Basic Concepts of Graph Theory Cut-set Incidence Matrix Circuit Matrix Cut-set Matrix

Size: px
Start display at page:

Download "Basic Concepts of Graph Theory Cut-set Incidence Matrix Circuit Matrix Cut-set Matrix"

Transcription

1 Basic Concepts of Graph Theory Cut-set Incidence Matrix Circuit Matrix Cut-set Matrix

2 Definition of Graph Definition: In a connected graph G of n nodes (vertices),the subgraph T that satisfies the following properties is called a tree. T is connected T contains all the vertices of G T contains no circuit, T contains exactly n- number of edges. In every connected graph G there exists at least one tree.

3 Tree & Co-tree Let G have p separated parts G, G 2,..., G p, that is G=G G 2... G p, and let T i be a tree in G i, i=,2,...,p, then,t=t T 2... T p is called a forest of G. DEFINITION: The complement of a tree is called a co-treeand the complement of a forest is called a co-forest. The edges of a tree or a forest are called branchesand the edges of a co-tree or co-forest are called links (chords).

4 Tree & Co-tree Examples v v 4 e 2 v 3 e 4 e 6 e e 3 e 5 9 possible trees and corresponding co-trees: T = { e, e, e, e } T = { e, e, e, e } T = { e, e, e, e } {, } {, } {, } T = e e T = e e T = e e T = { e, e, e, e } T = { e, e, e, e } T = { e, e, e, e } {, } {, e } T = { e, e } T = e e T = e T v 2 v = { e, e, e, e } T = { e, e, e, e } { e, e } T { e, e} T = = T 3 6 = { e, e, e, e } T = { e, e } 9 2 6

5 Rank & Nullity DEFINITION: Let G be a graph and let b and l be respectively the number of branches and chords of G, then band lare called respectively the rank and the nullity of the graph. THEOREM: Let G have n nodes, eedges and pconnected parts, then its rank and nullity are given respectively by b = n - p and l = e n + p

6 Fundamental Circuit (f-circuit) DEFINITION: Let G be a connected graph and let T and T be tree and co-tree respectively, that is G=T T. Let a linke T and its unique tree path (a path which is formed by the branches of T) define a circuit. This circuit is called the fundamental circuit (f-circuit) of G. All such circuits defined by all the chords of T are called the fundamental circuits (f-circuits) of G. If G is not connected, then the f-circuits are defined with respect to a forest.

7 f-circuit Example Note that the number of f-circuits is given by the nullity of G and that, with respect to a chosen tree T of G, each f- circuit contains one and only link. Consider the following graph v v 4 e 2 v 3 e 4 e 5 e 6 v 5 e v 2 e 3 f-circuits: c f ={e 3,e,e 2 }, c f2 ={e 6,e 8,e 4,e 5 }, c f3 ={e 7,e 8,e 4,e 5 } e 8 e 7 v 6 Nullity of G l=e-n+p=8-6+=3

8 Cut-Set DEFINITION: The cut-set of a graph G is the subgraph G x of G consisting of the set of edges satisfying the following properties: The removal of G x from G reduces the rank of G exactly by one. No proper subgraph of G x has this property. If G is connected,then the first property in the above definition can be replaced by the following phrase. The removal of G x from G separates the given connected graph G into exactly two connected subgraphs.

9 Cut-set example Consider the following graph and the following set of edges v v 4 e 2 v 3 e 4 e 5 e 6 v 5 e e 3 e 8 v 6 e 7 v 2 G ={e,e 2 } G 2 ={e 4,e 6,e 7 } G 3 ={e 2,e 3,e 4,e 8 } G 4 ={e 2,e 3,e 6 } is also a cut-set Cut-set is not a cut-set, because the removal of G 3 from G results in three connected subgraphs is not a cut-set, because a subset of G 4 is cut-set

10 Fundamental cut-set (f-cutset) DEFINITION: Let G be a connected graph and let T be its tree. The branch e t T defines a unique cut-set (a cut-set which is formed by e t and the links of G). This cut-set is called the fundamental cut-set (fcutset) of G. All such cut-sets defined by all the branches of T are called the fundamental cut-sets (fcutsets) of G. If G is not connected then the f-cut sets are defined with respect to a forest. Note that the number of fundamental cut-sets is given by the rank of G and with respect to a chosen tree T of G, each fundamental cut-set contains one and only one branch.

11 f-cutsetexample Consider the following graph with T={e,e 2,e 4,e 5,e 8 } v v 4 e 2 v 3 e 4 e 5 e 6 v 5 e v 2 e 3 f-cutsets: e 8 v 6 e 7 x f ={e,e 3 } x f2 ={e 2,e 3 } x f3 ={e 4,e 6,e 7 } x f4 ={e 5,e 6,e 7 } x f5 ={e 8,e 6,e 7 }

12 Matrices of Directed Graphs v v 4 e 6 v 6 e 2 e 4 e 8 e v 3 e e v 8 v 2 e 3 e 5 v 5 e 7 v 7 e 9 The edge e which has a direction from node v to node v 2 simply indicates that any transmission from v to v 2 along e is assumed to be positive. Any transmission from v 2 to v along e is assumed to be negative.

13 Incidence Matrix a ij = DEFINITION: Let eand nrepresent respectively the number of edges and nodes of a graph G. The incidence matrix A = [ a ] a ij n e having nrows and ecolumnswith its elements are defined as if if if edge edge edge j j j incident to node incident to node not incident to i i node and oriented "outward" and oriented "inward" i

14 Incidence Matrix (2) v v 2 v 3 v 4 v 5 v 6 v 7 v 8 e e 2 e 3 e 4 e 5 e 6 e 7 e 8 e 9 e e Incident Matrix: Property: Any column of A contains exactly two nonzero entries of opposite sign node edge A=

15 Reduced Incidence Matrix DEFINITION: For a connected graph G, the matrix A, obtained by deleting any one of the rows of the incidence matrix A a is called the reduced incidence matrix. Note that since any column of A a contains exactly two nonzero entries of opposite sign, one can uniquely determine the incident matrix when the reduced incident matrix is given. Note also that the rank of A a is n-.

16 Circuit Matrix In a graph G, let k be the number of circuits and let an arbitrary circuit orientation be assigned to each one of these circuits. DEFINITION: The circuit matrix B = [ b ] ij k e for a graph G of eedges and kcircuits is defined as b ij = if if if edge edge edge j j j incident to circuit i with "same"orientation incident to circuit i with "opposite" orientation not incident to circuit i

17 Circuit Matrix Consider the following graph e 3 v v 2 v 3 v 4 e e 2 e 4 e 5 e 6 c 6 c5 c 4 c 3 c 2 c e e e e e e c c c c c c = B

18 f-circuit Matrix Let b i represent the row of B that corresponds to circuit c i. The circuits c i,...,c j are independent if the rows b i,... b j are independent. DEFINITION: The f-circuit matrix B f of a graph G with respect to some tree T is defined as the circuit matrix consisting of the fundamental circuits of G only whose orientations are chosen in the same direction as that of defining links. The fundamental circuit matrix B f of a graph G with respect to some tree T can always be written as B = f l e [ U B f 2 ]

19 f-circuit Matrix (2) Consider the following graphwith T = {e,e 3,e 5 } e 3 v v 2 v 3 v 4 e e 2 e 4 e 5 e 6 [ ] f f edge B U B = =

20 Incidence & Circuit Matrices THEOREM: If the column orderings of the circuit and incident matrices are identical then A a B T f = Also B f A a A B T a T = = BA T a =

21 Matrices of Oriented Graphs Consider the following graph e 3 v v 2 v 3 v 4 e e 2 e 4 e 5 e 6 c 6 c5 c 4 c 3 c 2 c ; = f edge B = A a

22 Cut-set Matrix In a graph G let x be the number of cut-sets having arbitrary orientations. Then, we have the following definition. DEFINITION: The cut-set matrix Q = [ q ] ij x e for a graph G of eedges and xcut-sets is defined as q ij = if if if edge edge edge j j j in cut -set i with in cut -set i with not in cut -set i e e j j, x, x i i "same"orientation "opposite" orientation

23 Cut-set Matrix (2) Consider the following graph and its seven possible cut-sets e 2 e v x v e e 4 5 x 4 x 6 x 7 e 3 Q= v 3 v e 6 2 x x 2 5 x 3

24 f-cut-set Matrix DEFINITION: The f-cutset matrix Q f of a graph G with respect to some tree T is defined as the cut-set matrix consisting of the fundamental cut-set of G only whose orientations are chosen in the same direction as that of defining branches. The fundamental cut-set matrix A f of a graph G with respect to some tree T can always be written as Q f b e Recall that b = n- = [ U Q b b f b ( eb) ]

25 f-cut-set Matrix (2) Consider the following graphwith T = {e 2,e 4,e 5 } v edge e 2 e v e e 4 5 e 3 Q f = v 3 v e 6 2

26 Cut-set & Circuit Matrices THEOREM: If the column orderings of the circuit and incident matrices are identical then QB T f = Also B f Q QB T T = = BQ T =

27 Cut-set & Circuit Matrices Consider the following graph e 3 v v 2 v 3 v e e 2 e 4 e 5 e 3 v v 2 v 3 v e e 2 e 4 e 5 e 6 = B = Q

28 FUNDAMENTAL POSTULATES Now, Let G be a connected graph having e edges and let T x = x ( ) ( ) ( ) t, x2 t, Lxe t and y T = y ( ) ( ) ( ) t, y2 t, L ye t be two vectors where x i and y i, i=,...,e, correspond to the across and through variables associated with the edge i respectively.

29 FUNDAMENTAL POSTULATES 2. POSTULATE Let B be the circuit matrix of the graph G having e edges then we can write the following algebraic equation for the across variables of G (e.g., edge voltage) Bx= KVL 3. POSTULATE Let Q be the cut-set matrix of the graph G having e edges then we can write the following algebraic equation for the through variables of G (e.g., edge current) Qy = KCL

30 Fundamental Circuit & Cut-set Equations Consider a graph G and a tree T in G. Let the vectorsv and i partitioned as Then ] T ; [ ] T link branch branch link v = [ v v i= i i B v f v link [ ] link = U B = Q i= [ U Q ] =B f 2 f 2 v v v branch branch i f branch =Q f f i i i link branch link = fundamental circuit equation fundamental cut-set equation

31 Series & Parallel Edges Definition: Two edges e i and e k are said to be connected in series if they have exactly one common vertexof degree two. Definition: Two edges e i and e k are said to be connected in parallel if they are incident at the same pair of vertices v i and v k. v v i e k e k e i e i v k

32 General Procedure. Draw a graph and then identify a tree. 2. Place all control-voltage branches for voltagecontrolled dependent sources in the tree, if possible. 3. Place all control-current branches for current-controlled dependent sources in the cotree, if possible. 4. Find incidence, f-circuit, or f-cutset matrix. 5. Replace voltage, current sources with short, open circuits, respectively. 6. Formulate the matrix equation. /5/25 32

Linear graph theory. Basic definitions of linear graphs

Linear graph theory. Basic definitions of linear graphs Linear graph theory Linear graph theory, a branch of combinatorial mathematics has proved to be a useful tool for the study of large or complex systems. Leonhard Euler wrote perhaps the first paper on

More information

Chapter 3. Loop and Cut-set Analysis

Chapter 3. Loop and Cut-set Analysis Chapter 3. Loop and Cut-set Analysis By: FARHAD FARADJI, Ph.D. Assistant Professor, Electrical Engineering, K.N. Toosi University of Technology http://wp.kntu.ac.ir/faradji/electriccircuits2.htm References:

More information

Network Graphs and Tellegen s Theorem

Network Graphs and Tellegen s Theorem Networ Graphs and Tellegen s Theorem The concepts of a graph Cut sets and Kirchhoff s current laws Loops and Kirchhoff s voltage laws Tellegen s Theorem The concepts of a graph The analysis of a complex

More information

Network Topology-2 & Dual and Duality Choice of independent branch currents and voltages: The solution of a network involves solving of all branch currents and voltages. We know that the branch current

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

NETWORK THEORY (BEES2211)

NETWORK THEORY (BEES2211) LECTURE NOTES On NETWORK THEORY (BEES2211) 3 rd Semester ETC Engineering Prepared by, Manjushree Jena Jemimah Digal Monalisha Nayak INDIRA GANDHI INSTITUTE OF TECHNOLOGY, SARANG NETWORK THEORY Ms. Manjushree

More information

Power System Analysis

Power System Analysis Power System Analysis BY A. P U R N A C H A N D E R A S S I S T A N T P R O F E S S O R D E P A R T M E N T O F E E E A C E E N G I N E E R I N G C O L L E G E Course Objectives: 1. To understand and develop

More information

Linear Algebra. Session 8

Linear Algebra. Session 8 Linear Algebra. Session 8 Dr. Marco A Roque Sol 08/01/2017 Abstract Linear Algebra Range and kernel Let V, W be vector spaces and L : V W, be a linear mapping. Definition. The range (or image of L is the

More information

2 NETWORK FORMULATION

2 NETWORK FORMULATION NTWRK FRMUATN NTRDUCTRY RMARKS For performing any power system studies on the digital computer, the first step is to construct a suitable mathematical model of the power system network The mathematical

More information

Determining a span. λ + µ + ν = x 2λ + 2µ 10ν = y λ + 3µ 9ν = z.

Determining a span. λ + µ + ν = x 2λ + 2µ 10ν = y λ + 3µ 9ν = z. Determining a span Set V = R 3 and v 1 = (1, 2, 1), v 2 := (1, 2, 3), v 3 := (1 10, 9). We want to determine the span of these vectors. In other words, given (x, y, z) R 3, when is (x, y, z) span(v 1,

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

1 Counting spanning trees: A determinantal formula

1 Counting spanning trees: A determinantal formula Math 374 Matrix Tree Theorem Counting spanning trees: A determinantal formula Recall that a spanning tree of a graph G is a subgraph T so that T is a tree and V (G) = V (T ) Question How many distinct

More information

18.06 Professor Johnson Quiz 1 October 3, 2007

18.06 Professor Johnson Quiz 1 October 3, 2007 18.6 Professor Johnson Quiz 1 October 3, 7 SOLUTIONS 1 3 pts.) A given circuit network directed graph) which has an m n incidence matrix A rows = edges, columns = nodes) and a conductance matrix C [diagonal

More information

2 Power System Network Matrices I

2 Power System Network Matrices I Power System Analysis Power System Network Matrices I. INRODUCION he various terms used in Graph heory are presented in this chapter. Formulation of different network matrices are discussed. Primitive

More information

Relation of Pure Minimum Cost Flow Model to Linear Programming

Relation of Pure Minimum Cost Flow Model to Linear Programming Appendix A Page 1 Relation of Pure Minimum Cost Flow Model to Linear Programming The Network Model The network pure minimum cost flow model has m nodes. The external flows given by the vector b with m

More information

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems Rani M. R, Mohith Jagalmohanan, R. Subashini Binary matrices having simultaneous consecutive

More information

Propedeútico: Circuitos 2. Systematic Nodal Analysis. Dr. Arturo Sarmiento Reyes. INAOE Coordinación de Electrónica CA D Group. Mayo 16 Junio 10, 2016

Propedeútico: Circuitos 2. Systematic Nodal Analysis. Dr. Arturo Sarmiento Reyes. INAOE Coordinación de Electrónica CA D Group. Mayo 16 Junio 10, 2016 Propedeútico: Circuitos 2. Systematic Nodal Analysis Dr. Arturo Reyes INAOE Coordinación de Electrónica CA D Group Mayo 16 Junio 10, 2016 Dr. Arturo Reyes INAOE, Mayo, 2016 Propedeútico: Circuitos 2. Systematic

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

The Strong Largeur d Arborescence

The Strong Largeur d Arborescence The Strong Largeur d Arborescence Rik Steenkamp (5887321) November 12, 2013 Master Thesis Supervisor: prof.dr. Monique Laurent Local Supervisor: prof.dr. Alexander Schrijver KdV Institute for Mathematics

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK)

LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) LECTURE 6: VECTOR SPACES II (CHAPTER 3 IN THE BOOK) In this lecture, F is a fixed field. One can assume F = R or C. 1. More about the spanning set 1.1. Let S = { v 1, v n } be n vectors in V, we have defined

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

CLASSIFICATION OF TREES EACH OF WHOSE ASSOCIATED ACYCLIC MATRICES WITH DISTINCT DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES

CLASSIFICATION OF TREES EACH OF WHOSE ASSOCIATED ACYCLIC MATRICES WITH DISTINCT DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES Bull Korean Math Soc 45 (2008), No 1, pp 95 99 CLASSIFICATION OF TREES EACH OF WHOSE ASSOCIATED ACYCLIC MATRICES WITH DISTINCT DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES In-Jae Kim and Bryan L Shader Reprinted

More information

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to :

MAC Module 2 Systems of Linear Equations and Matrices II. Learning Objectives. Upon completing this module, you should be able to : MAC 0 Module Systems of Linear Equations and Matrices II Learning Objectives Upon completing this module, you should be able to :. Find the inverse of a square matrix.. Determine whether a matrix is invertible..

More information

LINEAR ALGEBRA QUESTION BANK

LINEAR ALGEBRA QUESTION BANK LINEAR ALGEBRA QUESTION BANK () ( points total) Circle True or False: TRUE / FALSE: If A is any n n matrix, and I n is the n n identity matrix, then I n A = AI n = A. TRUE / FALSE: If A, B are n n matrices,

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

COOKBOOK KVL AND KCL A COMPLETE GUIDE

COOKBOOK KVL AND KCL A COMPLETE GUIDE 1250 COOKBOOK KVL AND KCL A COMPLETE GUIDE Example circuit: 1) Label all source and component values with a voltage drop measurement (+,- ) and a current flow measurement (arrow): By the passive sign convention,

More information

Kirchhoff's Laws and Circuit Analysis (EC 2)

Kirchhoff's Laws and Circuit Analysis (EC 2) Kirchhoff's Laws and Circuit Analysis (EC ) Circuit analysis: solving for I and V at each element Linear circuits: involve resistors, capacitors, inductors Initial analysis uses only resistors Power sources,

More information

Acyclic Digraphs arising from Complete Intersections

Acyclic Digraphs arising from Complete Intersections Acyclic Digraphs arising from Complete Intersections Walter D. Morris, Jr. George Mason University wmorris@gmu.edu July 8, 2016 Abstract We call a directed acyclic graph a CI-digraph if a certain affine

More information

Rigidity of Graphs and Frameworks

Rigidity of Graphs and Frameworks Rigidity of Graphs and Frameworks Rigid Frameworks The Rigidity Matrix and the Rigidity Matroid Infinitesimally Rigid Frameworks Rigid Graphs Rigidity in R d, d = 1,2 Global Rigidity in R d, d = 1,2 1

More information

Algorithms to Compute Bases and the Rank of a Matrix

Algorithms to Compute Bases and the Rank of a Matrix Algorithms to Compute Bases and the Rank of a Matrix Subspaces associated to a matrix Suppose that A is an m n matrix The row space of A is the subspace of R n spanned by the rows of A The column space

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

On the adjacency matrix of a block graph

On the adjacency matrix of a block graph On the adjacency matrix of a block graph R. B. Bapat Stat-Math Unit Indian Statistical Institute, Delhi 7-SJSS Marg, New Delhi 110 016, India. email: rbb@isid.ac.in Souvik Roy Economics and Planning Unit

More information

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS

Notes for course EE1.1 Circuit Analysis TOPIC 4 NODAL ANALYSIS Notes for course EE1.1 Circuit Analysis 2004-05 TOPIC 4 NODAL ANALYSIS OBJECTIVES 1) To develop Nodal Analysis of Circuits without Voltage Sources 2) To develop Nodal Analysis of Circuits with Voltage

More information

MA 265 FINAL EXAM Fall 2012

MA 265 FINAL EXAM Fall 2012 MA 265 FINAL EXAM Fall 22 NAME: INSTRUCTOR S NAME:. There are a total of 25 problems. You should show work on the exam sheet, and pencil in the correct answer on the scantron. 2. No books, notes, or calculators

More information

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics

Spectral Graph Theory and You: Matrix Tree Theorem and Centrality Metrics Spectral Graph Theory and You: and Centrality Metrics Jonathan Gootenberg March 11, 2013 1 / 19 Outline of Topics 1 Motivation Basics of Spectral Graph Theory Understanding the characteristic polynomial

More information

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS 1.0 Kirchoff s Law Kirchoff s Current Law (KCL) states at any junction in an electric circuit the total current flowing towards that junction is equal

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix Algebra & Trig. I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

Parity Versions of 2-Connectedness

Parity Versions of 2-Connectedness Parity Versions of 2-Connectedness C. Little Institute of Fundamental Sciences Massey University Palmerston North, New Zealand c.little@massey.ac.nz A. Vince Department of Mathematics University of Florida

More information

An Introduction to Spectral Graph Theory

An Introduction to Spectral Graph Theory An Introduction to Spectral Graph Theory Mackenzie Wheeler Supervisor: Dr. Gary MacGillivray University of Victoria WheelerM@uvic.ca Outline Outline 1. How many walks are there from vertices v i to v j

More information

Exercise 2: Millman s Theorem

Exercise 2: Millman s Theorem Exercise 2: Millman s Theorem EXERCISE OBJECTIVE When you have completed this exercise, you will be able to solve a circuit by applying Millman s theorem. You will verify your results by comparing calculated

More information

ON COST MATRICES WITH TWO AND THREE DISTINCT VALUES OF HAMILTONIAN PATHS AND CYCLES

ON COST MATRICES WITH TWO AND THREE DISTINCT VALUES OF HAMILTONIAN PATHS AND CYCLES ON COST MATRICES WITH TWO AND THREE DISTINCT VALUES OF HAMILTONIAN PATHS AND CYCLES SANTOSH N. KABADI AND ABRAHAM P. PUNNEN Abstract. Polynomially testable characterization of cost matrices associated

More information

Preliminaries and Complexity Theory

Preliminaries and Complexity Theory Preliminaries and Complexity Theory Oleksandr Romanko CAS 746 - Advanced Topics in Combinatorial Optimization McMaster University, January 16, 2006 Introduction Book structure: 2 Part I Linear Algebra

More information

3.3 Easy ILP problems and totally unimodular matrices

3.3 Easy ILP problems and totally unimodular matrices 3.3 Easy ILP problems and totally unimodular matrices Consider a generic ILP problem expressed in standard form where A Z m n with n m, and b Z m. min{c t x : Ax = b, x Z n +} (1) P(b) = {x R n : Ax =

More information

A~(A'~) = i,(t) (1.34)

A~(A'~) = i,(t) (1.34) GENERAL RESISTIVE CIRCUITS 225 Nonlinear branch equation In vector notation, Eq. (1.31) becomes simply Since the independent current sources do not form cut sets (by assumption), Eq. (1.14) remains valid.

More information

Fiedler s Theorems on Nodal Domains

Fiedler s Theorems on Nodal Domains Spectral Graph Theory Lecture 7 Fiedler s Theorems on Nodal Domains Daniel A Spielman September 9, 202 7 About these notes These notes are not necessarily an accurate representation of what happened in

More information

M340L Final Exam Solutions May 13, 1995

M340L Final Exam Solutions May 13, 1995 M340L Final Exam Solutions May 13, 1995 Name: Problem 1: Find all solutions (if any) to the system of equations. Express your answer in vector parametric form. The matrix in other words, x 1 + 2x 3 + 3x

More information

FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2. July 25, 2006

FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2. July 25, 2006 FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2 LESLIE HOGBEN AND HEIN VAN DER HOLST July 25, 2006 Abstract. For a given simple graph G, S(G) is defined to be the set of real symmetric matrices

More information

EE40 KVL KCL. Prof. Nathan Cheung 09/01/2009. Reading: Hambley Chapter 1

EE40 KVL KCL. Prof. Nathan Cheung 09/01/2009. Reading: Hambley Chapter 1 EE40 KVL KCL Prof. Nathan Cheung 09/01/2009 Reading: Hambley Chapter 1 Slide 1 Terminology: Nodes and Branches Node: A point where two or more circuit elements are connected Branch: A path that connects

More information

Relations on Hypergraphs

Relations on Hypergraphs Relations on Hypergraphs John Stell School of Computing, University of Leeds RAMiCS 13 Cambridge, 17th September 2012 Relations on a Set Boolean algebra Converse R = R Complement R = R Composition & residuation

More information

Math 344 Lecture # Linear Systems

Math 344 Lecture # Linear Systems Math 344 Lecture #12 2.7 Linear Systems Through a choice of bases S and T for finite dimensional vector spaces V (with dimension n) and W (with dimension m), a linear equation L(v) = w becomes the linear

More information

Generalizations of the Strong Arnold Property and the Inverse Eigenvalue Problem of a Graph

Generalizations of the Strong Arnold Property and the Inverse Eigenvalue Problem of a Graph Generalizations of the and the Inverse Eigenvalue Problem of a Graph Iowa State University and American Institute of Mathematics MM Joint Mathematics Meetings Atlanta, GA, January 7, 2017 Joint work with

More information

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur

Module 2. DC Circuit. Version 2 EE IIT, Kharagpur Module 2 DC Circuit Lesson 5 Node-voltage analysis of resistive circuit in the context of dc voltages and currents Objectives To provide a powerful but simple circuit analysis tool based on Kirchhoff s

More information

1 Matroid intersection

1 Matroid intersection CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: October 21st, 2010 Scribe: Bernd Bandemer 1 Matroid intersection Given two matroids M 1 = (E, I 1 ) and

More information

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34)

QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) QUESTION BANK SUBJECT: NETWORK ANALYSIS (10ES34) NOTE: FOR NUMERICAL PROBLEMS FOR ALL UNITS EXCEPT UNIT 5 REFER THE E-BOOK ENGINEERING CIRCUIT ANALYSIS, 7 th EDITION HAYT AND KIMMERLY. PAGE NUMBERS OF

More information

4 Packing T-joins and T-cuts

4 Packing T-joins and T-cuts 4 Packing T-joins and T-cuts Introduction Graft: A graft consists of a connected graph G = (V, E) with a distinguished subset T V where T is even. T-cut: A T -cut of G is an edge-cut C which separates

More information

CIRCUIT ANALYSIS TECHNIQUES

CIRCUIT ANALYSIS TECHNIQUES APPENDI B CIRCUIT ANALSIS TECHNIQUES The following methods can be used to combine impedances to simplify the topology of an electric circuit. Also, formulae are given for voltage and current division across/through

More information

The Interlace Polynomial of Graphs at 1

The Interlace Polynomial of Graphs at 1 The Interlace Polynomial of Graphs at 1 PN Balister B Bollobás J Cutler L Pebody July 3, 2002 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA Abstract In this paper we

More information

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B Chapter 8 - S&B Algebraic operations Matrix: The size of a matrix is indicated by the number of its rows and the number of its columns. A matrix with k rows and n columns is called a k n matrix. The number

More information

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat

Electric Circuits I. Nodal Analysis. Dr. Firas Obeidat Electric Circuits I Nodal Analysis Dr. Firas Obeidat 1 Nodal Analysis Without Voltage Source Nodal analysis, which is based on a systematic application of Kirchhoff s current law (KCL). A node is defined

More information

Lecture 4: NP and computational intractability

Lecture 4: NP and computational intractability Chapter 4 Lecture 4: NP and computational intractability Listen to: Find the longest path, Daniel Barret What do we do today: polynomial time reduction NP, co-np and NP complete problems some examples

More information

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems POLYTECHNIC UNIVERSITY Electrical Engineering Department EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems Modified for Physics 18, Brooklyn College I. Overview of Experiment In this

More information

UNIT 3 MATRICES - II

UNIT 3 MATRICES - II Algebra - I UNIT 3 MATRICES - II Structure 3.0 Introduction 3.1 Objectives 3.2 Elementary Row Operations 3.3 Rank of a Matrix 3.4 Inverse of a Matrix using Elementary Row Operations 3.5 Answers to Check

More information

ACYCLIC DIGRAPHS GIVING RISE TO COMPLETE INTERSECTIONS

ACYCLIC DIGRAPHS GIVING RISE TO COMPLETE INTERSECTIONS ACYCLIC DIGRAPHS GIVING RISE TO COMPLETE INTERSECTIONS WALTER D. MORRIS, JR. ABSTRACT. We call a directed acyclic graph a CIdigraph if a certain affine semigroup ring defined by it is a complete intersection.

More information

Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs

Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2012-06-11 Diagonal Entry Restrictions in Minimum Rank Matrices, and the Inverse Inertia and Eigenvalue Problems for Graphs Curtis

More information

x y + z = 3 2y z = 1 4x + y = 0

x y + z = 3 2y z = 1 4x + y = 0 MA 253: Practice Exam Solutions You may not use a graphing calculator, computer, textbook, notes, or refer to other people (except the instructor). Show all of your work; your work is your answer. Problem

More information

Linear Algebra and Matrix Theory

Linear Algebra and Matrix Theory Linear Algebra and Matrix Theory Part 3 - Linear Transformations 1 References (1) S Friedberg, A Insel and L Spence, Linear Algebra, Prentice-Hall (2) M Golubitsky and M Dellnitz, Linear Algebra and Differential

More information

Introduction to Matrices and Linear Systems Ch. 3

Introduction to Matrices and Linear Systems Ch. 3 Introduction to Matrices and Linear Systems Ch. 3 Doreen De Leon Department of Mathematics, California State University, Fresno June, 5 Basic Matrix Concepts and Operations Section 3.4. Basic Matrix Concepts

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

A linear algebraic view of partition regular matrices

A linear algebraic view of partition regular matrices A linear algebraic view of partition regular matrices Leslie Hogben Jillian McLeod June 7, 3 4 5 6 7 8 9 Abstract Rado showed that a rational matrix is partition regular over N if and only if it satisfies

More information

Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches

Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches Dynamics of Multibody Systems: Conventional and Graph-Theoretic Approaches by Professor John J. McPhee, P.Eng. Systems Design Engineering (Cross-appointed to Mechanical Engineering) University of Waterloo,

More information

Week 15-16: Combinatorial Design

Week 15-16: Combinatorial Design Week 15-16: Combinatorial Design May 8, 2017 A combinatorial design, or simply a design, is an arrangement of the objects of a set into subsets satisfying certain prescribed properties. The area of combinatorial

More information

Representations of All Solutions of Boolean Programming Problems

Representations of All Solutions of Boolean Programming Problems Representations of All Solutions of Boolean Programming Problems Utz-Uwe Haus and Carla Michini Institute for Operations Research Department of Mathematics ETH Zurich Rämistr. 101, 8092 Zürich, Switzerland

More information

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502)

Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik. Combinatorial Optimization (MA 4502) Technische Universität München, Zentrum Mathematik Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik Combinatorial Optimization (MA 4502) Dr. Michael Ritter Problem Sheet 1 Homework Problems Exercise

More information

NETWORK FORMULATION OF STRUCTURAL ANALYSIS

NETWORK FORMULATION OF STRUCTURAL ANALYSIS Chapter 4 NETWORK FORMULATION OF STRUCTURAL ANALYSIS 4.1 INTRODUCTION Graph theoretical concepts have been widely employed for the analysis of networks in the field of electrical engineering. Kirchhoff

More information

Chapter 1: Systems of Linear Equations

Chapter 1: Systems of Linear Equations Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where

More information

Degrees and Trees. Garth Isaak Lehigh University. 47th SEICCGTC at FAU, March Acknowledgements to: Kathleen Ryan,...

Degrees and Trees. Garth Isaak Lehigh University. 47th SEICCGTC at FAU, March Acknowledgements to: Kathleen Ryan,... Degrees and Trees Garth Isaak Lehigh University 47th SEICCGTC at FAU, March 2016 Acknowledgements to: Kathleen Ryan,... REU Students (Hannah Alpert, Amy Becker, Jenny Iglesius, James Hilbert) T.S. Michael

More information

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections )

10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections ) c Dr. Igor Zelenko, Fall 2017 1 10. Linear Systems of ODEs, Matrix multiplication, superposition principle (parts of sections 7.2-7.4) 1. When each of the functions F 1, F 2,..., F n in right-hand side

More information

Model Order Reduction for Electronic Circuits: Mathematical and Physical Approaches

Model Order Reduction for Electronic Circuits: Mathematical and Physical Approaches Proceedings of the 2nd Fields MITACS Industrial Problem-Solving Workshop, 2008 Model Order Reduction for Electronic Circuits: Mathematical and Physical Approaches Problem Presenter: Wil Schilders, NXP

More information

Exact Algorithms for Dominating Induced Matching Based on Graph Partition

Exact Algorithms for Dominating Induced Matching Based on Graph Partition Exact Algorithms for Dominating Induced Matching Based on Graph Partition Mingyu Xiao School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 611731,

More information

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms

ACO Comprehensive Exam October 18 and 19, Analysis of Algorithms Consider the following two graph problems: 1. Analysis of Algorithms Graph coloring: Given a graph G = (V,E) and an integer c 0, a c-coloring is a function f : V {1,,...,c} such that f(u) f(v) for all

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations Math 4377/6308 Advanced Linear Algebra 1.4 Linear Combinations & Systems of Linear Equations Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Shorts

Shorts Math 45 - Midterm Thursday, October 3, 4 Circle your section: Philipp Hieronymi pm 3pm Armin Straub 9am am Name: NetID: UIN: Problem. [ point] Write down the number of your discussion section (for instance,

More information

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms (a) Let G(V, E) be an undirected unweighted graph. Let C V be a vertex cover of G. Argue that V \ C is an independent set of G. (b) Minimum cardinality vertex

More information

QUIVERS AND LATTICES.

QUIVERS AND LATTICES. QUIVERS AND LATTICES. KEVIN MCGERTY We will discuss two classification results in quite different areas which turn out to have the same answer. This note is an slightly expanded version of the talk given

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

NONLINEAR DC ANALYSIS

NONLINEAR DC ANALYSIS ECE 552 Numerical Circuit Analysis Chapter Six NONLINEAR DC ANALYSIS OR: Solution of Nonlinear Algebraic Equations I. Hajj 2017 Nonlinear Algebraic Equations A system of linear equations Ax = b has a

More information

Lecture 7: Positive Semidefinite Matrices

Lecture 7: Positive Semidefinite Matrices Lecture 7: Positive Semidefinite Matrices Rajat Mittal IIT Kanpur The main aim of this lecture note is to prepare your background for semidefinite programming. We have already seen some linear algebra.

More information

Math 369 Exam #2 Practice Problem Solutions

Math 369 Exam #2 Practice Problem Solutions Math 369 Exam #2 Practice Problem Solutions 2 5. Is { 2, 3, 8 } a basis for R 3? Answer: No, it is not. To show that it is not a basis, it suffices to show that this is not a linearly independent set.

More information

Realization of the Linear Tree that Corresponds to a Fundamental Loop Matrix

Realization of the Linear Tree that Corresponds to a Fundamental Loop Matrix Wireless Sensor Networ,,, 3-36 doi:.436/wsn..4 Published Online January (http://www.scirp.org/journal/wsn/). Realization of the Linear ree that Corresponds to a Fundamental Loop Matrix Abstract Jianping

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algorithms for Data Science Arya Mazumdar University of Massachusetts at Amherst Fall 2018 Lecture 8 Spectral Clustering Spectral clustering Curse of dimensionality Dimensionality Reduction

More information

Discrete Optimization 23

Discrete Optimization 23 Discrete Optimization 23 2 Total Unimodularity (TU) and Its Applications In this section we will discuss the total unimodularity theory and its applications to flows in networks. 2.1 Total Unimodularity:

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ]

(b) The nonzero rows of R form a basis of the row space. Thus, a basis is [ ], [ ], [ ] Exam will be on Monday, October 6, 27. The syllabus for Exam 2 consists of Sections Two.III., Two.III.2, Two.III.3, Three.I, and Three.II. You should know the main definitions, results and computational

More information

The Singular Acyclic Matrices of Even Order with a P-Set of Maximum Size

The Singular Acyclic Matrices of Even Order with a P-Set of Maximum Size Filomat 30:13 (016), 3403 3409 DOI 1098/FIL1613403D Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat The Singular Acyclic Matrices of

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

NETWORK MATRICES. voltages through the branch impedance matrix and branch admittance matrix: ELOOP = ZLOOP ILOOP ILOOP = YLOOP ELOOP (11)

NETWORK MATRICES. voltages through the branch impedance matrix and branch admittance matrix: ELOOP = ZLOOP ILOOP ILOOP = YLOOP ELOOP (11) NETWORK MATRICES 2. FORMATION OF Y BUS AND Z BUS The bus admittance matrix, YBUS plays a very important role in computer aided power system analysis. It can be formed in practice by either of the methods

More information