Chapter 1: Systems of Linear Equations

Size: px
Start display at page:

Download "Chapter 1: Systems of Linear Equations"

Transcription

1 Chapter : Systems of Linear Equations February, 9 Systems of linear equations Linear systems Lecture A linear equation in variables x, x,, x n is an equation of the form a x + a x + + a n x n = b, where a, a,, a n and b are constant real or complex numbers The constants a i is called the coefficient of x i, and b the constant term of the equation A system of linear equations (or linear system) is a finite collection of linear equations in same variables For instance, a linear system of m equations in n variables x, x,, x n can be written as a x + a x + + a n x n = b a x + a x + + a n x n = b () a m x + a m x + + a mn x n = b m A solution of a linear system () is a tuple (s, s,, s n ) of numbers that makes each equation a true statement when the values s, s,, s n are substituted for x, x,, x n, respectively The set of all solutions of a linear system is called the solution set of the system Theorem Any system of linear equations has one and only of the following conclusions (a) no solution; (b) unique solution; (c) infinitely many solutions A linear system is called consistent if it has at least one solution, and inconsistent if it has no solution Geometric interpretation The following three linear systems x +x = 3 (a) x x = x x = 4 (b) x +x = 3 x x = 5 x x = 4 (c) x +x = 3 4x +x = 6 6x +3x = 9 have no solution, a unique solution, and infinitely many solutions, respectively See Figure Note: A linear equation of two variables represents a straight line in R A linear equation of three variables represents a plane in R 3 In general, a linear equation of n variables represents a hyperplane in the

2 x x x o x o x o x Figure : No solution, unique solution, and infinitely many solutions n-dimensional Euclidean space R n Matrices of a linear system Definition The augmented matrix of the general linear system () is the table a a a n b a a a n b a m a m a mn b m and the coefficient matrix of () is a a a n a a a n a m a m a mn () (3)

3 Systems of linear equations can be represented by matrices Operations on equations (for eliminating variables) can be represented by appropriate row operations on the corresponding matrices For example, x +x x 3 = x 3x +x 3 = x +x +4x 3 = [Eq ] [Eq ] [Eq 3] 3[Eq ] x +x x 3 = 5x +5x 3 = x +x 3 = 4 ( /5)[Eq ] ( /)[Eq 3] x +x x 3 = x x 3 = x 5x 3 = R R R 3 3R ( /5)R ( /)R 3 5 [Eq 3] [Eq ] R 3 R x +x x 3 = x x 3 = 4x 3 = ( /4)[Eq 3] ( /4)R 3 x +x x 3 = x x 3 = x 3 = [Eq ] + [Eq 3] [Eq ] + [Eq 3] x +x = 3 x = 3 x 3 = R + R 3 R + R [Eq ] [Eq ] R R x = x = 3 3 x 3 = 3

4 Elementary row operations Lecture Definition 3 There are three kinds of elementary row operations on matrices: (a) Multiplying all entries of one row by a nonzero constant; (b) Interchanging two rows; (c) Adding a multiple of one row to another row Definition 4 Two linear systems in same variables are called equivalent if they have the same solutions, that is, their solution sets are the same A matrix A is said to be row equivalent to a matrix B, written A B, if there is a sequence of elementary row operations that changes A to B Theorem 5 If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set In other words, elementary row operations do not change solution set Proof It is trivial for the row operations (b) and (c) in Definition 3 Consider the row operation (a) in Definition 3 Without loss of generality, we may assume that a multiple of the first row is added to the second row Let us only exhibit the first two rows as follows a a a n b a a a n b (4) a m a m a mn b m Do the row operation (Row ) + c(row ) We obtain a a a n b a + ca a + ca a n + ca n b + cb a 3 a 3 a 3n b 3 a m a m a mn b m (5) Let (s, s,, s n ) be a solution of (4), that is, a i s + a i s + + a in s n = b i, i m (6) In particular, a s + a x + + a n s n = b, (7) a s + a x + + a n s n = b (8) Multiplying c to both sides of (7), we have ca s + ca + + ca n s n = cb (9) Adding both sides of (8) and (9), we obtain (a + ca )s + (a + ca )s + + (a n + ca n )s n = b + cb () This means that (s, s,, s n ) is a solution of (5) 4

5 Conversely, let (s, s,, s n ) be a solution of (5), ie, () is satisfied and the equations of (6) are satisfied except for i = Since a s + a x + + a n s n = b, multiplying c to both sides we have Note that () can be written as c(a s + a + + a n s n ) = cb () (a s + a s + + a n s n ) + c(a s + a s + + a n s n ) = b + cb () Subtracting () from (), we have This means that (s, s,, s n ) is a solution of (4) Row echelon forms a s + a s + + a n s n = b Lecture 3 Definition A matrix is called in row echelon form if it satisfies the following two conditions: (a) All zero rows are gathered near the bottom; (b) The first nonzero entry of a row, called the leading entry of that row, is ahead of the first nonzero entry of the next row A matrix in row echelon form is said to be in reduced row echelon form if it satisfies two more conditions: (c) The leading entry of every nonzero row is ; (d) Each leading entry is the only nonzero entry in its column A matrix in (reduced) row echelon form is called a (reduced) row echelon matrix Note Sometimes we call row echelon forms just as echelon forms and row echelon matrices as echelon matrices without mentioning the word row Row echelon form pattern The following are two typical row echelon matrices, where the solid squares represent arbitrary nonzero numbers, and the stars represent arbitrary numbers, including zero The following are two typical reduced row echelon matrices, 5

6 Theorem Every matrix is row equivalent to one and only one reduced row echelon matrix In other words, every matrix has a unique reduced row echelon form (or canonical form) Proof See Appendix A Definition 3 If a matrix A is row equivalent to a row echelon matrix E, we say that A has the row echelon form E; if E is further a reduced row echelon matrix, then we say that A has the reduced row echelon form (or canonical form) E Row reduction algorithm Definition 4 A pivot position of a matrix A is a location of entries of A that corresponds to a leading entry in a row echelon form of A A pivot column (pivot row) is a column (row) of A that contains a pivot position Algorithm (Row Reduction Algorithm) (Proof of Theorem ) () Begin with the leftmost nonzero column, which is a pivot column; the top entry is a pivot position () If the entry of the pivot position is zero, select a nonzero entry in the pivot column, interchange the pivot row and the row containing this nonzero entry (3) If the pivot position is nonzero, use elementary row operations to reduce all entries below the pivot position to zero, (and the pivot position to and all entries above and below the pivot position to zero for reduced row echelon form) (4) Cover the pivot row and the rows above it; repeat () (3) to the remaining submatrix Solving linear system Example Find all solutions for the linear system x +x x 3 = x +x +4x 3 = 3x +3x +4x 3 = Solution Perform the row operations: The system is equivalent to which means the system has a unique solution R R R 3 3R R + R 3 R + R 3 x = 7 x = 4 x 3 = Example Solve the linear system x x +x 3 x 4 = x x +x 3 +x 4 = 4x 4x +4x 3 = 4 x +x x 3 +x 4 = 3 ( /3)R R 3 R R R 6

7 Solution Do the following row operations: R R R 3 4R R 4 + R R + R The linear system has the following parametric description { x = + x x 3 x 4 = 4 4 () [ ] [] () (/)R R 3 R R 4 + (/)R We see that the variables x, x 3 can take arbitrary numbers; they are called free variables Let x = c, x 3 = c, where c, c R Then x = + c c, x 4 = All solutions of the system are given by The general solutions may be written as x x x 3 = x 4 x = + c c x = c x 3 = c x 4 = + c + c where c, c R Set c = c =, ie, set x = x 3 =, we have a particular solution x =, Basic solutions For the corresponding homogeneous linear system Ax = of the above example, that is, x x +x 3 x 4 = x x +x 3 +x 4 = 4x 4x +4x 3 = x +x x 3 +x 4 = we have () [ ] [] () Let x = c, x 3 = c, where c, c R Then x = c c, x 4 = All solutions of the homogeneous system are given by x = c c x = c x 3 = c x 4 = 7

8 The general solutions may be written as x x x 3 x 4 = c + c Set c =, c =, ie, x =, x 3 =, we have x = and x 4 = ; we obtain one basic solution x = for the homogeneous system Ax = Set c =, c =, ie, x =, x 3 =, we have x = and x 4 = ; we obtain another basic solution x = for the homogeneous system Ax = Example 3 The linear system with the augmented matrix has no solution because its augmented matrix has the row echelon form () ( 3) [7] The last row represents a contradictory equation = Theorem 5 A linear system is consistent if and only if the row echelon form of its augmented matrix contains no row of the form [,, b ], where b Example 4 Solve the linear system whose augmented matrix is A = Solution Interchanging Row and Row, we have R 3R R 4 R R R 3 8

9 Then the system is equivalent to R 4 + R R R 3 R 3 R R 3 () [] () [ ] [] () x = x x 4 + x 5 x 3 = + x 4 x 5 x 6 = The unknowns x, x 4 and x 5 are free variables Set x = c, x 4 = c, x 5 = c 3, where c, c, c 3 are arbitrary The general solutions of the system are given by x = c c + c 3 x = c x 3 = + c c 3 x 4 = c x 5 = c 3 x 6 = The general solution may be written as x = + c + c + c 3, c, c, c 3 R Definition 6 A variable in a consistent linear system is called free if its corresponding column in the coefficient matrix is not a pivot column 3 Vector Space R n Vectors in R and R 3 Lecture 4 Let R be the set of all tuples (u, u ) of real numbers Each tuple (u, u ) is called a point in R For each point (u, u ) we associate a column [ u u ] 9

10 called the vector associated to the point (u, u ) The set of all such vectors is still denoted by R So by a point in R we mean a tuple (x, y) and, by a vector in R we mean a column Similarly, we denote by R 3 the set of all tuples [ x y ] (u, u, u 3 ) of real numbers, called points in R 3 We still denote by R 3 the set of all columns u u, u 3 called vectors in R 3 For example, (, 3, ), ( 3,, ), (,, ) are points in R 3, while are vectors in R 3 3, 3 Definition 3 The addition, subtraction, and scalar multiplication for vectors in R are defined by [ ] [ ] [ ] u v u + v + =, u v u + v [ u ] [ ] v = u v [ ] u c = u, [ ] u v, u v [ cu cu ] Similarly, the addition, subtraction, and scalar multiplication for vectors in R 3 are defined by u v u + v u u 3 + v v 3 = u + v u 3 + v 3, Vectors in R n u u u 3 c v v u u u 3 v 3 = = u v u v u 3 v 3 cu cu cu 3 Definition 3 Let R n be the set of all tuples (u, u,, u n ) of real numbers, called points in R n We still use R n to denote the set of all columns u u u n,

11 of real numbers, called vectors in R n The vector = is called the zero vector in R n The addition and the scalar multiplication in R n are defined by u v u v u n + c u u u n v n = = cu cu cu n u + v u + v u n + v n The set R n together with the addition and scalar multiplication is called the Euclidean n-space Proposition 33 For vectors u, v, w in R n and scalars c, d in R, () u + v = v + u, () (u + v) + w = u + (v + w), (3) u + = u, (4) u + ( u) =, (5) c(u + v) = cu + cv, (6) (c + d)u = cu + du (7) c(du) = (cd)u (8) u = u Subtraction can be defined in R n by Linear combinations u v = u + ( v) Definition 34 A vector v in R n is called a linear combination of vectors v, v,, v k in R n if there exist scalars c, c,, c k such that v = c v + c v + + c k v k The set of all linear combinations of v, v,, v k is called the span of v, v,, v k, denoted Span {v, v,, v k } = {c v + c v + + c k v k : c, c,, c k R} Example 3 The span of a single nonzero vector in R 3 is a straight line through the origin For instance, Span 3 = t 3 : t R,

12 is a straight line through the origin, having the parametric form x = 3t x = t, t R x 3 = t Eliminating the parameter t, the parametric equations reduce to two equations about x, x, x 3, { x +3x = x +x 3 = Example 3 The span of two nonproportional vectors in R 3 is a plane through the origin For instance, Span 3, = s + t 3 : s, t R is a plane through the origin, having the following parametric form x = s +3t x = s t x 3 = s +t Eliminating the parameters s and t, the plane can be described by a single equation Example 33 Given vectors in R 3, v =, v = 3x 5x 7x 3 =, v 3 =, v 4 = (a) Every vector b = [b, b, b 3 ] T in R 3 is a linear combination of v, v, v 3 (b) The span of {v, v, v 3 } is the whole vector space R 3 3, v 5 = (b) The vector v 4 can be expressed as a linear combination of v, v, v 3, and it can be expressed in one and only one way as a linear combination v 4 = v + 3v v 3 (d) The vector v is not a linear combination of v, v 3, and v 4 (e) The vector v 5 can be written as linear combinations of v, v 3, and v 4 in more than one ways In fact, v 5 = 6v v 3 = 3v 3 + v 4 = 3v + v 3 + v 4 Solution (a) Let b = x v + x v + x 3 v 3 Then the vector equation has the following matrix form x x = b b x 3 b Perform row operations: b b b 3 b b b b 3

13 Thus b b b b b 3 + b b b b 3 b + b + b 3 b b b 3 x = b b 3, x = b + b + b 3, x 3 = b b b 3 So b is a linear combination of v, v, v 3 (b) Since b is arbitrary, we have Span {v, v, v 3 } = R 3 Example 34 Consider vectors in R 3, v =, v =, v 3 = ; u =, v = 5 7 (a) The vector u can be expressed as linear combinations of v, v, v 3 in more than one ways For instance, u = v + v + v 3 = 4v + 3v = v v + v 3 (b) The vector v can not be written as a linear combination of v, v, v 3 Geometric interpretation of vectors Multiplication of matrices Definition 35 Let A be an m n matrix and B an n p matrix, a a a n a a a n A = a m a m a mn, B = The product (or multiplication) of A and B is an m p matrix c c c p c c c p C = = AB c m c m c mp whose (i, k)-entry c ik, where i m and k p, is given by c ik = b b b p b b b p b n a n b np n a ij b jk = a i b k + a i b k + + a in b nk j= Proposition 36 Let A be an m n matrix, whose column vectors are denoted by a, a,, a n Then for any vector v in R n, v v Av = [a, a,, a n ] = v a + v a + + v n a n v n Proof Write A = a a a n a a a n a m a m a mn, v = v v v n 3

14 Then Thus a = Av = = = a a a m = v, a = a a a m a a a n a a a n a m a m a mn,, a n = v v v n a v + a v + + a n v n a v + a v + + a n v n a m v + a m v + + a mn v n a v a v a m v a a a m + + v a v a v a m v a a a m v n a n a n a mn a n v n a n v n a mn v n a n a n a mn = v a + v a + + v n a n Theorem 37 Let A be an m n matrix Then for any vectors u, v in R n and scalar c, (a) A(u + v) = Au + Av, (b) A(cu) = cau 4 The four forms of linear systems Lecture 5 A general system of linear equations can be written as a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mn x n = b m (4) We introduce the column vectors: a = a a m,, a n = a n a mn ; x = x x n ; b = b b m ; 4

15 and the coefficient matrix: A = a a a n a a a n = [ a, a,, a n ] a m a m a mn Then the linear system (4) can be expressed by (a) The vector equation form: (b) The matrix equation form: x a + x a + + x n a n = b, Ax = b, (c) The augmented matrix form: [ a, a,, a n b ] Theorem 4 The system Ax = b has a solution if and only if b is a linear combination of the column vectors of A Theorem 4 Let A be an m n matrix The following statements are equivalent (a) For each b in R m, the system Ax = b has a solution (b) The column vectors of A span R m (c) The matrix A has a pivot position in every row Proof (Exhibit for m = 3 and n = 4) (a) (b) and (c) (a) are obvious (a) (c): Suppose A has no pivot position for at least one row; that is, A ρ ρ ρ k ρ k A Ak Ak, where ρ, ρ,, ρ k are elementary row operations, and A k is a row echelon matrix Let e m = [,,, ] T Clearly, the system [A k e m ] is inconsistent Let ρ i denote the inverse row operation of ρ i, i k Then [A k e m ] ρ k [A k b ] ρ k ρ [A b k ] ρ [A b k ] Thus, for b = b k, the system [A b] has no solution, a contradiction Example 4 The following linear system has no solution for some vectors b in R 3 x +x 3 +3x 4 = b x +4x +6x 3 +7x 4 = b x +x +x 3 +x 4 = b 3 The row echelon matrix of the coefficient matrix for the system is given by R R R R 3 3 R 3 R 3 3 5

16 Then the following systems have no solution 3 R 3 + R R 3 R 3 Thus the original system has no solution for b =, b = b 3 = Solution structure of a linear System Homogeneous system R + R A linear system is called homogeneous if it is of the form Ax =, where A is an m n matrix and is the zero vector in R m Note that x = is always a solution for a homogeneous system, called the zero solution (or trivial solution); solutions other than the zero solution are called nontrivial solutions Theorem 5 A homogeneous system Ax = has a nontrivial solution if and only if the system has at least one free variable Moreover, # { pivot positions } + # { free variables } = # { variables } Example 5 Find the solution set for the nonhomogeneous linear system x x +x 4 +x 5 = x +x x 3 4x 4 3x 5 = x x +x 3 +3x 4 +x 5 = x +x +x 3 +x 4 3x 5 = Solution Do row operations to reduce the coefficient matrix to the reduced row echelon form: R + R 4 3 R 3 R 3 3 R 4 + R () [ ] () [] [ ] Then the homogeneous system is equivalent to { x = x x 4 x 5 ( )R R 3 + R R 4 + R x 3 = x 4 +x 5 The variables x, x 4, x 5 are free variables Set x = c, x 4 = c, x 5 = c 3 We have x c c c 3 x x 3 x 4 = c c + c 3 c = c + c + c 3 x 5 c 3 6

17 Set x =, x 4 =, x 5 =, we obtain the basic solution v = Set x =, x 4 =, x 5 =, we obtain the basic solution v = Set x =, x 4 =, x 5 =, we obtain the basic solution v 3 = The general solution of the system is given by In other words, the solution set is Span {v, v, v 3 } x = c v + c v + c 3 v 3, c, c, c 3, R Theorem 5 Let Ax = be a homogeneous system If u and v are solutions, then the addition and the scalar multiplication u + v and cu are also solutions In other words, any linear combination of solutions for a homogeneous system is again a solution Theorem 53 Let Ax = be a homogeneous linear system, where A is an m n matrix with p pivot positions Then the system has n p free variables and n p basic solutions The n p basic solutions can be obtained as follows: Select one of the free variables; set the free variable equal to and all other free variables equal to Nonhomogeneous systems A linear system Ax = b is called nonhomogeneous if b The homogeneous linear system Ax = is called its corresponding homogeneous linear system Proposition 54 Let v and w be solutions of a nonhomogeneous system Ax = b Then the difference v w is a solution of the corresponding homogeneous system Ax = Theorem 55 (Structure of Solution Set) Let v be a solution of a nonhomogeneous system Ax = b Then solutions of Ax = b are given by x = v + u, where u are solutions of the corresponding homogeneous system Ax = 7

18 y v cu v+ cu v x x+3y=6 x+3y= Figure : Solution sets of non-homogeneous system and its homogeneous system Example 5 For the system x + 3y = 6 (its homogeneous system x + 3y = ), the solution is given by [ ] [ ] [ ] x 3 3/ = + c = v + cu, c R y Example 53 Find the solution set for the nonhomogeneous linear system x x +x 4 +x 5 = x +x x 3 4x 4 3x 5 = 3 x x +x 3 +3x 4 +x 5 = x +x +x 3 +x 4 3x 5 = 3 Solution Do row operations to reduce the augmented matrix to the reduced row echelon form: R + R ( )R R 3 R R 3 + R R 4 + R R 4 + R () [ ] () [] [ ] Then the nonhomogeneous system is equivalent to { x = +x x 4 x 5 x 3 = x 4 +x 5 The variables x, x 4, x 5 are free variables Set x = c, x 4 = c, x 5 = c 3 We obtain the general solutions x + c c c 3 x x 3 x 4 = c c + c 3 c = + c + c + c 3 x 5 c 3 x = v + c v + c v + c 3 v 3, c, c, c 3 R 8

19 In particular, setting x = x 4 = x 5 =, we obtain the particular solution v = The solution set of Ax = b is given by S = v + Span {v, v, v 3 } Example 54 The augmented matrix of the nonhomogeneous system x x +x 3 +3x 4 +3x 5 +4x 6 = x +x x 3 3x 4 4x 5 5x 6 = x +x x 5 4x 6 = 5 x +x +x 3 +3x 4 +x 5 x 6 = has the reduced row echelon form () [ ] 3 () [3] [] 3 () Then a particular solution x p for the system and the basic solutions of the corresponding homogeneous system are given by 3 x p = 3, v =, v = 3, v 3 = The general solution of the system is given by x = x p + c v + c v + c 3 v 3 Example 55 For what values of a and b the linear system x +x +ax 3 = x +bx = 3x +x +x 3 = has nontrivial solutions Answer: 8a + (3a )(b 4) = 6 Linear dependence and independence Lecture 6 Starting with motivation of two or more vectors Then conclude to the following formal definition Definition 6 Vectors v, v,, v p in R n are called linearly independent provided that if c v + c v + + c p v p = for some scalars c, c,, c p, then c = c = = c p = The vectors v, v,, v p are called linearly dependent if there exist constants c, c,, c p, not all zero, such that c v + c v + + c p v p = 9

20 Example 6 The vectors v =, v = Solution Consider the linear system x 3 + x, v 3 = + x = in R 3 are linearly independent The system has the only zero solution x = x = x 3 = Thus v, v, v 3 are linearly independent Example 6 The vector v =, v =, v 3 = 3 in R 3 are linearly dependent 5 Solution Consider the linear system x x + x = The system has one free variable There is nonzero solution Thus v, v, v 3 are linearly dependent Example 63 The vectors,,, 3 in R 3 are linearly dependent 3 Theorem 6 The basic solutions of any homogeneous linear system are linearly independent Proof Let v, v,, v k be basic solutions of a linear system Ax =, corresponding to free variables x j, x j,, x jk Consider the linear combination c v + c v + + c k v k = Note that the j i coordinate of c v + c v + + c k v k is c ji, i k It follows that c ji i k This means that v, v,, v k are linearly independent = for all Theorem 63 Any set of vectors containing the zero vector is linearly dependent Theorem 64 Let v, v,, v p be vectors in R n If p > n, then v, v,, v p are linearly dependent Proof Let A = [v, v,, v p ] Then A is an n p matrix, and the equation Ax = has n equations in p unknowns Recall that for the matrix A the number of pivot positions plus the number of free variables is equal to p, and the number of pivot positions is at most n Thus, if p > n, there must be some free variables Hence Ax = has nontrivial solutions This means that the column vectors of A are linearly dependent Theorem 65 Let S = {v, v,, v p } be a set of vectors in R n, (p ) Then S is linearly dependent if and only if one of vectors in S is a linear combination of the other vectors Moreover, if S is linearly dependent and v, then there is a vector v j with j such that v j is a linear combination of the preceding vectors v, v,, v j

21 Note The condition v in the above theorem can not be deleted For example, the set { [ ] [ ]} v =, v = is linearly dependent But v is not a linear combination of v Theorem 66 The column vectors of a matrix A are linearly independent if and only if the linear system has the only zero solution Ax = Proof Let A = [a, a,, a n ] Then the linear system Ax = is the vector equation x a + x a + + x n a n = Then a, a,, a n are linear independent is equivalent to that the system has only the zero solution Corollary 67 A linear system Ax = b has unique solution if and only if Ax = has the only zero solution

Math113: Linear Algebra. Beifang Chen

Math113: Linear Algebra. Beifang Chen Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary

More information

Linear equations in linear algebra

Linear equations in linear algebra Linear equations in linear algebra Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra Pearson Collections Samy T. Linear

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 6) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Chapter 1: Linear Equations

Chapter 1: Linear Equations Chapter : Linear Equations (Last Updated: September, 7) The material for these notes is derived primarily from Linear Algebra and its applications by David Lay (4ed).. Systems of Linear Equations Before

More information

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns

Linear Equation: a 1 x 1 + a 2 x a n x n = b. x 1, x 2,..., x n : variables or unknowns Linear Equation: a x + a 2 x 2 +... + a n x n = b. x, x 2,..., x n : variables or unknowns a, a 2,..., a n : coefficients b: constant term Examples: x + 4 2 y + (2 5)z = is linear. x 2 + y + yz = 2 is

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

1 Last time: linear systems and row operations

1 Last time: linear systems and row operations 1 Last time: linear systems and row operations Here s what we did last time: a system of linear equations or linear system is a list of equations a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

More information

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij

Topics. Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij Topics Vectors (column matrices): Vector addition and scalar multiplication The matrix of a linear function y Ax The elements of a matrix A : A ij or a ij lives in row i and column j Definition of a matrix

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

Matrices and RRE Form

Matrices and RRE Form Matrices and RRE Form Notation R is the real numbers, C is the complex numbers (we will only consider complex numbers towards the end of the course) is read as an element of For instance, x R means that

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

System of Linear Equations

System of Linear Equations Math 20F Linear Algebra Lecture 2 1 System of Linear Equations Slide 1 Definition 1 Fix a set of numbers a ij, b i, where i = 1,, m and j = 1,, n A system of m linear equations in n variables x j, is given

More information

Linear Independence x

Linear Independence x Linear Independence A consistent system of linear equations with matrix equation Ax = b, where A is an m n matrix, has a solution set whose graph in R n is a linear object, that is, has one of only n +

More information

Section Gaussian Elimination

Section Gaussian Elimination Section. - Gaussian Elimination A matrix is said to be in row echelon form (REF) if it has the following properties:. The first nonzero entry in any row is a. We call this a leading one or pivot one..

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 1 Material Dr. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University January 9, 2018 Linear Algebra (MTH 464)

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 - Linear algebra, Spring Semester 22-23 Dan Abramovich Review We saw: an algorithm - row reduction, bringing to reduced echelon form - answers the questions: - consistency (no pivot on right) -

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam

MA 242 LINEAR ALGEBRA C1, Solutions to First Midterm Exam MA 242 LINEAR ALGEBRA C Solutions to First Midterm Exam Prof Nikola Popovic October 2 9:am - :am Problem ( points) Determine h and k such that the solution set of x + = k 4x + h = 8 (a) is empty (b) contains

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2 MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS SYSTEMS OF EQUATIONS AND MATRICES Representation of a linear system The general system of m equations in n unknowns can be written a x + a 2 x 2 + + a n x n b a

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

Determine whether the following system has a trivial solution or non-trivial solution:

Determine whether the following system has a trivial solution or non-trivial solution: Practice Questions Lecture # 7 and 8 Question # Determine whether the following system has a trivial solution or non-trivial solution: x x + x x x x x The coefficient matrix is / R, R R R+ R The corresponding

More information

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions

3. Vector spaces 3.1 Linear dependence and independence 3.2 Basis and dimension. 5. Extreme points and basic feasible solutions A. LINEAR ALGEBRA. CONVEX SETS 1. Matrices and vectors 1.1 Matrix operations 1.2 The rank of a matrix 2. Systems of linear equations 2.1 Basic solutions 3. Vector spaces 3.1 Linear dependence and independence

More information

System of Linear Equations

System of Linear Equations Chapter 7 - S&B Gaussian and Gauss-Jordan Elimination We will study systems of linear equations by describing techniques for solving such systems. The preferred solution technique- Gaussian elimination-

More information

Span & Linear Independence (Pop Quiz)

Span & Linear Independence (Pop Quiz) Span & Linear Independence (Pop Quiz). Consider the following vectors: v = 2, v 2 = 4 5, v 3 = 3 2, v 4 = Is the set of vectors S = {v, v 2, v 3, v 4 } linearly independent? Solution: Notice that the number

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3

ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ANALYTICAL MATHEMATICS FOR APPLICATIONS 2018 LECTURE NOTES 3 ISSUED 24 FEBRUARY 2018 1 Gaussian elimination Let A be an (m n)-matrix Consider the following row operations on A (1) Swap the positions any

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.4 Solving Systems of Linear Equations 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.4. Solving Systems of Linear Equations Note. We give an algorithm for solving a system of linear equations (called

More information

Linear Algebra Summary. Based on Linear Algebra and its applications by David C. Lay

Linear Algebra Summary. Based on Linear Algebra and its applications by David C. Lay Linear Algebra Summary Based on Linear Algebra and its applications by David C. Lay Preface The goal of this summary is to offer a complete overview of all theorems and definitions introduced in the chapters

More information

Lecture Notes: Solving Linear Systems with Gauss Elimination

Lecture Notes: Solving Linear Systems with Gauss Elimination Lecture Notes: Solving Linear Systems with Gauss Elimination Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Echelon Form and Elementary

More information

Lecture 6: Spanning Set & Linear Independency

Lecture 6: Spanning Set & Linear Independency Lecture 6: Elif Tan Ankara University Elif Tan (Ankara University) Lecture 6 / 0 Definition (Linear Combination) Let v, v 2,..., v k be vectors in (V,, ) a vector space. A vector v V is called a linear

More information

Lecture 22: Section 4.7

Lecture 22: Section 4.7 Lecture 22: Section 47 Shuanglin Shao December 2, 213 Row Space, Column Space, and Null Space Definition For an m n, a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn, the vectors r 1 = [ a 11 a 12 a 1n

More information

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 2 Systems of Linear Equations. Marco Chiarandini DM559 Linear and Integer Programming Lecture Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Outline 1. 3 A Motivating Example You are organizing

More information

Section 1.5. Solution Sets of Linear Systems

Section 1.5. Solution Sets of Linear Systems Section 1.5 Solution Sets of Linear Systems Plan For Today Today we will learn to describe and draw the solution set of an arbitrary system of linear equations Ax = b, using spans. Ax = b Recall: the solution

More information

Lectures on Linear Algebra for IT

Lectures on Linear Algebra for IT Lectures on Linear Algebra for IT by Mgr. Tereza Kovářová, Ph.D. following content of lectures by Ing. Petr Beremlijski, Ph.D. Department of Applied Mathematics, VSB - TU Ostrava Czech Republic 2. Systems

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

MAT 2037 LINEAR ALGEBRA I web:

MAT 2037 LINEAR ALGEBRA I web: MAT 237 LINEAR ALGEBRA I 2625 Dokuz Eylül University, Faculty of Science, Department of Mathematics web: Instructor: Engin Mermut http://kisideuedutr/enginmermut/ HOMEWORK 2 MATRIX ALGEBRA Textbook: Linear

More information

Math 3C Lecture 20. John Douglas Moore

Math 3C Lecture 20. John Douglas Moore Math 3C Lecture 20 John Douglas Moore May 18, 2009 TENTATIVE FORMULA I Midterm I: 20% Midterm II: 20% Homework: 10% Quizzes: 10% Final: 40% TENTATIVE FORMULA II Higher of two midterms: 30% Homework: 10%

More information

Linear Systems and Matrices

Linear Systems and Matrices Department of Mathematics The Chinese University of Hong Kong 1 System of m linear equations in n unknowns (linear system) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.......

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.3 VECTOR EQUATIONS VECTOR EQUATIONS Vectors in 2 A matrix with only one column is called a column vector, or simply a vector. An example of a vector with two entries

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

Math "Matrix Approach to Solving Systems" Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25

Math Matrix Approach to Solving Systems Bibiana Lopez. November Crafton Hills College. (CHC) 6.3 November / 25 Math 102 6.3 "Matrix Approach to Solving Systems" Bibiana Lopez Crafton Hills College November 2010 (CHC) 6.3 November 2010 1 / 25 Objectives: * Define a matrix and determine its order. * Write the augmented

More information

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS

LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS LECTURES 4/5: SYSTEMS OF LINEAR EQUATIONS MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1 Linear equations We now switch gears to discuss the topic of solving linear equations, and more interestingly, systems

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

Math 220 F11 Lecture Notes

Math 220 F11 Lecture Notes Math 22 F Lecture Notes William Chen November 4, 2. Lecture. Firstly, lets just get some notation out of the way. Notation. R, Q, C, Z, N,,,, {},, A B. Everyone in high school should have studied equations

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix

Math 314H EXAM I. 1. (28 points) The row reduced echelon form of the augmented matrix for the system. is the matrix Math 34H EXAM I Do all of the problems below. Point values for each of the problems are adjacent to the problem number. Calculators may be used to check your answer but not to arrive at your answer. That

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

PH1105 Lecture Notes on Linear Algebra.

PH1105 Lecture Notes on Linear Algebra. PH05 Lecture Notes on Linear Algebra Joe Ó hógáin E-mail: johog@mathstcdie Main Text: Calculus for the Life Sciences by Bittenger, Brand and Quintanilla Other Text: Linear Algebra by Anton and Rorres Matrices

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

Section 1.1: Systems of Linear Equations

Section 1.1: Systems of Linear Equations Section 1.1: Systems of Linear Equations Two Linear Equations in Two Unknowns Recall that the equation of a line in 2D can be written in standard form: a 1 x 1 + a 2 x 2 = b. Definition. A 2 2 system of

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Introduction: linear equations Read 1.1 (in the text that is!) Go to course, class webpages.

More information

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University

Chapter 2. Systems of Equations and Augmented Matrices. Creighton University Chapter Section - Systems of Equations and Augmented Matrices D.S. Malik Creighton University Systems of Linear Equations Common ways to solve a system of equations: Eliminationi Substitution Elimination

More information

Section 5.3 Systems of Linear Equations: Determinants

Section 5.3 Systems of Linear Equations: Determinants Section 5. Systems of Linear Equations: Determinants In this section, we will explore another technique for solving systems called Cramer's Rule. Cramer's rule can only be used if the number of equations

More information

ICS 6N Computational Linear Algebra Vector Equations

ICS 6N Computational Linear Algebra Vector Equations ICS 6N Computational Linear Algebra Vector Equations Xiaohui Xie University of California, Irvine xhx@uci.edu January 17, 2017 Xiaohui Xie (UCI) ICS 6N January 17, 2017 1 / 18 Vectors in R 2 An example

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra Linear Equations in Linear Algebra.7 LINEAR INDEPENDENCE LINEAR INDEPENDENCE Definition: An indexed set of vectors {v,, v p } in n is said to be linearly independent if the vector equation x x x 2 2 p

More information

Span and Linear Independence

Span and Linear Independence Span and Linear Independence It is common to confuse span and linear independence, because although they are different concepts, they are related. To see their relationship, let s revisit the previous

More information

Lecture 1: Systems of linear equations and their solutions

Lecture 1: Systems of linear equations and their solutions Lecture 1: Systems of linear equations and their solutions Course overview Topics to be covered this semester: Systems of linear equations and Gaussian elimination: Solving linear equations and applications

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.6 Homogeneous Systems, Subspaces and Bases 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.6. Homogeneous Systems, Subspaces and Bases Note. In this section we explore the structure of the solution

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.4 THE MATRIX EQUATION A = b MATRIX EQUATION A = b m n Definition: If A is an matri, with columns a 1, n, a n, and if is in, then the product of A and, denoted by

More information

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2

MATH 2050 Assignment 6 Fall 2018 Due: Thursday, November 1. x + y + 2z = 2 x + y + z = c 4x + 2z = 2 MATH 5 Assignment 6 Fall 8 Due: Thursday, November [5]. For what value of c does have a solution? Is it unique? x + y + z = x + y + z = c 4x + z = Writing the system as an augmented matrix, we have c R

More information

Row Space, Column Space, and Nullspace

Row Space, Column Space, and Nullspace Row Space, Column Space, and Nullspace MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Introduction Every matrix has associated with it three vector spaces: row space

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Digital Workbook for GRA 6035 Mathematics

Digital Workbook for GRA 6035 Mathematics Eivind Eriksen Digital Workbook for GRA 6035 Mathematics November 10, 2014 BI Norwegian Business School Contents Part I Lectures in GRA6035 Mathematics 1 Linear Systems and Gaussian Elimination........................

More information

2.3 Terminology for Systems of Linear Equations

2.3 Terminology for Systems of Linear Equations page 133 e 2t sin 2t 44 A(t) = t 2 5 te t, a = 0, b = 1 sec 2 t 3t sin t 45 The matrix function A(t) in Problem 39, with a = 0 and b = 1 Integration of matrix functions given in the text was done with

More information

1. TRUE or FALSE. 2. Find the complete solution set to the system:

1. TRUE or FALSE. 2. Find the complete solution set to the system: TRUE or FALSE (a A homogenous system with more variables than equations has a nonzero solution True (The number of pivots is going to be less than the number of columns and therefore there is a free variable

More information

MATH10212 Linear Algebra B Homework Week 4

MATH10212 Linear Algebra B Homework Week 4 MATH22 Linear Algebra B Homework Week 4 Students are strongly advised to acquire a copy of the Textbook: D. C. Lay Linear Algebra and its Applications. Pearson, 26. ISBN -52-2873-4. Normally, homework

More information

Chapter 1 Matrices and Systems of Equations

Chapter 1 Matrices and Systems of Equations Chapter 1 Matrices and Systems of Equations System of Linear Equations 1. A linear equation in n unknowns is an equation of the form n i=1 a i x i = b where a 1,..., a n, b R and x 1,..., x n are variables.

More information

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9

R b. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 1 1, x h. , x p. x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 The full solution of Ax b x x p x h : The general solution is the sum of any particular solution of the system Ax b plus the general solution of the corresponding homogeneous system Ax. ) Reduce A b to

More information

Problem Sheet 1 with Solutions GRA 6035 Mathematics

Problem Sheet 1 with Solutions GRA 6035 Mathematics Problem Sheet 1 with Solutions GRA 6035 Mathematics BI Norwegian Business School 2 Problems 1. From linear system to augmented matrix Write down the coefficient matrix and the augmented matrix of the following

More information

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations.

Linear Algebra. The analysis of many models in the social sciences reduces to the study of systems of equations. POLI 7 - Mathematical and Statistical Foundations Prof S Saiegh Fall Lecture Notes - Class 4 October 4, Linear Algebra The analysis of many models in the social sciences reduces to the study of systems

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS HOMOGENEOUS LINEAR SYSTEMS A system of linear equations is said to be homogeneous if it can be written in the form A x= 0, where

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date May 9, 29 2 Contents 1 Motivation for the course 5 2 Euclidean n dimensional Space 7 2.1 Definition of n Dimensional Euclidean Space...........

More information

Linear System Equations

Linear System Equations King Saud University September 24, 2018 Table of contents 1 2 3 4 Definition A linear system of equations with m equations and n unknowns is defined as follows: a 1,1 x 1 + a 1,2 x 2 + + a 1,n x n = b

More information

x y = 1, 2x y + z = 2, and 3w + x + y + 2z = 0

x y = 1, 2x y + z = 2, and 3w + x + y + 2z = 0 Section. Systems of Linear Equations The equations x + 3 y =, x y + z =, and 3w + x + y + z = 0 have a common feature: each describes a geometric shape that is linear. Upon rewriting the first equation

More information

Linear Algebra Exam 1 Spring 2007

Linear Algebra Exam 1 Spring 2007 Linear Algebra Exam 1 Spring 2007 March 15, 2007 Name: SOLUTION KEY (Total 55 points, plus 5 more for Pledged Assignment.) Honor Code Statement: Directions: Complete all problems. Justify all answers/solutions.

More information

Linear Equations and Vectors

Linear Equations and Vectors Chapter Linear Equations and Vectors Linear Algebra, Fall 6 Matrices and Systems of Linear Equations Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Figure. Linear Algebra, Fall 6 Unique

More information

MATH10212 Linear Algebra Lecture Notes

MATH10212 Linear Algebra Lecture Notes MATH10212 Linear Algebra Lecture Notes Last change: 23 Apr 2018 Textbook Students are strongly advised to acquire a copy of the Textbook: D. C. Lay. Linear Algebra and its Applications. Pearson, 2006.

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Matrices: 2.1 Operations with Matrices

Matrices: 2.1 Operations with Matrices Goals In this chapter and section we study matrix operations: Define matrix addition Define multiplication of matrix by a scalar, to be called scalar multiplication. Define multiplication of two matrices,

More information

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Lecture 18: The Rank of a Matrix and Consistency of Linear Systems Winfried Just Department of Mathematics, Ohio University February 28, 218 Review: The linear span Definition Let { v 1, v 2,..., v n }

More information

1300 Linear Algebra and Vector Geometry Week 2: Jan , Gauss-Jordan, homogeneous matrices, intro matrix arithmetic

1300 Linear Algebra and Vector Geometry Week 2: Jan , Gauss-Jordan, homogeneous matrices, intro matrix arithmetic 1300 Linear Algebra and Vector Geometry Week 2: Jan 14 18 1.2, 1.3... Gauss-Jordan, homogeneous matrices, intro matrix arithmetic R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca Winter 2019 What

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Matrix Algebra Lecture Notes. 1 What is Matrix Algebra? Last change: 18 July Linear forms

Matrix Algebra Lecture Notes. 1 What is Matrix Algebra? Last change: 18 July Linear forms Matrix Algebra Lecture Notes Last change: 18 July 2017 1 What is Matrix Algebra? 1.1 Linear forms It is well-known that the total cost of a purchase of amounts (in kilograms) g 1, g 2, g 3 of some goods

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Linear Algebra. Preliminary Lecture Notes

Linear Algebra. Preliminary Lecture Notes Linear Algebra Preliminary Lecture Notes Adolfo J. Rumbos c Draft date April 29, 23 2 Contents Motivation for the course 5 2 Euclidean n dimensional Space 7 2. Definition of n Dimensional Euclidean Space...........

More information