- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects.

Size: px
Start display at page:

Download "- point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects."

Transcription

1 January 29 th, 2010 Bioe 109 Winter 2010 Lecture 10 Microevolution 3 - random genetic drift - one of the most important shifts in evolutionary thinking over the past 30 years has been an appreciation of the importance of random genetic drift. - prior to this time, the prevailing view was that most, if not all, characters of organisms were shaped by natural selection. - stochastic, or random, processes were deemed to be of minor importance. - the pendulum has now swung back to a considerable extent and drift is now realized to play an important role in evolution - especially at the molecular level. What is random drift? - random genetic drift may be defined as random changes in the frequencies of neutral alleles from generation to generation caused by accidents of sampling. - accidents of sampling refer to random events that result in mistakes in the transmission of genes across generations. - these accidents of sampling arise because populations are finite in size. and that by chance, not all individuals, will successfully propagate their genes into the next generation. How can alleles be neutral? 1. mutations in non-coding DNA regions - point mutations in most non-coding DNA sites likely are likely neutral in their phenotypic effects. 2. mutations involving silent, or synonymous, changes - for example, a CUC to CUU mutation (both codons specifying leucine). - this mutation does not result in an amino acid substitution thus should be invisible to the selective process. - however, the phenomenon of codon bias (the nonrandom usage of codons specifying the same amino acid) at some genes in bacteria, yeast, and Drosophila suggests that even silent mutations may not be entirely neutral. 3. mutation among very similar amino acids - for example, consider a mutation from leucine (CUC) to valine GUC) - both represent small, non-polar amino acids that differ slightly in size.

2 - if this change occurs in a non-critical area of the protein, it may have a negligible effect on function. - in other words, the fitness of an individual possessing this new mutation may be indistinguishable from its predecessor. How does random genetic drift occur? - a good analogy for the process of drift is the blind sampling of different colored balls (gametes) from an urn. - random drift operates in this example because the color of the ball (gamete) cannot be detected by the blind sampling process. - the different colored balls would represent the frequencies of different neutral alleles at a locus. - suppose we have an equal mixture of blue and white balls (gametes); p (blue) = q (white)= suppose that we were to sample 20 million balls from the urn to form the next generation. - because of this large sample, we would expect the frequencies to not deviate very much from for example, we could obtain a sample of 10,000,106 blue balls and 9,999,894 white balls. - the frequency of p has thus increased to and q decreased to suppose, however, suppose that we sample only 200 balls every generation (again from a starting point of p = q = 0.50). - by chance, we could obtain a sample of 94 blue and 106 white. - in this sample, the frequency of blue has dropped to and white increased to this result indicates what our intuition would tell us - the magnitude of random drift is more prevalent in small populations. - the smaller the population, the greater the chance that sampling error will result in allele frequency change. - random fluctuations in the transmission of genes will tend to even out in very large populations by the law of large numbers. - therefore, the magnitude of random genetic drift is simply inversely proportional to the effective population size. - each generation, a population will lose variation in proportion to the term 1/2N e, where N e is the effective population size. Some properties of random genetic drift 1. Magnitude inversely proportional to effective population size (N e ) 2. Ultimately results in the loss of variation from the population. 3. The probability of fixation of a neutral allele equals its frequency in the population. 4. Random drift will cause isolated populations to diverge genetically.

3 5. Is accentuated during population bottlenecks and founder effects (see below). What is effective population size? - a species effective population size is not the same as the census population size that we observe in nature. - in general terms, the effective population is roughly equivalent to the actual number of breeding individuals in the population. - this will always be lower than the current number of individuals present in the population. - this can be thought of as the contemporary effective size. - Ne is also strongly influenced by the longer-term history of a population. - this is more reflective of its evolutionary effective size that are largely responsible for its standing levels of genetic variation. - three factors exert strong effects on effective population size. 1. Fluctuations in population size. - if populations fluctuate in size over time, the effective size is equal to the harmonic mean of the actual population numbers: 1/N e = 1/t(1/N 1 + 1/N 2 + 1/N /N t ) - here, N 1, N 2, etc. are the population sizes in generations 1, 2, etc. - the harmonic mean is strongly influenced by the smallest population sizes. - for example, if in three generations a population had sizes of 2000, 30, and then 2000 (i.e., it went through a population bottleneck) then the effective size is only 87.4, whereas the numeric mean is long-term fluctuations in population size are believed to play a dominant role in producing much smaller effective population sizes than are suggested by current population sizes. - in the temperate north latitudes, for example, glaciation events are believed to have led to dramatic reductions and then expansions in the population sizes of most all species. The effective population size may thus be much smaller than suggested by the current size. - the same may hold true for many tropical species whose ranges may have contracted greatly during periods of glaciation. 2. Unequal numbers of males and females. - here, the sex which contributes a lower number of gametes will experience a bottleneck and thus be subject to genetic drift. The effective population number is thus: N e = 4N m N f N m + N f - here, N m and N f refer to the number of males and females, respectively.

4 3. Variance in reproductive success. - if there is a large variance in the number of progeny produced by individuals the effective population size further reduced below the census size. - all of these factors contribute to making effective population sizes considerably lower than what we may think from current population sizes. Genetic Bottlenecks and Founder Effects - genetic bottlenecks, or severe reductions in population sizes, may dramatically reduce genetic variation through pronounced genetic drift. - two of the most extreme examples known involve the northern elephant seal (Mirounga angustirostis) and the cheetah (Acinonyx jubatus). - the northern elephant seal was almost hunted to extinction in the late 19th century - it is estimated that only individuals survived - the species has now rebounded to a population size of approximately 150, , the Northern elephant seal was surveyed for genetic variation at 24 electrophoretic, or allozyme, loci by Bonnel and Selander (1974). - surprisingly, it was found to possess no genetic variation at this sample of loci! - the Northern elephant seal is an interesting case in that the population has rebounded and appears to being do fairly well without polymorphism that is commonly found in other large mammals. - populations of the East-African and South African subspecies of the cheetah have been surveyed for 52 loci. - a sample of 30 individuals from the EAP gave P = 0.04 and H = from a sample of 98 individuals from the South African group, P = 0.02, and H = these are extremely low estimates. Even more surprising was the finding that skin grafts among unrelated individuals from the South African subspecies are not rejected. This suggests that the cheetah is monomorphic at its major incompatibility or MHC locus which is abundantly polymorphic in all other mammals. - further evidence that the cheetah is possesses diminished levels of variation comes from observations that male cheetahs have a high incidence of abnormal spermatozoa and attempts to mate cheetahs in captivity have met with little success. - furthermore, a recent outbreak of feline infectious peritonitis in the 1980's severely decimated many colonies of animals. It is interesting that the same virus caused only a 1% mortality rate in domestic cats. These observations support the suggestion that cheetahs have lost much of their reservoir of genetic variability and thus may be precariously poised on the brink of extinction. - unlike the elephant seal there is no direct evidence for a bottleneck in the species' recent history. - however, it is known that the cheetah used to have a much larger geographic range. - although it is now endemic to the African subcontinent, it used to be found throughout Europe and Asia. Apparently, the species has undergone at least two severe bottlenecks resulting in the loss of much of their genetic variation.

5 Bottleneck size vs. duration - the loss of genetic variation by population bottlenecks is a direct cause of genetic drift. - simulation models have shown that the duration of the bottleneck (i.e., the number of generations spent at a reduced population size) is a more important factor determining the loss of genetic variation by genetic drift than is the actual population size itself. - if population rebounds quickly from a bottleneck, little heterozygosity is actually lost. - however, if the population remains at low levels for a large number of generations then random drift can greatly accelerate the loss of alleles. - genetic bottlenecks also cause an elevation in inbreeding in the population. - inbreeding does not actually cause alleles to be lost from the population - it simply shifts the distribution of genotypes to have more homozygotes than expected under random mating. - this will typically result in the expression of deleterious recessive alleles in homozygous state leading to the phenomenon of inbreeding depression. The interplay between drift, migration, and selection. - we have now briefly examined the basic characteristics of natural selection, random genetic drift and gene flow. - last week, last Monday we learned that Hardy-Weinberg equilibrium will be established in a population is there is no selection, drift, or migration. - is this likely? - NO: it is possible that selection, random drift, and gene flow all occur simultaneously. - not all loci may be subject to selection, but random drift and gene flow will occur continuously. - what is the interplay between these three microevolutionary processes?? - let us consider some of the possible interactions. 1. Gene flow and drift - here we are considering neutral alleles. - for neutral alleles, random drift and gene flow will act in opposition to each other. - random drift leads to the genetic divergence of populations. - random drift and gene flow will act in opposition to each other. - the two parameters that will determine the outcome of this interaction are m, the strength of migration, and N (the effective population size) that will dictate the magnitude of random drift. - if Nm > 1, gene flow overrides drift, populations are will remain genetically identical - if Nm < 1, gene flow is too low, random drift can lead to genetic divergence. 2. Gene flow and selection - gene flow and selection can act in opposition if selection favors different alleles in different populations.

6 - if the number of migrants entering a population each generation exceeds the effect that selection has imparted that generation, then no genetic change will occur! - the crucial parameters are the strength of selection (s) and the magnitude of gene flow (quantified by the parameter m). - if m > s, gene flow can overpower the affect of selection in local populations. - if s > m, then selection can override the impact of gene flow and result in local adaptation. 3. Drift and selection - random genetic drift and natural selection will act in opposition when population sizes become too small for the selective process to operate. - selection results in the deterministic change in allele frequency! - random drift results in stochastic changes in allele frequency! - the relevant parameters are the strength of selection (determined by the selection coeffcient, s), and the effective population size (that will determine the extent of random drift). - if Ns > 10, selection controls the fate of the allele. - if Ns < 1, drift will overpower the effect of selection. - when population sizes become too small the random fluctuations caused by drift exceed the deterministic selective trajectory. - therefore, the same allele with the same selective advantage will be selected in a large population yet behave as if it is neutral in a small population (because random drift will override the effect of selection). - in the first case, directional selection will always result in the fixation of the allele. - in the latter case, the allele may drift to either fixation or loss.

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift:

19. Genetic Drift. The biological context. There are four basic consequences of genetic drift: 9. Genetic Drift Genetic drift is the alteration of gene frequencies due to sampling variation from one generation to the next. It operates to some degree in all finite populations, but can be significant

More information

The theory of evolution continues to be refined as scientists learn new information.

The theory of evolution continues to be refined as scientists learn new information. Section 3: The theory of evolution continues to be refined as scientists learn new information. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the conditions of the

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Forces of Evolution Concept 15.4 Selection Can Be Stabilizing, Directional, or Disruptive Natural selection can act on quantitative traits in three ways: Stabilizing selection

More information

Study of similarities and differences in body plans of major groups Puzzling patterns:

Study of similarities and differences in body plans of major groups Puzzling patterns: Processes of Evolution Evolutionary Theories Widely used to interpret the past and present, and even to predict the future Reveal connections between the geological record, fossil record, and organismal

More information

Chapter 17: Population Genetics and Speciation

Chapter 17: Population Genetics and Speciation Chapter 17: Population Genetics and Speciation Section 1: Genetic Variation Population Genetics: Normal Distribution: a line graph showing the general trends in a set of data of which most values are near

More information

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution Classical vs. balanced views of genome structure - the proposal of the neutral theory by Kimura in 1968 led to the so-called neutralist-selectionist

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes.

- mutations can occur at different levels from single nucleotide positions in DNA to entire genomes. February 8, 2005 Bio 107/207 Winter 2005 Lecture 11 Mutation and transposable elements - the term mutation has an interesting history. - as far back as the 17th century, it was used to describe any drastic

More information

IV. Comparative Anatomy

IV. Comparative Anatomy Whale Evolution: Fossil Record of Evolution Modern toothed whales Rodhocetus kasrani reduced hind limbs could not walk; swam with up-down motion like modern whales Pakicetus attocki lived on land; skull

More information

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population)

Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) POPULATION GENETICS NOTES Gene Pool The combined genetic material for all the members of a population. (all the genes in a population) Allele Frequency The number of times a specific allele occurs in a

More information

NOTES CH 17 Evolution of. Populations

NOTES CH 17 Evolution of. Populations NOTES CH 17 Evolution of Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Populations 17.1 Genes & Variation Darwin

More information

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species Population Genetics and Speciation Table of Contents Section 1 Genetic Equilibrium Section 2 Disruption of Genetic Equilibrium Section 3 Formation of Species Section 1 Genetic Equilibrium Objectives Identify

More information

Population Genetics 7: Genetic Drift

Population Genetics 7: Genetic Drift Population Genetics 7: Genetic Drift Sampling error Assume a fair coin with p = ½: If you sample many times the most likely single outcome = ½ heads. The overall most likely outcome ½ heads n P = 2 k (

More information

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN.

Perplexing Observations. Today: Thinking About Darwinian Evolution. We owe much of our understanding of EVOLUTION to CHARLES DARWIN. Today: Thinking About Darwinian Evolution Part 1: Darwin s Theory Perplexing Observations Mystery of the Black Death?? What is evolution?? And what is this finch doing?!? We owe much of our understanding

More information

Evolution. Before You Read. Read to Learn

Evolution. Before You Read. Read to Learn Evolution 15 section 3 Shaping Evolutionary Theory Biology/Life Sciences 7.e Students know the conditions for Hardy-Weinberg equilibrium in a population and why these conditions are not likely to appear

More information

Evolution and Natural Selection (16-18)

Evolution and Natural Selection (16-18) Evolution and Natural Selection (16-18) 3 Key Observations of Life: 1) Shared Characteristics of Life (Unity) 2) Rich Diversity of Life 3) Organisms are Adapted to their Environment These observations

More information

Natural Selection results in increase in one (or more) genotypes relative to other genotypes.

Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Natural Selection results in increase in one (or more) genotypes relative to other genotypes. Fitness - The fitness of a genotype is the average per capita lifetime contribution of individuals of that

More information

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis

Lecture 14 Chapter 11 Biology 5865 Conservation Biology. Problems of Small Populations Population Viability Analysis Lecture 14 Chapter 11 Biology 5865 Conservation Biology Problems of Small Populations Population Viability Analysis Minimum Viable Population (MVP) Schaffer (1981) MVP- A minimum viable population for

More information

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50

LECTURE # How does one test whether a population is in the HW equilibrium? (i) try the following example: Genotype Observed AA 50 Aa 0 aa 50 LECTURE #10 A. The Hardy-Weinberg Equilibrium 1. From the definitions of p and q, and of p 2, 2pq, and q 2, an equilibrium is indicated (p + q) 2 = p 2 + 2pq + q 2 : if p and q remain constant, and if

More information

Microevolution Changing Allele Frequencies

Microevolution Changing Allele Frequencies Microevolution Changing Allele Frequencies Evolution Evolution is defined as a change in the inherited characteristics of biological populations over successive generations. Microevolution involves the

More information

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation?

Question: If mating occurs at random in the population, what will the frequencies of A 1 and A 2 be in the next generation? October 12, 2009 Bioe 109 Fall 2009 Lecture 8 Microevolution 1 - selection The Hardy-Weinberg-Castle Equilibrium - consider a single locus with two alleles A 1 and A 2. - three genotypes are thus possible:

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

(Write your name on every page. One point will be deducted for every page without your name!)

(Write your name on every page. One point will be deducted for every page without your name!) POPULATION GENETICS AND MICROEVOLUTIONARY THEORY FINAL EXAMINATION (Write your name on every page. One point will be deducted for every page without your name!) 1. Briefly define (5 points each): a) Average

More information

Effective population size and patterns of molecular evolution and variation

Effective population size and patterns of molecular evolution and variation FunDamental concepts in genetics Effective population size and patterns of molecular evolution and variation Brian Charlesworth Abstract The effective size of a population,, determines the rate of change

More information

Processes of Evolution

Processes of Evolution Processes of Evolution Microevolution Processes of Microevolution How Species Arise Macroevolution Microevolution Population: localized group of individuals belonging to the same species with the potential

More information

Reproduction and Evolution Practice Exam

Reproduction and Evolution Practice Exam Reproduction and Evolution Practice Exam Topics: Genetic concepts from the lecture notes including; o Mitosis and Meiosis, Homologous Chromosomes, Haploid vs Diploid cells Reproductive Strategies Heaviest

More information

The Genetics of Natural Selection

The Genetics of Natural Selection The Genetics of Natural Selection Introduction So far in this course, we ve focused on describing the pattern of variation within and among populations. We ve talked about inbreeding, which causes genotype

More information

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called.

EVOLUTION UNIT. 3. Unlike his predecessors, Darwin proposed a mechanism by which evolution could occur called. EVOLUTION UNIT Name Read Chapters 1.3, 20, 21, 22, 24.1 and 35.9 and complete the following. Chapter 1.3 Review from The Science of Biology 1. Discuss the influences, experiences and observations that

More information

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology

UNIT V. Chapter 11 Evolution of Populations. Pre-AP Biology UNIT V Chapter 11 Evolution of Populations UNIT 4: EVOLUTION Chapter 11: The Evolution of Populations I. Genetic Variation Within Populations (11.1) A. Genetic variation in a population increases the chance

More information

D. Incorrect! That is what a phylogenetic tree intends to depict.

D. Incorrect! That is what a phylogenetic tree intends to depict. Genetics - Problem Drill 24: Evolutionary Genetics No. 1 of 10 1. A phylogenetic tree gives all of the following information except for. (A) DNA sequence homology among species. (B) Protein sequence similarity

More information

Lesson 2 Evolution of population (microevolution)

Lesson 2 Evolution of population (microevolution) Lesson 2 Evolution of population (microevolution) 1. A gene pool consists of a. all the aleles exposed to natural selection. b. the total of all alleles present in a population. c. the entire genome of

More information

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page.

There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. EVOLUTIONARY BIOLOGY EXAM #1 Fall 2017 There are 3 parts to this exam. Use your time efficiently and be sure to put your name on the top of each page. Part I. True (T) or False (F) (2 points each). Circle

More information

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives.

9 Genetic diversity and adaptation Support. AQA Biology. Genetic diversity and adaptation. Specification reference. Learning objectives. Genetic diversity and adaptation Specification reference 3.4.3 3.4.4 Learning objectives After completing this worksheet you should be able to: understand how meiosis produces haploid gametes know how

More information

Processes of Evolution

Processes of Evolution 15 Processes of Evolution Chapter 15 Processes of Evolution Key Concepts 15.1 Evolution Is Both Factual and the Basis of Broader Theory 15.2 Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom

More information

Neutral Theory of Molecular Evolution

Neutral Theory of Molecular Evolution Neutral Theory of Molecular Evolution Kimura Nature (968) 7:64-66 King and Jukes Science (969) 64:788-798 (Non-Darwinian Evolution) Neutral Theory of Molecular Evolution Describes the source of variation

More information

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution Theory of Evolution Theory a well supported testable explanation of phenomenon occurring in the natural world. Evolution the process by which modern organisms changed over time from ancient common

More information

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological

Mechanisms of Evolution. Adaptations. Old Ideas about Evolution. Behavioral. Structural. Biochemical. Physiological Mechanisms of Evolution Honors Biology 2012 1 Adaptations Behavioral Structural Biochemical Physiological 2 Old Ideas about Evolution Aristotle (viewed species perfect and unchanging) Lamarck suggested

More information

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM

Life Cycles, Meiosis and Genetic Variability24/02/2015 2:26 PM Life Cycles, Meiosis and Genetic Variability iclicker: 1. A chromosome just before mitosis contains two double stranded DNA molecules. 2. This replicated chromosome contains DNA from only one of your parents

More information

Chapter 8: Evolution and Natural Selection

Chapter 8: Evolution and Natural Selection Darwin s dangerous idea: evolution by natural selection Lectures by Mark Manteuffel, St. Louis Community College Chapter 8: Evolution and Natural Selection Use new chapter opening photo here Do Now: Scientific

More information

Lecture #4-1/25/02 Dr. Kopeny

Lecture #4-1/25/02 Dr. Kopeny Lecture #4-1/25/02 Dr. Kopeny Genetic Drift Can Cause Evolution Genetic Drift: Random change in genetic structure of a population; due to chance Thought Experiment: What is your expectation regarding the

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Introduction I didn t make a big deal of it in what we just went over, but in deriving the Jukes-Cantor equation I used the phrase substitution rate instead of

More information

Population Genetics & Evolution

Population Genetics & Evolution The Theory of Evolution Mechanisms of Evolution Notes Pt. 4 Population Genetics & Evolution IMPORTANT TO REMEMBER: Populations, not individuals, evolve. Population = a group of individuals of the same

More information

List the five conditions that can disturb genetic equilibrium in a population.(10)

List the five conditions that can disturb genetic equilibrium in a population.(10) List the five conditions that can disturb genetic equilibrium in a population.(10) The five conditions are non-random mating, small population size, immigration or emigration, mutations, and natural selection.

More information

Evolution of Populations. Chapter 17

Evolution of Populations. Chapter 17 Evolution of Populations Chapter 17 17.1 Genes and Variation i. Introduction: Remember from previous units. Genes- Units of Heredity Variation- Genetic differences among individuals in a population. New

More information

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation Evolution Evolution Chapters 22-25 Changes in populations, species, or groups of species. Variances of the frequency of heritable traits that appear from one generation to the next. 2 Areas of Evolutionary

More information

Chapter 02 Population Genetics

Chapter 02 Population Genetics Chapter 02 Population Genetics Multiple Choice Questions 1. The first person to publish a theory that species change over time was A. Plato B. Lamarck C. Darwin D. Wallace E. Mendel 2. Charles Robert Darwin

More information

Biological Change Over Time. Lecture 12: Evolution. Microevolution. Microevolutionary Processes. Genotypes, Phenotypes and Environmental Effects

Biological Change Over Time. Lecture 12: Evolution. Microevolution. Microevolutionary Processes. Genotypes, Phenotypes and Environmental Effects Lecture 12: Evolution Biological Change Over Time Key terms: Reading: Ch16: Microevolution Ch17:Speciation Ch18:Macroevolution Microevolution Changes with in species Well defined mechanism Easily observed

More information

Microevolution. Chapter 17

Microevolution. Chapter 17 Microevolution Chapter 17 Selective Breeding & Evolution Evolution is genetic change in a line of descent through successive generations Selective breeding practices yield evidence that heritable changes

More information

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc.

Enduring Understanding: Change in the genetic makeup of a population over time is evolution Pearson Education, Inc. Enduring Understanding: Change in the genetic makeup of a population over time is evolution. Objective: You will be able to identify the key concepts of evolution theory Do Now: Read the enduring understanding

More information

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each) Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each) 1. Evolution is a. a change in allele frequency in a population b. occurred in the past

More information

NOTES Ch 17: Genes and. Variation

NOTES Ch 17: Genes and. Variation NOTES Ch 17: Genes and Vocabulary Fitness Genetic Drift Punctuated Equilibrium Gene flow Adaptive radiation Divergent evolution Convergent evolution Gradualism Variation 17.1 Genes & Variation Darwin developed

More information

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population

e.g. population: 500, two alleles: Red (R) and White (r). Total: 1000 genes for flower color in the population The Evolution of Populations What is Evolution? A change over time in the genetic composition of a population Human evolution The gene pool Is the total aggregate of genes for a particular trait in a population

More information

Long-Term Response and Selection limits

Long-Term Response and Selection limits Long-Term Response and Selection limits Bruce Walsh lecture notes Uppsala EQG 2012 course version 5 Feb 2012 Detailed reading: online chapters 23, 24 Idealized Long-term Response in a Large Population

More information

Chapter 15 Evolution

Chapter 15 Evolution Section 1: Darwin s Theory of Natural Selection Section 2: Evidence of Section 3: Shaping ary Theory Click on a lesson name to select. 15.1 Darwin s Theory of Natural Selection Darwin on the HMS Beagle

More information

Segregation versus mitotic recombination APPENDIX

Segregation versus mitotic recombination APPENDIX APPENDIX Waiting time until the first successful mutation The first time lag, T 1, is the waiting time until the first successful mutant appears, creating an Aa individual within a population composed

More information

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics

Mechanisms of Evolution Microevolution. Key Concepts. Population Genetics Mechanisms of Evolution Microevolution Population Genetics Key Concepts 23.1: Population genetics provides a foundation for studying evolution 23.2: Mutation and sexual recombination produce the variation

More information

EVOLUTION. - Selection, Survival, and Drift

EVOLUTION. - Selection, Survival, and Drift EVOLUTION - Selection, Survival, and Drift Evolution Darwin on the HMS Beagle Darwin s role on the ship was as a geologist and companion to the captain. His goal was to collect biological and geological

More information

The Mechanisms of Evolution

The Mechanisms of Evolution The Mechanisms of Evolution Figure.1 Darwin and the Voyage of the Beagle (Part 1) 2/8/2006 Dr. Michod Intro Biology 182 (PP 3) 4 The Mechanisms of Evolution Charles Darwin s Theory of Evolution Genetic

More information

Microevolution 2 mutation & migration

Microevolution 2 mutation & migration Microevolution 2 mutation & migration Assumptions of Hardy-Weinberg equilibrium 1. Mating is random 2. Population size is infinite (i.e., no genetic drift) 3. No migration 4. No mutation 5. No selection

More information

AP Biology Evolution Review Slides

AP Biology Evolution Review Slides AP Biology Evolution Review Slides How would one go about studying the evolution of a tetrapod limb from a fish s fin? Compare limb/fin structure of existing related species of fish to tetrapods Figure

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section C: Genetic Variation, the Substrate for Natural Selection 1. Genetic variation occurs within and between populations 2. Mutation and sexual recombination

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to:

Learning objectives. Evolution in Action. Chapter 8: Evolution and Natural Selection. By the end of today s topic students should be able to: ANNOUNCEMENTS Thursday February 13, 2014 Chapter 8: Evolution and Natural Selection Dr. Traver returns next week. Movie on Tuesday afternoon What Darwin Never Knew. Midterm 2 is next week 2/20/2014 Use

More information

Biology Chapter 15 Evolution Notes

Biology Chapter 15 Evolution Notes Biology Chapter 15 Evolution Notes Section 1: Darwin's Theory of Evolution by Natural Selection Charles Darwin- English naturalist that studied animals over a number of years before developing the theory

More information

Evolution & Natural Selection

Evolution & Natural Selection Evolution & Natural Selection Learning Objectives Know what biological evolution is and understand the driving force behind biological evolution. know the major mechanisms that change allele frequencies

More information

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT

STABILIZING SELECTION ON HUMAN BIRTH WEIGHT STABILIZING SELECTION ON HUMAN BIRTH WEIGHT See Box 8.2 Mapping the Fitness Landscape in Z&E FROM: Cavalli-Sforza & Bodmer 1971 STABILIZING SELECTION ON THE GALL FLY, Eurosta solidaginis GALL DIAMETER

More information

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution

Slide 1. Slide 2. Slide 3. Concepts of Evolution. Isn t Evolution Just A Theory? Evolution Slide 1 Concepts of Evolution Slide 2 Isn t Evolution Just A Theory? How does the scientific meaning of a term like theory differ from the way it is used in everyday life? Can the facts of science change

More information

Microevolution (Ch 16) Test Bank

Microevolution (Ch 16) Test Bank Microevolution (Ch 16) Test Bank Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. Which of the following statements describes what all members

More information

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection

Gene Pool Genetic Drift Geographic Isolation Fitness Hardy-Weinberg Equilibrium Natural Selection CONCEPT 1 EVOLUTION 1. Natural Selection a. Major mechanism of change over time Darwin s theory of evolution b. There is variation among phenotypes genetic mutations play a role in increasing variation

More information

CONSERVATION AND THE GENETICS OF POPULATIONS

CONSERVATION AND THE GENETICS OF POPULATIONS CONSERVATION AND THE GENETICS OF POPULATIONS FredW.Allendorf University of Montana and Victoria University of Wellington and Gordon Luikart Universite Joseph Fourier, CNRS and University of Montana With

More information

Population genetics. Key Concepts. Hardy-Weinberg equilibrium 3/21/2019. Chapter 6 The ways of change: drift and selection

Population genetics. Key Concepts. Hardy-Weinberg equilibrium 3/21/2019. Chapter 6 The ways of change: drift and selection Chapter 6 The ways of change: drift and selection Population genetics Study of the distribution of alleles in populations and causes of allele frequency changes Key Concepts Diploid individuals carry two

More information

Lecture Notes: BIOL2007 Molecular Evolution

Lecture Notes: BIOL2007 Molecular Evolution Lecture Notes: BIOL2007 Molecular Evolution Kanchon Dasmahapatra (k.dasmahapatra@ucl.ac.uk) Introduction By now we all are familiar and understand, or think we understand, how evolution works on traits

More information

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate.

Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. OEB 242 Exam Practice Problems Answer Key Q1) Explain how background selection and genetic hitchhiking could explain the positive correlation between genetic diversity and recombination rate. First, recall

More information

AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity,

AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity, AEC 550 Conservation Genetics Lecture #2 Probability, Random mating, HW Expectations, & Genetic Diversity, Today: Review Probability in Populatin Genetics Review basic statistics Population Definition

More information

EVOLUTION. Evolution - changes in allele frequency in populations over generations.

EVOLUTION. Evolution - changes in allele frequency in populations over generations. EVOLUTION Evolution - changes in allele frequency in populations over generations. Sources of genetic variation: genetic recombination by sexual reproduction (produces new combinations of genes) mutation

More information

Big Idea #1: The process of evolution drives the diversity and unity of life

Big Idea #1: The process of evolution drives the diversity and unity of life BIG IDEA! Big Idea #1: The process of evolution drives the diversity and unity of life Key Terms for this section: emigration phenotype adaptation evolution phylogenetic tree adaptive radiation fertility

More information

WTHS Biology Keystone Exams

WTHS Biology Keystone Exams WTHS Biology Keystone Exams Biology Keystone Review Packet 10 th / 11 th Grade Keystone Test Prep This packet contains helpful information for you to prepare for the upcoming Biology Keystone Test on May

More information

Genetic erosion and persistence of biodiversity

Genetic erosion and persistence of biodiversity Genetic erosion and persistence of biodiversity Kuke Bijlsma Population & Conservation Genetics Evolutionary Genetics Wageningen 21-11-2006 Biodiversity crisis: human impact Habitat deterioration, habitat

More information

Chapter 14. How Populations Evolve. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc..

Chapter 14. How Populations Evolve. Lectures by Gregory Ahearn. University of North Florida. Copyright 2009 Pearson Education, Inc.. Chapter 14 How Populations Evolve Lectures by Gregory Ahearn University of North Florida Copyright 2009 Pearson Education, Inc.. 14.1 How Are Populations, Genes, And Evolution Related? Evolutionary changes

More information

URN MODELS: the Ewens Sampling Lemma

URN MODELS: the Ewens Sampling Lemma Department of Computer Science Brown University, Providence sorin@cs.brown.edu October 3, 2014 1 2 3 4 Mutation Mutation: typical values for parameters Equilibrium Probability of fixation 5 6 Ewens Sampling

More information

Darwin s Observations & Conclusions The Struggle for Existence

Darwin s Observations & Conclusions The Struggle for Existence Darwin s Observations & Conclusions The Struggle for Existence 1 Voyage of the Beagle During His Travels, Darwin Made Numerous Observations And Collected Evidence That Led Him To Propose A Revolutionary

More information

EXERCISES FOR CHAPTER 3. Exercise 3.2. Why is the random mating theorem so important?

EXERCISES FOR CHAPTER 3. Exercise 3.2. Why is the random mating theorem so important? Statistical Genetics Agronomy 65 W. E. Nyquist March 004 EXERCISES FOR CHAPTER 3 Exercise 3.. a. Define random mating. b. Discuss what random mating as defined in (a) above means in a single infinite population

More information

Quantitative Trait Variation

Quantitative Trait Variation Quantitative Trait Variation 1 Variation in phenotype In addition to understanding genetic variation within at-risk systems, phenotype variation is also important. reproductive fitness traits related to

More information

Jeopardy. Evolution Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300

Jeopardy. Evolution Q $100 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $200 Q $300 Q $300 Q $300 Q $300 Q $300 Jeopardy Mutations Crosses & Punnett Sqs. Meiosis & Variability Evolution Photo, Cell Resp, Energy, Matter Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $100 Q $100 Q $100 Q $200 Q $200 Q $200 Q $200 Q $300

More information

Problems for 3505 (2011)

Problems for 3505 (2011) Problems for 505 (2011) 1. In the simplex of genotype distributions x + y + z = 1, for two alleles, the Hardy- Weinberg distributions x = p 2, y = 2pq, z = q 2 (p + q = 1) are characterized by y 2 = 4xz.

More information

Genes Within Populations

Genes Within Populations Genes Within Populations Chapter 20 1 Nothing in Biology Makes Sense Except in the Light of Evolution The American Biology Teacher, March 1973 (35:125-129). Theodosius Dobzhansky (1900-1975). 2 Genetic

More information

Outline of lectures 3-6

Outline of lectures 3-6 GENOME 453 J. Felsenstein Evolutionary Genetics Autumn, 007 Population genetics Outline of lectures 3-6 1. We want to know what theory says about the reproduction of genotypes in a population. This results

More information

Classical Selection, Balancing Selection, and Neutral Mutations

Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection, Balancing Selection, and Neutral Mutations Classical Selection Perspective of the Fate of Mutations All mutations are EITHER beneficial or deleterious o Beneficial mutations are selected

More information

Designer Genes C Test

Designer Genes C Test Northern Regional: January 19 th, 2019 Designer Genes C Test Name(s): Team Name: School Name: Team Number: Rank: Score: Directions: You will have 50 minutes to complete the test. You may not write on the

More information

Reproduction- passing genetic information to the next generation

Reproduction- passing genetic information to the next generation 166 166 Essential Question: How has biological evolution led to the diversity of life? B-5 Natural Selection Traits that make an organism more or less likely to survive in an environment and reproduce

More information

Microevolution is a change in the gene frequencies of a population. Can happen quickly. Ex: antibiotic resistant bacterial colonies

Microevolution is a change in the gene frequencies of a population. Can happen quickly. Ex: antibiotic resistant bacterial colonies Evolution Unit 1 Microevolution is a change in the gene frequencies of a population. Can happen quickly Ex: antibiotic resistant bacterial colonies New species evolve and no longer interbreed with the

More information

Evolution PCB4674 Midterm exam2 Mar

Evolution PCB4674 Midterm exam2 Mar Evolution PCB4674 Midterm exam2 Mar 22 2005 Name: ID: For each multiple choice question select the single est answer. Answer questions 1 to 20 on your scantron sheet. Answer the remaining questions in

More information

Untitled Document. A. antibiotics B. cell structure C. DNA structure D. sterile procedures

Untitled Document. A. antibiotics B. cell structure C. DNA structure D. sterile procedures Name: Date: 1. The discovery of which of the following has most directly led to advances in the identification of suspects in criminal investigations and in the identification of genetic diseases? A. antibiotics

More information

Name: Date: Period: AP Biology Exam Review : Evolution

Name: Date: Period: AP Biology Exam Review : Evolution Name: Date: Period: AP Biology Exam Review : Evolution Helpful Videos and Animations: 1. Bozeman Biology: Natural Selection (an overview of natural selection and Hardy-Weinberg Equilibrium) 2. Bozeman

More information

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2.

Q Expected Coverage Achievement Merit Excellence. Punnett square completed with correct gametes and F2. NCEA Level 2 Biology (91157) 2018 page 1 of 6 Assessment Schedule 2018 Biology: Demonstrate understanding of genetic variation and change (91157) Evidence Q Expected Coverage Achievement Merit Excellence

More information

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17 Chapter 5 Evolution of Biodiversity CHAPTER INTRO: The Dung of the Devil Read and Answer Questions Provided Module 14 The Biodiversity of Earth After reading this module you should be able to understand

More information

Evolution of Populations

Evolution of Populations Evolution of Populations Gene Pools 1. All of the genes in a population - Contains 2 or more alleles (forms of a gene) for each trait 2. Relative frequencies - # of times an allele occurs in a gene pool

More information

Concepts of Evolution

Concepts of Evolution Concepts of Evolution Isn t Evolution Just A Theory? How does the scientific meaning of a term like theory differ from the way it is used in everyday life? Can the facts of science change over time? If

More information

EVOLUTION & SPECIATION

EVOLUTION & SPECIATION EVOLUTION & SPECIATION Page 2 VOCABULARY REVIEW NEW VOCABULARY EVOLUTION CHANGE OVER TIME NATURAL SELECTION - INDIVIDUALS BETTER ADAPTED TO THE ENVIRONMENT ARE ABLE TO SURVIVE & REPRODUCE. A.K.A. SURVIVAL

More information

Topic 09 Evolution. I. Populations A. Evolution is change over time. (change in the frequency of heritable phenotypes & the alleles that govern them)

Topic 09 Evolution. I. Populations A. Evolution is change over time. (change in the frequency of heritable phenotypes & the alleles that govern them) Topic 09 Evolution I. Populations A. Evolution is change over time (change in the frequency of heritable phenotypes & the alleles that govern them) 1 I. Populations A. Evolution is change over time (change

More information