Population Genetics 7: Genetic Drift

Size: px
Start display at page:

Download "Population Genetics 7: Genetic Drift"

Transcription

1 Population Genetics 7: Genetic Drift Sampling error Assume a fair coin with p = ½: If you sample many times the most likely single outcome = ½ heads. The overall most likely outcome ½ heads n P = 2 k ( ) k ( ) n / 2 / k n = n! k k!( n k )! Combinations Formula: n is the number of flips k is the number of successes k heads from n flips Probability k =5 from n =.246 k =6 from n =.25

2 Sampling error The long term average value for p H is.5; let s call that E(p H ). How do we improve our changes of getting something close E(p H )? N flips p H <.35 p H = p H = p H = p H <.65 variance If we flipped the coin times: we get very close to E(p H ) in a single try, but not exactly. A note about HWE. N = 2 flips Probability of 5:5 heads : tails =.2256 Probability of 5:5 heads : tails =.796 N = flips 2

3 Genetic drift Consider a diploid population: Ideal population: no sampling errors because infinite population size Natural population: finite size and finite sample of gametes [sampling errors] Example: Let s assume: A = p =.75; a = q =.25; N = 5 This generation: 2 individuals reproduce [4 gametes] This is a binomial sampling problem: The probability of getting p =.75 and q =.25 in next generation is: 4 P = 3 (.75) 3 (. 25) P =.46 Genetic drift Generation Generation Generation 2 Generation 3 Draw 4:6 Draw 7:3 Draw 8:2 Restock Restock Restock white =.5 white =.4 white =.7 white =.8 Genetic drift is the accumulation of random sampling fluctuations in allele frequencies over generations. 3

4 Genetic drift The magnitude of change in allele frequencies is inversely proportional to the sample size: N Ideal population with finite size and finite gamete sample per generation. See last slide for example Remember that natural populations are less than ideal in many more ways! In most natural populations the effective size (N e ) will be less than the census size. The magnitude of drift in natural populations is: N e Drift and inbreeding effects are not independent! Genetic drift N e = N e = N e = N e = 5 4

5 Genetic drift If we run this simulation long enough it will go to fixation or loss; it just takes much longer rate to fixation [under drift] slows with increasing in N e ultimate fate is fixation or loss ( if f(a) =.5, P(fixed) =.5 ) Genetic drift What is the fate (on average) of a new mutant? The probability of fixation of a new mutant is its frequency (p or q) in the population: N e This is al low as it gets. The fate of most new mutations is LOSS due to drift. W AA =.5; W Aa =.5; W aa = : ideal population: probability of fixation = population with N e = 5: probability of fixation ~.25 Probability of fixation actually declines as N e decreases! 5

6 Genetic drift Independent populations; each started with p = q = * Allele frequency * = fixation N e = 5; generations = 5 * Generation Changes in allele frequency due to drift are unpredictable! Note if we ran more generations, more popns would go to fixation Genetic drift number of populations allele frequency allele frequency initial distribution; t = generations distribution after t = 5 generations 6

7 Genetic drift The effects of drift are cumulative over time. The effects of drift are predictable as averaged over time and populations:. loss of variation within populations 2. gain in variation between populations Does genetic drift affects heterozygosity? Let x be the amount of change in p and q in a population due to drift. As we have seen the long term average, E(x), due to drift will be zero because changes in p and q are equally likely to be positive or negative. Given E(x) =, what happens to heterozygosity? Does heterozygosity change at all? Let s start with HW at generation t: H t = 2pq The allele frequencies, p and q, will change from generation to generation by the amount x: H t+ = 2(p + x)(q x) H t+ = 2pq + 2x(q p) 2x 2 Although E(x) =, the expected value of x-squared, E(x 2 ), is always positive. E(2pq + 2x(q p) 2x 2 ) 2pq 2x 2 Heterozygosity is expected reduced by genetic drift. Nice, eh? 7

8 Genetic drift and inbreeding are not independent. Unequal numbers in successive generations N = g N N N e N g (approx.) 2. Different numbers of males and females N e = 4N m + 4N f (approx.) 3. Variance in reproductive success (other than male verse female) N ( v) e 4N 2 = V + 2 k Bottlenecks and founder effects Bottleneck: is a single, extraordinarily large, reduction in population size. Change in allele frequencies, as compared with pre-bottleneck population 2. Reduction in diversity 8

9 Bottlenecks and founder effects Effective population size is dominated by historical lows and can be very much lower than current census size. population census size 2,, 8, 6, 4, 2, Population crash Population recovered to historical high Ave N Ne Time = Ne g N N N N g (approx.) Two species that have suffered extreme bottlenecks due to commercial harvesting Northern elephant seal Northern right whale Excellent population recovery Poor population recovery 9

10 Parental population Dispersal event to a neighbouring island New population Island Island 2 Polydactyly caused by the homozygous recessive disease Ellis-van Creveld syndrome Other symptoms of this disease include dwarfisms, abnormalities of the nails and teeth, and a hole between the two upper chambers of the heart.

11 Picture wing Drosophila Direction of colonization Direction of archipelago growth Keynotes: Genetic drift influences both allele frequency and genotype frequency. Drift decreases diversity within populations and increases diversity between populations. Under genetic drift, the rate to fixation is determined by Ne and the probability of fixation by p. In specific cases the outcome of genetic drift is unpredictable. The effects of drift are predictable as an average over populations. Because drift reduces genetic variation in populations, a population s ability to evolve in response to new selective pressures might be reduced (remember Trudy MacKay s experiments). Alternatively, some believe that drift could actually increase the rate of speciation (e.g., Hawaiian Drosophila). Because the effect of drift is inversely proportional to the effective population size, its affects are particularly important in rare and endangered species. Founder effects may play an important role in some speciation events

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population)

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) POPULATION GENETICS NOTES Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) Allele Frequency The number of times a specific allele occurs in a

More information

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects.

- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects. January 29 th, 2010 Bioe 109 Winter 2010 Lecture 10 Microevolution 3 - random genetic drift - one of the most important shifts in evolutionary thinking over the past 30 years has been an appreciation of

More information

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift: 9. Genetic Drift Genetic drift is the alteration of gene frequencies due to sampling variation from one generation to the next. It operates to some degree in all finite populations, but can be significant

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Processes of Evolution

Processes of Evolution Processes of Evolution Microevolution Processes of Microevolution How Species Arise Macroevolution Microevolution Population: localized group of individuals belonging to the same species with the potential

More information

mrna Codon Table Mutant Dinosaur Name: Period:

mrna Codon Table Mutant Dinosaur Name: Period: Mutant Dinosaur Name: Period: Intro Your dinosaur is born with a new genetic mutation. Your job is to map out the genes that are influenced by the mutation and to discover how the new dinosaurs interact

More information

Population genetics. Key Concepts. Hardy-Weinberg equilibrium 3/21/2019. Chapter 6 The ways of change: drift and selection

Population genetics. Key Concepts. Hardy-Weinberg equilibrium 3/21/2019. Chapter 6 The ways of change: drift and selection Chapter 6 The ways of change: drift and selection Population genetics Study of the distribution of alleles in populations and causes of allele frequency changes Key Concepts Diploid individuals carry two

More information

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN. Today: Thinking About Darwinian Evolution Part 1: Darwin s Theory Perplexing Observations Mystery of the Black Death?? What is evolution?? And what is this finch doing?!? We owe much of our understanding

More information

The theory of evolution continues to be refined as scientists learn new information.

The theory of evolution continues to be refined as scientists learn new information. Section 3: The theory of evolution continues to be refined as scientists learn new information. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the conditions of the

More information

Heterozygosity is variance. How Drift Affects Heterozygosity. Decay of heterozygosity in Buri s two experiments

Heterozygosity is variance. How Drift Affects Heterozygosity. Decay of heterozygosity in Buri s two experiments eterozygosity is variance ow Drift Affects eterozygosity Alan R Rogers September 17, 2014 Assumptions Random mating Allele A has frequency p N diploid individuals Let X 0,1, or 2) be the number of copies

More information

How robust are the predictions of the W-F Model?

How robust are the predictions of the W-F Model? How robust are the predictions of the W-F Model? As simplistic as the Wright-Fisher model may be, it accurately describes the behavior of many other models incorporating additional complexity. Many population

More information

Evolution & Natural Selection

Evolution & Natural Selection Evolution & Natural Selection Learning Objectives Know what biological evolution is and understand the driving force behind biological evolution. know the major mechanisms that change allele frequencies

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Introduction to Natural Selection. Ryan Hernandez Tim O Connor

Introduction to Natural Selection. Ryan Hernandez Tim O Connor Introduction to Natural Selection Ryan Hernandez Tim O Connor 1 Goals Learn about the population genetics of natural selection How to write a simple simulation with natural selection 2 Basic Biology genome

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

Darwinian Selection. Chapter 6 Natural Selection Basics 3/25/13. v evolution vs. natural selection? v evolution. v natural selection

Darwinian Selection. Chapter 6 Natural Selection Basics 3/25/13. v evolution vs. natural selection? v evolution. v natural selection Chapter 6 Natural Selection Basics Natural Selection Haploid Diploid, Sexual Results for a Diallelic Locus Fisher s Fundamental Theorem Darwinian Selection v evolution vs. natural selection? v evolution

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

8. Genetic Diversity

8. Genetic Diversity 8. Genetic Diversity Many ways to measure the diversity of a population: For any measure of diversity, we expect an estimate to be: when only one kind of object is present; low when >1 kind of objects

More information

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection

Darwinian Selection. Chapter 7 Selection I 12/5/14. v evolution vs. natural selection? v evolution. v natural selection Chapter 7 Selection I Selection in Haploids Selection in Diploids Mutation-Selection Balance Darwinian Selection v evolution vs. natural selection? v evolution ² descent with modification ² change in allele

More information

www.lessonplansinc.com Topic: Dinosaur Evolution Project Summary: Students pretend to evolve two dinosaurs using genetics and watch how the dinosaurs adapt to an environmental change. This is a very comprehensive

More information

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33

Name Class Date. Pearson Education, Inc., publishing as Pearson Prentice Hall. 33 Chapter 11 Introduction to Genetics Chapter Vocabulary Review Matching On the lines provided, write the letter of the definition of each term. 1. genetics a. likelihood that something will happen 2. trait

More information

Evolution Test Review

Evolution Test Review Name Evolution Test Review Period 1) A group of interbreeding organisms (a species) living in a given area is called population 2) Give an example of a species. Ex. One wolf Give an example of a population.

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

NCEA Level 2 Biology (91157) 2017 page 1 of 5 Assessment Schedule 2017 Biology: Demonstrate understanding of genetic variation and change (91157)

NCEA Level 2 Biology (91157) 2017 page 1 of 5 Assessment Schedule 2017 Biology: Demonstrate understanding of genetic variation and change (91157) NCEA Level 2 Biology (91157) 2017 page 1 of 5 Assessment Schedule 2017 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Statement Q1 Expected coverage Merit Excellence

More information

Population Structure

Population Structure Ch 4: Population Subdivision Population Structure v most natural populations exist across a landscape (or seascape) that is more or less divided into areas of suitable habitat v to the extent that populations

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological Mechanisms of Evolution Honors Biology 2012 1 Adaptations Behavioral Structural Biochemical Physiological 2 Old Ideas about Evolution Aristotle (viewed species perfect and unchanging) Lamarck suggested

More information

Section 11 1 The Work of Gregor Mendel

Section 11 1 The Work of Gregor Mendel Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) What is the principle of dominance? What happens during segregation? Gregor Mendel s Peas (pages 263 264) 1. The

More information

Case Studies in Ecology and Evolution

Case Studies in Ecology and Evolution 3 Non-random mating, Inbreeding and Population Structure. Jewelweed, Impatiens capensis, is a common woodland flower in the Eastern US. You may have seen the swollen seed pods that explosively pop when

More information

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Population Genetics. with implications for Linkage Disequilibrium. Chiara Sabatti, Human Genetics 6357a Gonda

Population Genetics. with implications for Linkage Disequilibrium. Chiara Sabatti, Human Genetics 6357a Gonda 1 Population Genetics with implications for Linkage Disequilibrium Chiara Sabatti, Human Genetics 6357a Gonda csabatti@mednet.ucla.edu 2 Hardy-Weinberg Hypotheses: infinite populations; no inbreeding;

More information

Heredity and Genetics WKSH

Heredity and Genetics WKSH Chapter 6, Section 3 Heredity and Genetics WKSH KEY CONCEPT Mendel s research showed that traits are inherited as discrete units. Vocabulary trait purebred law of segregation genetics cross MAIN IDEA:

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Observation: we continue to observe large amounts of genetic variation in natural populations

Observation: we continue to observe large amounts of genetic variation in natural populations MUTATION AND GENETIC VARIATION Observation: we continue to observe large amounts of genetic variation in natural populations Problem: How does this variation arise and how is it maintained. Here, we look

More information

Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus. Q8 (Biology) (4.6)

Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus. Q8 (Biology) (4.6) Q1 (4.6) What is variation? Q2 (4.6) Put the following in order from biggest to smallest: Gene DNA Cell Chromosome Nucleus Q3 (4.6) What are genes? Q4 (4.6) What sort of reproduction produces genetically

More information

Lecture #4-1/25/02 Dr. Kopeny

Lecture #4-1/25/02 Dr. Kopeny Lecture #4-1/25/02 Dr. Kopeny Genetic Drift Can Cause Evolution Genetic Drift: Random change in genetic structure of a population; due to chance Thought Experiment: What is your expectation regarding the

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section C: Genetic Variation, the Substrate for Natural Selection 1. Genetic variation occurs within and between populations 2. Mutation and sexual recombination

More information

Solutions to Problem Set 4

Solutions to Problem Set 4 Question 1 Solutions to 7.014 Problem Set 4 Because you have not read much scientific literature, you decide to study the genetics of garden peas. You have two pure breeding pea strains. One that is tall

More information

Final Exam Review. 1. Arrange the 7 levels of Linnaean classification from most general (ie: kingdom) to most specific (ie: species)

Final Exam Review. 1. Arrange the 7 levels of Linnaean classification from most general (ie: kingdom) to most specific (ie: species) SBI 3U1 Final Exam Review Diversity 1. Arrange the 7 levels of Linnaean classification from most general (ie: kingdom) to most specific (ie: species) 2. a) Explain how the structure of prokaryotic cells

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin

Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin Solutions to Even-Numbered Exercises to accompany An Introduction to Population Genetics: Theory and Applications Rasmus Nielsen Montgomery Slatkin CHAPTER 1 1.2 The expected homozygosity, given allele

More information

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes.

A. Correct! Genetically a female is XX, and has 22 pairs of autosomes. MCAT Biology - Problem Drill 08: Meiosis and Genetic Variability Question No. 1 of 10 1. A human female has pairs of autosomes and her sex chromosomes are. Question #01 (A) 22, XX. (B) 23, X. (C) 23, XX.

More information

1. Draw, label and describe the structure of DNA and RNA including bonding mechanisms.

1. Draw, label and describe the structure of DNA and RNA including bonding mechanisms. Practicing Biology BIG IDEA 3.A 1. Draw, label and describe the structure of DNA and RNA including bonding mechanisms. 2. Using at least 2 well-known experiments, describe which features of DNA and RNA

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc. Enduring Understanding: Change in the genetic makeup of a population over time is evolution. Objective: You will be able to identify the key concepts of evolution theory Do Now: Read the enduring understanding

More information

Introduction to Genetics

Introduction to Genetics Chapter 11 Introduction to Genetics Section 11 1 The Work of Gregor Mendel (pages 263 266) This section describes how Gregor Mendel studied the inheritance of traits in garden peas and what his conclusions

More information

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name:

Biology. Revisiting Booklet. 6. Inheritance, Variation and Evolution. Name: Biology 6. Inheritance, Variation and Evolution Revisiting Booklet Name: Reproduction Name the process by which body cells divide:... What kind of cells are produced this way? Name the process by which

More information

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele

3U Evolution Notes. Natural Selection: What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele 3U Evolution Notes What is Evolution? -The idea that gene distribution changes over time -A change in the frequency of an allele Let s look back to what we know: From genetics we can say that a gene is

More information

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50 LECTURE #10 A. The Hardy-Weinberg Equilibrium 1. From the definitions of p and q, and of p 2, 2pq, and q 2, an equilibrium is indicated (p + q) 2 = p 2 + 2pq + q 2 : if p and q remain constant, and if

More information

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly).

REVIEW 6: EVOLUTION. 1. Define evolution: Was not the first to think of evolution, but he did figure out how it works (mostly). Name: REVIEW 6: EVOLUTION 1. Define evolution: 2. Modern Theory of Evolution: a. Charles Darwin: Was not the first to think of evolution, but he did figure out how it works (mostly). However, Darwin didn

More information

1 Errors in mitosis and meiosis can result in chromosomal abnormalities.

1 Errors in mitosis and meiosis can result in chromosomal abnormalities. Slide 1 / 21 1 Errors in mitosis and meiosis can result in chromosomal abnormalities. a. Identify and describe a common chromosomal mutation. Slide 2 / 21 Errors in mitosis and meiosis can result in chromosomal

More information

1.1: Natural selection is a major mechanism of evolution 1. NATURAL SELECTION

1.1: Natural selection is a major mechanism of evolution 1. NATURAL SELECTION Domain 1: Evolution 1.1: Natural selection is a major mechanism of evolution 1. NATURAL SELECTION Charles Darwin Pre-Darwin Lyell: Geology, Uniformitarianism! very old earth. Malthus: Exponential Population

More information

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution Slide 1 Concepts of Evolution Slide 2 Isn t Evolution Just A Theory? How does the scientific meaning of a term like theory differ from the way it is used in everyday life? Can the facts of science change

More information

IV. Comparative Anatomy

IV. Comparative Anatomy Whale Evolution: Fossil Record of Evolution Modern toothed whales Rodhocetus kasrani reduced hind limbs could not walk; swam with up-down motion like modern whales Pakicetus attocki lived on land; skull

More information

Lesson 2 Evolution of population (microevolution)

Lesson 2 Evolution of population (microevolution) Lesson 2 Evolution of population (microevolution) 1. A gene pool consists of a. all the aleles exposed to natural selection. b. the total of all alleles present in a population. c. the entire genome of

More information

Microevolution (Ch 16) Test Bank

Microevolution (Ch 16) Test Bank Microevolution (Ch 16) Test Bank Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements describes what all members

More information

Quantitative Trait Variation

Quantitative Trait Variation Quantitative Trait Variation 1 Variation in phenotype In addition to understanding genetic variation within at-risk systems, phenotype variation is also important. reproductive fitness traits related to

More information

Evolution of Populations. Chapter 17

Evolution of Populations. Chapter 17 Evolution of Populations Chapter 17 17.1 Genes and Variation i. Introduction: Remember from previous units. Genes- Units of Heredity Variation- Genetic differences among individuals in a population. New

More information

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17 Chapter 5 Evolution of Biodiversity CHAPTER INTRO: The Dung of the Devil Read and Answer Questions Provided Module 14 The Biodiversity of Earth After reading this module you should be able to understand

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics The Work of Gregor Mendel B.1.21, B.1.22, B.1.29 Genetic Inheritance Heredity: the transmission of characteristics from parent to offspring The study of heredity in biology is

More information

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2. NCEA Level 2 Biology (91157) 2018 page 1 of 6 Assessment Schedule 2018 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Q Expected Coverage Achievement Merit Excellence

More information

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. EVOLUTIONARY BIOLOGY EXAM #1 Fall 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points each). Circle

More information

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS

THE EVOLUTION OF POPULATIONS THE EVOLUTION OF POPULATIONS WHAT IS LIFE? A GUIDE TO BIOLOGY, ART NOTEBOOK, PAGE 8 THE OF POPULATIONS Figure 8-10, part 1 Evolution defined. THE OF POPULATIONS TIGER POPULATION Allele frequencies: Proportion of orange fur-pigment

More information

5/31/2012. Speciation and macroevolution - Chapter

5/31/2012. Speciation and macroevolution - Chapter Speciation and macroevolution - Chapter Objectives: - Review meiosis -Species -Repro. Isolating mechanisms - Speciation -Is evolution always slow -Extinction How Are Populations, Genes, And Evolution Related?

More information

List the five conditions that can disturb genetic equilibrium in a population.(10)

List the five conditions that can disturb genetic equilibrium in a population.(10) List the five conditions that can disturb genetic equilibrium in a population.(10) The five conditions are non-random mating, small population size, immigration or emigration, mutations, and natural selection.

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 007 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

The Genetics of Natural Selection

The Genetics of Natural Selection The Genetics of Natural Selection Introduction So far in this course, we ve focused on describing the pattern of variation within and among populations. We ve talked about inbreeding, which causes genotype

More information

Inheritance part 1 AnswerIT

Inheritance part 1 AnswerIT Inheritance part 1 AnswerIT 1. What is a gamete? A cell with half the number of chromosomes of the parent cell. 2. Name the male and female gametes in a) a human b) a daisy plant a) Male = sperm Female

More information

Rebops. Your Rebop Traits Alternative forms. Procedure (work in pairs):

Rebops. Your Rebop Traits Alternative forms. Procedure (work in pairs): Rebops The power of sexual reproduction to create diversity can be demonstrated through the breeding of Rebops. You are going to explore genetics by creating Rebop babies. Rebops are creatures that have

More information

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148

UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 UNIT 8 BIOLOGY: Meiosis and Heredity Page 148 CP: CHAPTER 6, Sections 1-6; CHAPTER 7, Sections 1-4; HN: CHAPTER 11, Section 1-5 Standard B-4: The student will demonstrate an understanding of the molecular

More information

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes.

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes. February 8, 2005 Bio 107/207 Winter 2005 Lecture 11 Mutation and transposable elements - the term mutation has an interesting history. - as far back as the 17th century, it was used to describe any drastic

More information

Big Idea #1: The process of evolution drives the diversity and unity of life

Big Idea #1: The process of evolution drives the diversity and unity of life BIG IDEA! Big Idea #1: The process of evolution drives the diversity and unity of life Key Terms for this section: emigration phenotype adaptation evolution phylogenetic tree adaptive radiation fertility

More information

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each) Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each) 1. Evolution is a. a change in allele frequency in a population b. occurred in the past

More information

Biology 20 Evolution

Biology 20 Evolution Biology 20 Evolution Evolution: Modern synthesis: Individuals: Lamarck: Use and disuse: Inheritance of Acquired Traits: Darwin: Travelled: Galapagos Islands: What was the name of Darwin s book, which he

More information

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids.

It all depends on barriers that prevent members of two species from producing viable, fertile hybrids. Name: Date: Theory of Evolution Evolution: Change in a over a period of time Explains the great of organisms Major points of Origin of Species Descent with Modification o All organisms are related through

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Introduction I didn t make a big deal of it in what we just went over, but in deriving the Jukes-Cantor equation I used the phrase substitution rate instead of

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

URN MODELS: the Ewens Sampling Lemma

URN MODELS: the Ewens Sampling Lemma Department of Computer Science Brown University, Providence sorin@cs.brown.edu October 3, 2014 1 2 3 4 Mutation Mutation: typical values for parameters Equilibrium Probability of fixation 5 6 Ewens Sampling

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Chapter 15 Processes of Evolution Key Concepts 15.1 Evolution Is Both Factual and the Basis of Broader Theory 15.2 Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom

More information

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology UNIT V Chapter 11 Evolution of Populations UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations I. Genetic Variation Within Populations (11.1) A. Genetic variation in a population increases the chance

More information

Introduction to population genetics & evolution

Introduction to population genetics & evolution Introduction to population genetics & evolution Course Organization Exam dates: Feb 19 March 1st Has everybody registered? Did you get the email with the exam schedule Summer seminar: Hot topics in Bioinformatics

More information

Evolution AP Biology

Evolution AP Biology Darwin s Theory of Evolution How do biologists use evolutionary theory to develop better flu vaccines? Theory: Evolutionary Theory: Why do we need to understand the Theory of Evolution? Charles Darwin:

More information

#2 How do organisms grow?

#2 How do organisms grow? #2 How do organisms grow? Why doesn t a cell keep growing larger and larger? The larger a cell becomes the more demands the cell places on its DNA. The cell also has trouble moving enough nutrients and

More information

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved?

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved? Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved? Critical to determining the limits of a species is understanding if two populations

More information

AP Biology Evolution Review Slides

AP Biology Evolution Review Slides AP Biology Evolution Review Slides How would one go about studying the evolution of a tetrapod limb from a fish s fin? Compare limb/fin structure of existing related species of fish to tetrapods Figure

More information

THE WORK OF GREGOR MENDEL

THE WORK OF GREGOR MENDEL GENETICS NOTES THE WORK OF GREGOR MENDEL Genetics-. - Austrian monk- the father of genetics- carried out his work on. Pea flowers are naturally, which means that sperm cells fertilize the egg cells in

More information

How to Use This Presentation

How to Use This Presentation How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

CH_15_Evolution.notebook. February 28, Cellular Evolution. Jean Baptiste de Lamarck. Endosymbiont Theory. Charles Darwin

CH_15_Evolution.notebook. February 28, Cellular Evolution. Jean Baptiste de Lamarck. Endosymbiont Theory. Charles Darwin Cellular Evolution The first cells were prokaryotic They did not need oxygen (the atmosphere did not contain oxygen until 1.8 billion years ago) Eukaryotic cells were found in the fossil record about 2

More information

2. Next, try to describe the cell cycle as follows: interphase, prophase, metaphase, anaphase, telophase, cytokinesis

2. Next, try to describe the cell cycle as follows: interphase, prophase, metaphase, anaphase, telophase, cytokinesis 1. First, tell me something exciting you did over spring break! 2. Next, try to describe the cell cycle as follows: interphase, prophase, metaphase, anaphase, telophase, cytokinesis *Reminder*-Thursday

More information

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics Mechanisms of Evolution Microevolution Population Genetics Key Concepts 23.1: Population genetics provides a foundation for studying evolution 23.2: Mutation and sexual recombination produce the variation

More information

Labs 7 and 8: Mitosis, Meiosis, Gametes and Genetics

Labs 7 and 8: Mitosis, Meiosis, Gametes and Genetics Biology 107 General Biology Labs 7 and 8: Mitosis, Meiosis, Gametes and Genetics In Biology 107, our discussion of the cell has focused on the structure and function of subcellular organelles. The next

More information

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d

BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section. A/a ; B/B ; d/d X A/a ; b/b ; D/d BS 50 Genetics and Genomics Week of Oct 3 Additional Practice Problems for Section 1. In the following cross, all genes are on separate chromosomes. A is dominant to a, B is dominant to b and D is dominant

More information

What is the structure of DNA?

What is the structure of DNA? NAME Biology Final Review Sem. II Genetics 1. Define: a. allele b. phenotype c. genotype d. recessive e. dominant f. heterozygous g. homozygous h. autosomes i. sex chromosomes j. Punnett square k. pedigree

More information

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA)

What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) What is mitosis? -Process in which a cell divides, creating TWO complete Sets of the original cell with the same EXACT genetic Material (DNA) Cell Division Produces CLONES with the same # of chromosomes

More information

Chapter 13 Meiosis and Sexual Reproduction

Chapter 13 Meiosis and Sexual Reproduction Biology 110 Sec. 11 J. Greg Doheny Chapter 13 Meiosis and Sexual Reproduction Quiz Questions: 1. What word do you use to describe a chromosome or gene allele that we inherit from our Mother? From our Father?

More information

Parts 2. Modeling chromosome segregation

Parts 2. Modeling chromosome segregation Genome 371, Autumn 2017 Quiz Section 2 Meiosis Goals: To increase your familiarity with the molecular control of meiosis, outcomes of meiosis, and the important role of crossing over in generating genetic

More information

Microevolution is a change in the gene frequencies of a population. Can happen quickly. Ex: antibiotic resistant bacterial colonies

Microevolution is a change in the gene frequencies of a population. Can happen quickly. Ex: antibiotic resistant bacterial colonies Evolution Unit 1 Microevolution is a change in the gene frequencies of a population. Can happen quickly Ex: antibiotic resistant bacterial colonies New species evolve and no longer interbreed with the

More information