = Moss, phyton = plants) is a group of simplest and primitive plants of the class Embryophyta. The group is represented

More information

Bryophytes: Liverworts, Hornworts and Mosses.

Bryophytes: Liverworts, Hornworts and Mosses. Bryophytes: Liverworts, Hornworts and Mosses. Bryophytes Plant scien+sts recognize two kinds of land plants Bryophytes, or nonvascular plants Tracheophytes, or vascular plants. Distribu+on tropical rainforests,

More information

Reproductive Morphology

Reproductive Morphology Week 3; Wednesday Announcements: 1 st lab quiz TODAY Reproductive Morphology Reproductive morphology - any portion of a plant that is involved with or a direct product of sexual reproduction Example: cones,

More information

Phylum Bryophyta : (Page 169)

Phylum Bryophyta : (Page 169) Kingdom Plantae : Plants... - nonmotile eukaryotic, multicellular, autotrophic organisms - rigid cell walls built of cellulose - life cycles show alternation of generations...two distinct phases called

More information

22 1 Introduction to Plants Slide 2 of 33

22 1 Introduction to Plants Slide 2 of 33 2 of 33 What Is a Plant? What is a plant? 3 of 33 What Is a Plant? What Is a Plant? Plants are multicellular eukaryotes that have cell walls made of cellulose. Plants develop from multicellular embryos

More information

Protist Classification the Saga Continues

Protist Classification the Saga Continues Protist Classification the Saga Continues Learning Objectives Explain what a protist is. Describe how protists are related to other eukaryotes. What Are Protists? Photosynthetic Motile Unicellular Multicellular

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Plants Alive What are the characteristics of plants? All plants are multicellular, which means their bodies are made up of more than one cell. Plants are eukaryotes, which means

More information

Structures and Functions of Living Organisms

Structures and Functions of Living Organisms Structures and Functions of Living Organisms 6.L.1 Understand the structures, processes and behaviors of plants that enable them to survive and reproduce. 6.L.1.1 Summarize the basic structures and functions

More information

Name Hour Section 22-1 Introduction to Plants (pages ) Generation Description Haploid or Diploid? Gamete-producing plant Spore-producing plant

Name Hour Section 22-1 Introduction to Plants (pages ) Generation Description Haploid or Diploid? Gamete-producing plant Spore-producing plant Name Hour Section 22-1 Introduction to Plants (pages 551-555) What Is a Plant? (page 551) 1. Circle the letter of each sentence that is true about plants. a. Plants are multicellular prokaryotes. b. Plants

More information

Transition to Land & Life Cycles. Background. Plants from Algae 8/28/2011. What does it mean to be a plant? Lecture 1

Transition to Land & Life Cycles. Background. Plants from Algae 8/28/2011. What does it mean to be a plant? Lecture 1 Transition to Land & Life Cycles What does it mean to be a plant? Lecture 1 Background Descendants of charophytan green algae Photosynthesis Modular growth (mitosis & apices) Sexual Reproduction in Eukaryotes

More information

Chapter 13- Reproduction, Meiosis, and Life Cycles. Many plants and other organisms depend on sexual reproduction.

Chapter 13- Reproduction, Meiosis, and Life Cycles. Many plants and other organisms depend on sexual reproduction. Chapter 13- Reproduction, Meiosis, and Life Cycles Many plants and other organisms depend on sexual reproduction. Flowers are the sexual reproductive organ systems of angiosperms. Sexual reproduction gametes

More information

Chapter 9. Fungi and Aquatic Plants. Introduction: The Big Step: DIVISION OF LABOUR

Chapter 9. Fungi and Aquatic Plants. Introduction: The Big Step: DIVISION OF LABOUR Chapter 9. Fungi and Aquatic Plants Introduction: The Big Step: DIVISION OF LABOUR In single cell organisms (protists) all life functions are performed by specialized organelles within one cell (a.k.a.

More information

Name: Date: Period: Forms a spore producing structure called an ascus Morals Truffles Yeast

Name: Date: Period: Forms a spore producing structure called an ascus Morals Truffles Yeast Name: Date: Period: Fungi and Plant Unit Review Worksheet Part I (KEY) Directions: Treat this like an assessment and answer as much as you can without ANY help. See how much you actually know by highlighting/starring

More information

Mock Exam I (BY 124) 8. Sori can be found on which of the following? A. Pterophytes B. Mosses C. Liverworts D. Hornworts E.

Mock Exam I (BY 124) 8. Sori can be found on which of the following? A. Pterophytes B. Mosses C. Liverworts D. Hornworts E. 1. When you see a green leafy moss, you are looking at the. A. Structure where meiosis occurs B. Sporophyte generation C. Gametophyte generation D. Spore-producing structure 2. Which of the following traits

More information

Downloaded from

Downloaded from A.I.P.M.T. Foundation - XI Biology MCQs Time: 30 min MCQ#8 Full Marks: 40 Choose the most appropriate answer. 1. They are non-vascular plants: 1. Hosrsetails 2. Conifers 3. Club mosses 4. Liverworts 2.

More information

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants

SG 9.2 notes Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Ideas about targets and terms: 9.2 In the past, all living things were classified in either the kingdom of animals or plants Euglena are singled celled organisms in pond water They are green, so contain,

More information

more than 380,000 species, of which more than two-thirds

more than 380,000 species, of which more than two-thirds The plant world contains more than 380,000 species, of which more than two-thirds are green plants. From the most complex flowering plants to single-cell sea algae, plants present a surprising diversity

More information

Introduction to Plants

Introduction to Plants Introduction to Plants Name 5 reasons why we think plants are A OK 1. 2. 3. 4. 5. 1. Plant Cells: Plants are multicellular eukaryotes that have cell walls made of cellulose. They develop from multicellular

More information

Plants I. Introduction

Plants I. Introduction Plants I Objectives: 1. List the characteristics of plants that link them to their ancestral green algae. 2. Describe the problems faced by plants that moved onto the land. 3. Describe the adaptations

More information

The Plant Kingdom. Bởi: OpenStaxCollege. Plants are a large and varied group of organisms. There are close to 300,000 species of catalogued plants.

The Plant Kingdom. Bởi: OpenStaxCollege. Plants are a large and varied group of organisms. There are close to 300,000 species of catalogued plants. The Plant Kingdom Bởi: OpenStaxCollege Plants are a large and varied group of organisms. There are close to 300,000 species of catalogued plants. A.D. Chapman (2009) Numbers of Living Species in Australia

More information

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants

The Science of Plants in Agriculture Pl.Sci 102. Getting to Know Plants The Science of Plants in Agriculture Pl.Sci 102 Getting to Know Plants Growth and Development of Plants Growth and Development of Plants Why it s important to have knowledge about plant development. What

More information

Ch. 22: Plant Growth, Reproduction & Response

Ch. 22: Plant Growth, Reproduction & Response Ch. 22: Plant Growth, Reproduction & Response generally reproduce sexually, though many can also reproduce asexually. Some have lost ability to reproduce sexually. All plant lifecycles involve alternation

More information

4/30/2014. The lives of modern plants and fungi are intertwined We depend on plants and indirectly, fungi for much of our food.

4/30/2014. The lives of modern plants and fungi are intertwined We depend on plants and indirectly, fungi for much of our food. and the Colonization of Land The lives of modern plants and fungi are intertwined We depend on plants and indirectly, fungi for much of our food. Plants are often harmed by fungi. On the other hand, nearly

More information

Types of Plants. Unit 6 Review 5/2/2011. Plants. A. pine B. moss C. corn plant D. bean plant E. liverwort

Types of Plants. Unit 6 Review 5/2/2011. Plants. A. pine B. moss C. corn plant D. bean plant E. liverwort Unit 6 Review Plants Initial questions are worth 1 point each. Each question will be followed by an explanation All questions will be asked a second time at the very end, each of those questions will be

More information

Category Question Data

Category Question Data COURSE SLO ASSESSMENT REPORT, SCC Department: Biology Course: Biology 214 Plant Diversity and Evolution Year: 2012 Semester: Fall 1) Outcome to be assessed Demonstrate an understanding of the basic theories

More information

Basic Structure of a Cell

Basic Structure of a Cell Basic Structure of a Cell Prokaryotic Cells No nucleus Archaea & Eubacteria One circular chromosome Extremely small Eukaryotic Cells Has a nucleus!!! Membrane-bound organelles Plants, Animals, Fungi, &

More information

A. Additional terrestrial adaptations evolved as vascular plants descended from bryophytelike

A. Additional terrestrial adaptations evolved as vascular plants descended from bryophytelike PLANT DIVERSITY I: THE COLONIZATION OF LAND OUTLINE I. An Overview of Plant Evolution A. Structural, chemical, and reproductive adaptations enabled plants to colonize land B. The history of terrestrial

More information

Structures and Functions of Living Organisms

Structures and Functions of Living Organisms Structures and Functions of Living Organisms Date: 6.L.1 Understand the structures, processes and behaviors of plants that enable them to survive and reproduce. 6.L.1.1 Summarize the basic structures and

More information

-Producers & Cellular Energy Notes-

-Producers & Cellular Energy Notes- -Producers & Cellular Energy Notes- Part 1 Plants LT 5.1 - I can describe basic information about plants, including the ways they move materials, are classified, reproduce, and evolved. What are plants?

More information

Plants and Fungi. Bryophytes Bryophytes, most commonly mosses Sprawl as low mats over acres of land

Plants and Fungi. Bryophytes Bryophytes, most commonly mosses Sprawl as low mats over acres of land Plants and Fungi Terrestrial Adaptations of Plants Structural Adaptations A plant is a multicellular eukaryote and a photoautotroph, making organic molecules by photosynthesis In terrestrial habitats,

More information

Importance of Protists

Importance of Protists Protists Protists The kingdom Protista is a very diverse kingdom. Eukaryotes that are not classified as fungi, plants, or animals are classified as protists. However, even though they are officially in

More information

Biology Lab: The Diversity of the Plant Kingdom

Biology Lab: The Diversity of the Plant Kingdom Biology Lab: The Diversity of the Plant Kingdom Name Date Introduction: Simply put, life on Earth relies on the plants for survival. By carrying out photosynthesis, plants provide enough food for themselves

More information

Early-bird Special The following terms refer to alternation of generation:

Early-bird Special The following terms refer to alternation of generation: Early-bird Special The following terms refer to alternation of generation: Homosporous ( one type of spore. a single type of spore produces a single type of gametophyte which produces both male and female

More information

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes

Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter in class follow along lecture notes Ms.Sastry, AP Biology Unit 4/Chp 26 to 34/Diversity 1 Chapter 26 34 in class follow along lecture notes Chp 26 Origin of life: 1) When did earth form? 2) What is the order of evolution of life forms on

More information

Bryophyte Gametophytes. Bryophyte Gametophytes. A spore germinates into a gametophyte. composed of a protonema and gamete producing gametophore

Bryophyte Gametophytes. Bryophyte Gametophytes. A spore germinates into a gametophyte. composed of a protonema and gamete producing gametophore A spore germinates into a composed of a protonema and gamete producing gametophore Rhizoids Anchor s to substrate Lack of vascular :ssues Bryophyte Gametophytes Restricts the height of s Mature s produce

More information

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall

Biology. Slide 1of 39. End Show. Copyright Pearson Prentice Hall Biology 1of 39 2of 39 20-4 Plantlike Protists: Red, Brown, and Green Algae Plantlike Protists: Red, Brown and Green Algae Most of these algae are multicellular, like plants. Their reproductive cycles are

More information

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall

Chapter What is a Plant? Biology. Slide 1 of 33. End Show. Copyright Pearson Prentice Hall Chapter 22.1 Biology What is a Plant? 1 of 33 Objectives 1. Describe the basic characteristics of life. 2. Describe what plants need to survive. 3. Describe the life cycle of plants. 4. Describe how the

More information

Exam 1 Review: Supplemental Instruction Iowa State University

Exam 1 Review: Supplemental Instruction Iowa State University Exam 1 Review: Supplemental Instruction Iowa State University Leader: Elizabeth Course: Bio 211 Instructor: Dr. Deitloff Date: 2/6/2014 1. Which is not a characteristic of a hypothesis? a. It is falsifiable.

More information

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another

Symbiosis. Symbiosis is a close association between of two or more organisms. Endosymbiosis living within another PROTISTS Protists constitute several kingdoms within the domain Eukarya Protists obtain their nutrition in a variety of ways Algae are autotrophic protists Protozoans are heterotrophic protists Fungus

More information

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts

AP Biology. Evolution of Land Plants. Kingdom: Plants. Plant Diversity. Animal vs. Plant life cycle. Bryophytes: mosses & liverworts Kingdom: Plants Domain Eukarya Domain Domain Domain Eubacteria Archaea Eukarya 2007-2008 Common ancestor Evolution of Land Plants 500 mya land plants evolved special adaptations for life on dry land protection

More information

Major lineages and life cycles of land plants. Green plants: viridiplantae

Major lineages and life cycles of land plants. Green plants: viridiplantae Liverworts Mosses Hornworts Lycophytes Major lineages and life cycles of land plants Green plants: viridiplantae Green plants Embryophytes (land plants) Bryophytes Tracheophytes (vascular plants) Seed

More information

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of

Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Pteridophytes: Pteridophytes are vascular cryptogams. They are the earliest know vascular plants which originated in the Silurian period of Palaeozoic era. They are the successful colonizers on land habit.

More information

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land

Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land Plants I - Water and Nutrient Management: Plant Adaptations to Life on Land Objectives: Understand the evolutionary relationships between plants and algae. Know the features thatt distinguish plants from

More information

Plant Diversity I: How Plants Colonized Land

Plant Diversity I: How Plants Colonized Land LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 29 Plant Diversity I: How Plants

More information

a. capture sunlight and absorb CO 2

a. capture sunlight and absorb CO 2 BIO 274-01 Exam 1 Name Matching (10 pts) 1. Match each plant part with its function: root c a. capture sunlight and absorb CO 2 for photosynthesis leaves a b. provides support, conducts water and nutrients

More information

Have cell walls made of chitin (same material is found in the skeletons of arthropods)

Have cell walls made of chitin (same material is found in the skeletons of arthropods) Fungi are multicellular eukaryotic heterotrophs that do not ingest their food but rather absorb it through their cell walls and cell membranes after breaking it down with powerful digestive enzymes. Fungi

More information

CHAPTER 9 MEIOSIS AND SEXUAL REPRODUCTION

CHAPTER 9 MEIOSIS AND SEXUAL REPRODUCTION CHAPTER 9 MEIOSIS AND SEXUAL REPRODUCTION 9.1 INTRODUCING ALLELES When an orchid or aphid reproduces all by it self, what sort of offspring does it get? By the process of asexual reproduction, one alone

More information

BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH

BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH 1 BOTANY, PLANT PHYSIOLOGY AND PLANT GROWTH LESSON 2 PLANT PARTS AND FUNCTIONS CELLS: THE BUILDING BLOCKS OF LIFE 2 The Building Blocks of Life All living things are composed of one or more cells essentially

More information

Topic 23. The Ferns and Their Relatives

Topic 23. The Ferns and Their Relatives Topic 23. The Ferns and Their Relatives Domain: Eukarya Kingdom: Plantae Ferns Leptosporangiate Ferns Psilophytes Genus: Psilotum Horsetails Genus: Equisetum In this treatment we lump the Psilophytes and

More information

Cells. Unit Review: Cells MEIOSIS. TECHBOOK UNIT 0 Views. Essential Questions and Answers for Review Sheet. What is meiosis?

Cells. Unit Review: Cells MEIOSIS. TECHBOOK UNIT 0 Views. Essential Questions and Answers for Review Sheet. What is meiosis? Cells TECHBOOK UNIT 0 Views Unit Review: Cells MEIOSIS Essential Questions and Answers for Review Sheet What is meiosis? Answer: Meiosis is the process by which specialized cells called gametes form in

More information

Chapter 21: Plant Structure & Function

Chapter 21: Plant Structure & Function Chapter 21: Plant Structure & Function Chapter 21: Plant Structure & Function All organisms must: Take in certain materials, e.g. O 2, food, drink Eliminate other materials, e.g. CO 2, waste products Chapter

More information

Biology 1 Notebook. Review Answers Pages 17 -?

Biology 1 Notebook. Review Answers Pages 17 -? Biology 1 Notebook Review Answers Pages 17 -? The History of Cell Studies 1. Robert Hook (1665) used a microscope to examine a thin slice of cork. The little boxes he observed reminded him of the small

More information

BIOLOGY - CLUTCH CH.29 - PROTISTS.

BIOLOGY - CLUTCH CH.29 - PROTISTS. !! www.clutchprep.com Eukrayotic cells are large, have a nucleus, contain membrane-bound organelles, and use a cytoskeleton The nucleus is the synapomorphy that unifies eukaryotes Endosymbiotic theory

More information

BIO10 Plant Lecture Notes ch. 17. Plant Kingdom

BIO10 Plant Lecture Notes ch. 17. Plant Kingdom Plant Kingdom Characteristics of the Plant Kingdom; eukaryotic, multicellular, sexually reproducing organisms autotroph feed themselves by photosynthesis Facts about members of this kingdom the dominant

More information

BIOLOGY. Nonvascular and Seedless Vascular Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Nonvascular and Seedless Vascular Plants CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 29 Nonvascular and Seedless Vascular Plants Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick The Greening of Earth

More information

Biology. Chapter 21. Plant Evolution. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015

Biology. Chapter 21. Plant Evolution. Concepts and Applications 9e Starr Evers Starr. Cengage Learning 2015 Biology Concepts and Applications 9e Starr Evers Starr Chapter 21 Plant Evolution 21.1 How Did Plants Adapt To Life on Land? Plants evolved from green algae, and underwent an adaptive radiation on land

More information

What Are the Protists?

What Are the Protists? Protists 1 What Are the Protists? 2 Protists are all the eukaryotes that are not fungi, plants, or animals. Protists are a paraphyletic group. Protists exhibit wide variation in morphology, size, and nutritional

More information

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM

CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM CBSE Quick Revision Notes (Class-11 Biology) CHAPTER-03 PLANT KINGDOM Eukaryotic, multicellular, chlorophyll containing and having cell wall, are grouped the kingdom Plantae, popularly known as plant kingdom.

More information

BIODIVERSITY OF PLANTS 12 FEBRUARY 2014

BIODIVERSITY OF PLANTS 12 FEBRUARY 2014 BIODIVERSITY OF PLANTS 12 FEBRUARY 2014 In this lesson we: Lesson Description Look at how plants are classified Define Alternation of generations Summarise the main characteristics of four groupings of

More information

Eukaryotic cell. Other big difference between prokaryotic and eukaryotic DNA. Fundamentals. Eukaryotic Chromosomes and Cell Division

Eukaryotic cell. Other big difference between prokaryotic and eukaryotic DNA. Fundamentals. Eukaryotic Chromosomes and Cell Division Eukaryotic cell 1) Review of haploid, diploid, mitosis and meiosis (for relevant reading, see Campbell pp. 218-220 and 238-247) 2) Overview of sexual life cycles 3) Components of the eukaryotic cell 4)

More information

The overall category of plants are 1) eukaryotic 2) multicellular 3)organisms capable of photosynthesis 4)built with cellulose 5) and have

The overall category of plants are 1) eukaryotic 2) multicellular 3)organisms capable of photosynthesis 4)built with cellulose 5) and have Chapter 23 The overall category of plants are 1) eukaryotic 2) multicellular 3)organisms capable of photosynthesis 4)built with cellulose 5) and have alternation of generations. Plants most likely first

More information

Meiosis and Life Cycles - 1

Meiosis and Life Cycles - 1 Meiosis and Life Cycles - 1 We have just finished looking at the process of mitosis, a process that produces cells genetically identical to the original cell. Mitosis ensures that each cell of an organism

More information

Plant Diversity I: How Plants Colonized Land

Plant Diversity I: How Plants Colonized Land Chapter 29 Plant Diversity I: How Plants Colonized Land PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

122-Biology Guide-5thPass 12/06/14. Topic 1 An overview of the topic

122-Biology Guide-5thPass 12/06/14. Topic 1  An overview of the topic Topic 1 http://bioichiban.blogspot.com Cellular Functions 1.1 The eukaryotic cell* An overview of the topic Key idea 1: Cell Organelles Key idea 2: Plasma Membrane Key idea 3: Transport Across Membrane

More information

Chapter 1-Plants in Our World

Chapter 1-Plants in Our World Chapter 1-Plants in Our World Formation of earth-4.5-4.6 billion years ago Evidence of life from organic material-3.8 billion years ago Many cyanobacteria are photosynthetic, but these microscopic organisms

More information

Plant Structure Size General Observations

Plant Structure Size General Observations Kingdom Plantae Plant Structure Size General Observations Diversity Within the Plant Kingdom Pine Trees What is a plant? Multicellular Eukaryotes Perform Photosynthesis (base of all terrestrial food chains)

More information

Ginkgo leaf. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts.

Ginkgo leaf. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts. Ginkgo leaf Figure 22-30 Ginkgo tree. Ginkgo is dioecious, separate sexes: male and female plants are separate. Monoecious plants have both male and female parts. The vein pattern is dichotomous: Divided

More information

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues.

Kingdom Plantae. Plants or metaphytes are, autotrophic multicellular eukaryotes, with tissues. Kingdom Plantae Key words feature bryophytes herbaceous node to release pteridophytes sporangium, leaf (leaves) damp gymnosperms vascular apix cluster angiosperms rhizome sepal shrub tropism fronds calyx

More information

Biology 211 (1) Exam 3 Review! Chapter 31!

Biology 211 (1) Exam 3 Review! Chapter 31! Biology 211 (1) Exam 3 Review Chapter 31 Origin of Land Plants: 1. Fill in the correct amount of years ago the following events occurred. years ago there was a thin coating of cyanobacteri b. years ago

More information