Chapter 5 The Definite Integral

Size: px
Start display at page:

Download "Chapter 5 The Definite Integral"

Transcription

1 Sectio. Chpter The Defiite Itegrl Sectio. Estimtig with Fiite Sums (pp. -) Eplortio Which RAM is the Biggest?.. LRAM > MRAM > RRAM, ecuse the heights of the rectgles decrese s ou move towrd the right uder decresig fuctio. Quic Review.. mph i hr mi. mph i hr mi. ft/sec i sec ft/sec mi sec ft/sec i i. mph ft h sec hr ds., m /seci i i i r hr d r. m. ( mph)( h) + ( mph)( h) mi + mi mi mi. gl/mi i h i gl h. ( C/h)( h) + (. C)( h) C sec h. ft /sec i i i d,, ft h d. people/mi i mi, people LRAM > MRAM > RRAM. MRAM > RRAM > LRAM. RRAM > MRAM > LRAM, ecuse the heights of the rectgles icrese s ou move towrd the right uder icresig fuctio. sec. times/sec i i h i., times h Sectio. Eercises. Sice v(t) is strit lie, compute the re uder the curve. () t v() t ( )( ). Sice vt () t+ cretes trpezoid with the -is, compute the re of the curve uder the trpezoid. A h ( + ) t v( ) ( ) + t v( ) ( )+ h A ( + ). Ech rectgle hs se. The height of ech rectgle is Foud usig the poits t (.,.,.,. ) i the equtio v() t t +. The re uder the curve is pproimtel + + +, so the prticle is close to.. Ech rectgle hs se. The height of ech rectgle is foud usig the poits (.,.,.,.,. ) i the equtio vt () t +. The re uder the curve is pproimtel ,so the prticle is close to..

2 Sectio.. () R () Δ + LRAM: [() ( ) ] + [ ( ) ( ) ] +.. () RRAM: + [ () ()] + + [ ( ) ( ) ]. () MRAM: LRAM MRAM RRAM The re is... LRAM MRAM RRAM Estimte the re to e... LRAM MRAM RRAM Estimte the re to e..

3 Sectio... LRAM MRAM RRAM Estimte the re to e.. LRAM MRAM RRAM Estimte the re to e.. Use f () d pproimte the volume usig rh ( ) Δ, so for the MRAM progrm, use ( ) o the itervl,. i MRAM V (). error % error LRAM: Are f( ) i+ f( ) i+ f( ) i+ + f( ) i i ( ). ( mg/l) i sec RRAM: Are f ( ) i + f() i+ f() i+ + f( ) i ( ). ( mg/l) i sec Ptiet's crdic output: mg sec i. L /mi. (mg/l) i sec mi Note tht estimtes for the re m vr.. () LRAM: i ( ) i.. ft () RRAM:i ( ) i.. ft. mi sec () LRAM: i( ) m () RRAM: i( ) m. LRAM: i( ) ft RRAM: i( ) ft ft+ ft Averge ft. () LRAM:.( ). mi RRAM:.( ). mi Averge. mi () The hlfw poit is. mi. The verge of LRAM d RRAM is. t. h d. t. h. Estimte tht it too. h. sec. The cr ws goig mph.. () Use LRAM with ( ). S. S is overestimte ecuse ech rectgle is elow the curve. () V S. % V. () Use RRAM with ( ). S. S is uderestimte ecuse ech rectgle is elow the curve. () V S. % V. () Use LRAM with ( ) o the itervl [, ],. S. m () V S V. %

4 Sectio.. () ( )( )( ), ft () ()( )( ), ft. Use LRAM with o the itervl [, ],. ( ).. Use MRAM with o the itervl [, ] () LRAM : ft/sec () RRAM : ft/sec (c) The upper estimtes for speed re. ft/sec for the first sec,. +.. ft/sec for the secod sec, d ft/sec for the third sec. Therefore, upper estimte for the distce flle is ft.. () ft /sec ( sec )( ft/sec ) ft/sec () Use RRAM with o [, ], ft. () Upper gl Lower gl () Upper gl Lower gl (c),, gl,. h (worst cse),, gl,. h (est cse). () Sice the relese rte of pollutts is icresig, upper estimte is give usig the dt for the ed of ech moth (right rectgles), ssumig tht ew scruers were istlled efore the egiig of Jur. Upper estimte: ( ). tos of pollutts A lower estimte is give usig the dt for the ed of the previous moth (left rectgles). We hve o dt for the egiig of Jur, ut we ow tht pollutts were relesed t the ew-scruer rte of. to/d, so we m use this vlue. Lower Estimte: ( ). tos of pollutts () Usig left rectgles, the mout of pollutts relesed the ed of Octoer is ( ). tos Therefore, totl of tos will hve ee relesed ito the tmosphere the ed of Octoer.. The re of the regio is the totl umer of uits sold, i millios, over the -er period. The re uits re (millios of uits per er)(ers) (millios of uits).. True. Becuse the grph rises from left to right, the lefthd rectgles will ll lie uder the curve.. Flse. For emple, ll three pproimtios re the sme if the fuctio is costt.. E., Use MRAM o the itervl [, ],. ( ). D.. C. si( ) + si si + + si D.. () The digol of the squre hs legth, so the side legth is. Are ( ) () Thi of the octgo s collectio of right trigles with hpoteuse of legth d cute gle mesurig. Are si cos si. (c) Thi of the -go s collectio of right trigles with hpoteuse of legth d cute gle mesurig. Are si cos si. (d) Ech re is less th the re of the circle,. As icreses, the re pproches.. The sttemet is flse. We disprove it presetig couteremple, the fuctio f( ) over the itervl, with. MRAM f(. ). LRAM + RRAM f( ) + f( ) +. MRAM

5 Sectio.. RRAM f ( Δ)[ f( ) + f( ) + + f( ) + f( )] ( Δ)[ f( ) + f( ) + f( ) + + f( )] + ( Δ)[ f( ) f( )] LRAM f + ( Δ)[ f( ) f( )] But f () f () smmetr, so f ( ) f ( ). Therefore, RRAM f LRAM f.. () Ech of the isosceles trigles is mde up of two right trigles hvig hpoteuse d cute gle mesurig. The re of ech isosceles trigle is AT si cos si. () The re of the polgo is AP AT si, so lim AP lim si (c) Multipl ech re r : AT r si AP r si lim A r P Sectio. Defiite Itegrls ( ) Eplortio Fidig Itegrls Siged Ares. +. The sme re s re.) si sits ove rectgle of.. (Ech rectgle i tpicl Riem sum is twice s tll s i si.).. (This is the sme regio s i si, trslted uits to the right.).. (The equl res ove d elow the -is sum to zero.).. (This is the sme re s si, ut elow the -is.).. (Ech rectgle i tpicl Riem sum is twice s wide s i si.).. (The equl res ove d elow the - is sum to zero.).. (The equl res ove d elow the -is sum to zero.).. (This is hlf the re of si.)

6 Sectio... (The equl res ove d elow the -is sum to zero, sice si is odd fuctio.).. Eplortio More Discotiuous Itegrds. The fuctio hs removle discotiuit t.. The thi strip ove hs zero re, so the re uder the curve is the sme s ( + ), which is... + ( + ) K. +. ( ) if is odd.. ( ) if is eve. Sectio. Eercises. lim ( c Δ where is prtitio of [, ].. lim ( c c ) Δ ( ) where is prtitio of [, ].. The grph hs jump discotiuities t ll iteger vlues, ut the Riem sums ted to the re of the shded regio show. The re is the sum of the res of rectgles (oe of them with height ): it( ) Quic Review.. () + ( ) + () + ( ) + (). ( ) [() ] + [() ] + [() ] + [() ] + [() ]. ( j + ) [( ) + ( ) + ( ) + ( ) + ( ) ] j. c. lim Δ where is prtitio of [, ].. lim Δ c [, ]. where is prtitio of. lim c Δ where is prtitio of [, ].. lim (si c ) Δ si where is prtitio of [, ].. [ ( )]. ( ) ( )( ). ( ) dt ( )( ). d θ [ ( )]... ds. [. (. )]... dr ( )

7 Sectio.. Grph the regio uder + for.. Grph the regio uder for. + ()( + ). Grph the regio uder + for. The regio is oe qurter of circle of rdius. (). Grph the regio uder for. / ( + ) ( )( + ) / + ( )( ) ( )( ). Grph the regio uder for.. Grph the regio uder for. This regio is hlf of circle rdius. () ( ) ( )( )

8 Sectio.. Grph the regio uder for.. Grph the regio uder r for r. ( ) ()( ) ()( ) Grph the regio uder + for. ( + ) ( )() + () +. Grph the regio uder θ for θ rdr ( + )( ). ( )( ). ( )( ). sds ( )( + ). tdt ( )( + ) ( ). ( + )( ). ( )( + ) ( ). dt t ( ) ( ) mes il. dt t ( ) ( ) gllos.. dt t clories (. ) ( ). θ d θ ( + )( ).. dt. t... ( ). (. ) liter. NINT +,,,.. + NINT(t,,, ).. NINT(,,. ).. NINT( e,,, ).

9 Sectio.. () The fuctio hs discotiuitt. () +. () The fuctio hs discotiuities t,,,,,,,,,,. () it( ) ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + ( ) + +. () The fuctio hs discotiuitt. () ( )( ) + ( )( ) +. () The fuctio hs discotiuitt. () ( )( ) ( )( ). Flse. Cosider the fuctio i the grph elow.. True. All the products i the Riem sums re positive.. E. ( f( ) + ) f ( ) + +. D. ( ). C.. A Oserve tht the grph of f( ) is smmetric with respect to the origi. Hece the re ove d elow the -is is equl for. ( re elow -is ) + ( re ove -is). The grph of f( ) + is three uits higher th the grph of g ( ). The etr re is ()(). ( + ) +. Oserve tht the regio uder the grph of f( ) ( ) for is just the regio uder the grph of g ( ) for trslted two uits to the right. ( ). Oserve tht the grph of f( ) is smmetric with respect to the -is d the right hlf is the grph of g ( ).. Oserve from the grph elow tht the regio uder the grph f( ) for cuts out regio R from the squre ideticl to the regio uder the grph of g ( ) for. f() R ( )

10 Sectio.. Oserve from the grph of f( ) ( ) for tht there re two regios elow the -is d oe regio ove the is, ech of whose re is equl to the re of the regio uder the grph of g ( ) for..oserve from the grph elow tht the regio etwee the grph of f( ) d the -is for cuts out regio R from the squre ideticl to the regio uder the grph of g ( ) for. R f() ( ) +. Oserve tht the grph of f( ) for is just horizotl stretch of the grph of g ( ) for fctor of. Thus the re uder f( ) for is twice the re uder the grph of g ( ) for.. Oserve tht the grph of f( ) is smmetric with respect to the orgi. Hece the re ove d elow the -is is equl for. ( re elow -is) + ( re ove -is). Oserve from the grph elow tht the regio etwee the grph of f( ) d the -is for cuts out regio R from the squre ideticl to the regio uder the grph of g ( ) for. f() R ( ) +. () As pproches from the right, f () goes to. () Usig right edpoits we hve lim lim lim Note tht d so >, () Δ, () (c) RRAM i i i i i ( + )( + ) ( + )( + ) i (d) lim lim ( + )( + ) i + + lim

11 Sectio.. Cotiued (e) Sice equls the limit of Riem sum over the itervl [, ]s pproches, prt (d) proves tht. Sectio. Defiite Itegrls d Atiderivtives (pp. ) Eplortio How Log is the Averge Chord of Circle? Eplortio Fidig the Derivtive of Itegrl Pictures will vr ccordig to the vlue of chose. (Ideed, this is the poit of the eplortio.) We show tpicl solutio here.. The chord is twice s log s the leg of the right trigle i the first qudrt, which hs legth r the Pthgore Theorem.. We hve chose ritr etwee d.. We hve shded the regio usig verticl lie segmets.. The shded regio c e writte s f() t dt usig the defiitio of the defiite itegrl i Sectio.. We use t s dumm vrile ecuse cot vr etwee d itself.. The re of the shded regio is our vlue of F(). r. Averge vlue r r r. ( ) r r. Averge vlue r r r r i ( re of semicircleof rdius r) i r r r. Although we ol computed the verge legth of chords perpediculr to prticulr dimeter, the sme computtio pplies to dimeter. The verge legth of chord of circle of rdius r is r.. The fuctio r is cotiuous o [ r, r], so the Me Vlue Theorem pplies d there is c i [, ] so tht (c) is the verge vlue r.. We hve drw oe more verticl shdig segmet to represet ΔF.. We hve moved distce of Δ so tht it rests ove the ew shdig segmet.

12 Sectio.. Now the (siged) height of the ewl-dded verticl segmet is f ().. The (siged) re of the segmet is ΔF Δi f( ), so ΔF F () lim f( ) Δ Δ Quic Review.. d si. d cos. d. d. d. d. d. d. d sec t t sec cos cot si sec t + sec sec sec + t + ( + ) + ( + ) e + e i ( ). d + Sectio. Eercises. () g ( ) () g ( ) g ( ) ( + ) (c) f( ) f( ) ( ) + (d) f( ) f( ) f( ) f( ) + f( ) + (e) [ f ( ) g( )] f ( ) g( ) (f) [ f ( ) g( )] f ( ) g( ) f ( ) g( ) (). () f( ) f( ) ( ) () [ f ( ) + h( )] f ( ) + h( ) + (c) [ f ( ) h( )] f ( ) + h( ) (d) f( ) f( ) + f ( ) h( ) () () (e) f( ) f( ) f( ) f ( ) f( ) (f) [ h( ) f ( )] h( ) f ( ). () f( u) du h( ) + f ( ) + () f() z dz f() z dz (c) f() t dt f() t dt (d) [ f( )] f( ). () gt () dt gt () dt () gudu ( ) (c) [ g ( )] g ( ) (d) gr () dr g () r dr +. () f() z dz f() z dz f() z dz f z dz + + () f () z dz + () f() t dt f() t dt f() t dt f() t dt+ f() t dt +. () hr () dr hr () dr+ hr () dr hr () dr+ hr () dr

13 Sectio.. Cotiued () hudu ( ) hudu ( ) hudu ( ) hudu ( ) hudu ( ). m si ( ) si () o [, ] si( ) si ( ) <. m + d mi + o [, ] +. ( ) mi f( ) o [, ] ( )mi f( ) f( ). ( )m f( ) o[, ] f( ) ( )m f( ). A tiderivtive of is F( ). v ( ) F( ) F( ) ( ) Fid ci [, ] such tht c c c ± Sice is i [, ],.. A tiderivtive of is F ( ). v F F [ ( )] ( )] c Fid ci [, ] such tht. c c ± Sice is i [, ],.. A tiderivtive of is F( ). v ( ) F ( ) F ( ) Fid ci [, ] such tht c c c c ± Sice is i [, ],.. A tiderivtive of ( ) is F( ) ( ). v F F + ( ) [ ( ) ( )] Fid ci [, ] such tht ( c ). c ± c or c. Sice oth re i [, ], or.. The regio etwee the grph d the -is is trigle of height d se, so the re of the regio is ()(). v( f ) f ( ).. The regio etwee the grph d the -is is rectgle with hlf circle of rdius cut out. The re of the regio is () (). v( f ) f ( t) dt.. There re equl res ove d elow the -is. v( f ) f ( t) dt i. Sice t θ is odd fuctio, there re equl res ove d elow the -is. / v( f ) f ( ) d / θ θ i /. si cos( ) + cos( ) /. cos si ( ) si /. e e e e /. sec t t.. ( ). () ( ). ( ) ( ). + t ( ) t ( ). si si ( ) /

14 Sectio. e. l e l.. v( f ) si ( cos ( cos ) e. v f e e ( ) (l el e) e e l e. v( f ) sec t t( ). v( f ) t ()t ( ) + ( ). v( f ) + ( ) +. v( f ) sec t sec sec. mi f d m f +. f (. ). + (). + + d Yes, v ( f ) f ( ). This is ecuse v(f) is costt, so v( f ) v f ( ) i v( f ) i v( f ) i ( v ) ( f) ( ) f( ) f( ). () mi () mi mi + h mph mph (c) mi. mph h (d) The verge speed is the totl distce divided the totl time. Algericll, d + d. The driver computed t+ t d d + t t. The two epressios re ot equl. m. Time for first relese mi m /mi m Time for secod relese mi m /mi totl relesed Averge rte m m /mi totl time mi. si. sec + +. Let L() c + d. The the verge vlue of f o [, ] is v( f ) ( c d) + c c + d + d c ( ) + d ( ) c ( + ) + d ( c + d) + ( c + d) L ( ) + L ( ). Flse. For emple, si si, ut the verge vlue of si o [, ] is greter th.. Flse. For emple, ut ( ) ( )

15 Sectio.. A. There is o rule for the multiplictio of fuctios.. D. There is o rule for the egtio of the ouds.. B. v( f ) cos (si si )... C. F ( ) ( ) f( ). () Are h () h + C (c) h h ( ) h +. v( ) ( +) Grph d o grphig clcultor d ( + ) fid the poit of itersectio for >. Thus,.. A tiderivtive of F () is F() d tiderivtive of G () is G(). F ( ) F ( ) F ( ) G ( ) G ( ) G ( ) Sice F ( ) G ( ), F ( ) G ( ), so F ( ) F ( ) G ( ) G ( ). Quic Quiz Sectios... D. ( F( ) + ) B.. C... () f ( ) + f ( ) + + c m f ( ) + ( ) + c c f ( ) ( + + ) f( ) c f ( ) ( ) + ( ) + ( ) + c c f( ) + + () v( f ) ( + + ) ( ) + + Sectio. Fudmetl Theorem of Clculus (pp. ) Eplortio Grphig NINT f. The fuctio t hs verticl smptotes t ll odd multiples of. There re si of these etwee d.. I ttemptig to fid F( ) t( t) dt +, the clcultor must fid limit of Riem sums for the itegrl, usig vlues of t t for t etwee d. The lrge positive d egtive vlues of t t foud er the smptotes cuse the sums to fluctute errticll so tht o limit is pproched. (We will see i Sectio. tht the res er the smptotes re ifiite, lthough NINT is ot desiged to determie this.). t. The domi of this cotiuous fuctio is the ope itervl,.. The domi of F is the sme s the domi of the cotiuous fuctio i step, mel,.

16 Sectio.. We eed to choose closed widow rrower th, to void the smptotes.. The grph of F loos the grph i step. It would e decresig o, d icresig o,, with verticl smptotes t d. Eplortio The Effect of Chgig i. f(t)dt. d. d l. d. d / ( si )( ) (cos )( ) si + cos. d d cos t, si t dt dt d d / dt cost cot t / dt si t. Implicitl differetite: d + () + d d ( ) ( + ) d + +. d / d.. Sice NINT (,,, ), the -itercept is.. Sice NINT (,,, ), the -itercept is. d. Chgig hs o effect o the grph of f t dt (). It will lws e the sme s the grph of f().. Chgig shifts the grph of f() t dt verticll i such w tht is lws the -itercept. If we chge from to, the distce of the verticl shift is f() t dt. Quic Review.. d. d. d cos( ) i cos( ) (si )(cos ) si cos (sec )(sec t ) (t )(sec ) sec t t sec Sectio. Eercises. d. d. d. d. d. d. d. d. d.. d d d t dt si ( ) si ( ) + d t+ t dt cos cos ( ) ( ) d t t dt d t + dt + e d udt t ( ) e t d u e udu e sec sec d + t dt + + t + d si t t dt si + cos + cos d t du dt e e e d tdt du cot cot cot d + u + du u

17 Sectio.. d d + si u u du + si ( ) + cos + cos ( ) d d d. ( + t ) dt ( + t ) dt l l l +. d. d. d. d. d. d. d ( ) d d t t dt t t dt d t d t dt dt cos t cos c os du t cos + d t + + t+ d dt t + du t t+ dt t d d ( r ) dr ( r ) dr si si si si du ( ) ( + ) d d + p dp p l l dp l( du + ) l( + p ) d tdt du du cos + cos cos cos + cos d cos t dt du cos si si si cos cos si. si t dt t. e tt dt. E s Es. cost dt+. cos t dt t. e dt+ du. I / / ( l) l l+ l ll l.. l l. l /. ( + ) + + ( + ) / /. ( ). /. /.. si cos ( ). ( + cos ) + si ( + ) ( + ). / /. sec θ d θ t θ / ( ). /. csc θ d θ cot θ / / / ( ).. csc cot csc ( ) ( ) / / / /. sec t sec / ( ). r+ dr r ( ) ( + )

18 Sectio.. ( ) u / du u du u. Grph. / u u ( ) ( ) Over [, ]: ( ) Over [, ]: ( ) Totl re +. Grph. Over [, ]: ( ) ( ) Over [, ]: ( ) ( ) Over [, ]: ( ) Totl re + +. Grph. Over [, ]: ( ) + + Over [, ]: ( ) + + Totl re +. Grph. Over [, ]: ( ) ( ) Over [, ]: ( ) Totl re +. First, fid the re uder the grph of. Net fid the re uder the grph of. ( ) Are of the shded regio +. First fid the re uder the grph of. / / Net fid the re uder the grph of. Are of the shded regio +. First, fid the re uder the grph of cos. ( + cos ) + si The re of the rectgle is. Are of the shded regio.. First, fid the re of the regio etwee si d the -is for,. / si cos / / / The re of the rectgle is si Are of the shded regio. NINT + si,,,.

19 Sectio.. NINT,,.,... NINT( cos,,,. ). etwee d NINT(,,, ). t. Plot NINT( e t ),,,,. i [, ] [, ] widow, the use the itersect fuctio to fid... Whe,. NINT(,,, ).. f () t dt K f () t dt + K f() t dt+ f() t dt f() t dt+ f() t dt f () t dt K ( t t+ ) dt t t + t + + ( ). To fid tiderivtive of si, recll from trigoometr tht cos si, so si cos. K si t dt cos ( ) si ( ) si cos si cos si cos.. () H( ) f( t) dt d () H ( ) f( t) dt f( ) H ( ) > whe f( ) >. H is icresig o [, ]. (c) H is cocve up o the ope itervl where H ( ) f ( ) >. f ( ) > whe <. H is cocve up o (, ). (d) H( ) f( t) dt > ecuse there is more re ove the -is th elow the -is. H() is positive. (e) H ( ) f( ) t d. Sice H ( ) f( ) > o [, ), the vlues of H re icresig to the left of, d sice H ( ) f( ) < o (, ], the vlues of H re decresig to the right of. H chieves its mimum vlue t. (f) H ( ) > o (, ]. Sice H( ), H chieves its miimum vlue t.. () s () t f().the t velocit t t is f() uits/sec. () s () t f () t < t t sice the grph is decresig, so ccelertio t t is egtive. (c) s() f() ()(). uits (d) s hs its lrgest vlue t t sec sice s () f() d s () f () <. (e) The ccelertio is zero whe s () t f () t. This occurs whe t sec d t sec. (f) Sice s( ) d s () t f() t > o (, ), the prticle moves w from the origi i the positive directio o (, ). The prticle the moves i the egtive directio, towrds the origi, o (, ) sice s () t f() t < o (, ) d the re elow the -is is smller th the re ove the -is. (g) The prticle is o the positive side sice s() f() > (the re elow the -is is smller th the re ove the -is).. () s () f() uits / sec () s () f () > so ccelertio is positive. (c) s() f() ( )() uits (d) s() f() ( )() + ()(), so the prticle psses through the origi t t sec. (e) s () t f () t t t sec (f) The prticle is movig w from the origi i the egtive directio o (, ) sice s( ) d s () t < o (, ). The prticle is movig towrd the origi o (, ) sice s () t > o (, ) d s(). The prticle moves w from the origi i the positive directio for t > sice s ( t) >.

20 Sectio.. Cotiued (g) The prticle is o the positive side sice s() f() > (the re elow the -is is smller th the re ove the -is). d d. f( ) f( t) dt ( + ) d. f ( ) + + t dt + f ( ) f ( ) + t dt + L ( ) + d. f( ) f( t) dt d ( ) cos ( si )+ i cos si + cos f ( ) si + cos. Oe rch of si is from to. / / Are si cos ( ). () () The verte is t ( ) ( ). (Recll tht the verte of prol + + cis t. ), so the height is. (c) The se is ( ). (se)(height) (). True. The Fudmetl Theorem of Clculus gurtees tht F is differetile o I, so it must e cotiuous o I.. Flse. I fct, e is rel umer, so its derivtive is lws.. D.. D. See the Fudmetl Theorem of Clculus.. E. f( ) + f ( )( ) f ( ) f ( ) ( ). E. si( t) si( t). () f (t) is eve fuctio so dt dt. t t si( t) Si( ) dt t si( t) dt t si( t) dt Si( ) t si t () Si( ) dt t (c) Si ( ) f( t) whe t, ozero iteger. (d) [, ] [,, ]. () c ( ) dc c ( ) or $ () c ( ) dc c ( ) or $. ( + ) + + ( ) +. thousd The comp should epect $.. () drums () ( drums)($. per drum ) $. () True, ecuse h ( ) f( )d therefore h ( ) f ( ). () True ecuse h d h re oth differetile prt (). (c) True, ecuse h () f().

21 Sectio.. Cotiued (d) True, ecue h () f() d h () f () <. (e) Flse, ecuse h () f () <. (f) Flse, ecuse h () f () (g) True, ecuse h ( ) f( ),d f is decresig fuctio tht icludes the poit (,).. Sice f(t)is odd, f() t dt f() t dt ecuse the re etwee the curve d the -is from to is the opposite of the re etwee the curve d the -is from to, ut it is o the opposite side of the -is. f() t dt f() t dt f() t dt f() t dt Thus f() t dt is eve.. Sice f(t) is eve, f() t dt f() t dt ecuse the re etwee the curve d the -is from to is the sme s the re etwee the curve d the -is from to. Thus f() t dt f() t dt f() t dt f() t dt is odd.. If f is eve cotiuous fuctio, the f() t dt is odd, d ut f() t dt f( ). Therefore, f is the derivtive of the odd cotiuous fuctio f() t dt. Similrl, if f is odd cotiuous fuctio, the f is the derivtive of the eve cotiuous fuctio f() t dt.. Solvig NINT si t, t,, t grphicll, the solutio is..we ow rgue tht there re o other solutios, usig the fuctios Si() d f(t) s defied i Eercise. Sice d si Si( ) f( ), Si ( ) is icresig o ech itervl,( + ) d decresig o ech itervl ( + ),( + ), where K is oegtive iteger. Thus, for >, Si( ) hs its locl miim t, where is positive iteger. Furthermore, ech rch of f( )is smller i height th the ( + ) ( + ) previous oe, so f( ) > f( ). This ( + ) ( + ) mes tht Si( + ) ) Si( ) f( ) >, so ech successive miimum vlue is greter th the previous si oe. Sice f ( ) NINT, o,,. ( ) d Si is cotiuous for >, this mes Si ( ) > (d. hece Si( ) ) for. Now, Si( ) hs ectl oe solutio i the itervl [, ] ecuse Si() is icresig o this itervl d. is solutio. Furthermore, Si( ) hs o solutio o the itervl [, ] ecuse Si() is decresig o this itervl d Si( ). >. Thus, Si( ) hs ectl oe solutio i the itervl [, ). Also, there is o solutio i the itervl (, ] ecuse Si() is odd Eercise (or ), which mes tht Si( ) for ( sice Si( ) for ). Sectio. Trpezoidl Rule (pp. ) Eplortio Are Uder Prolic Arc. Let f( ) A + B+ C The f( h) Ah Bh+ C, f( ) A( ) + B( ) + C C, d f( h) Ah + Bh+ C Ah Bh + C + C + Ah + Bh + C h Ah + C.. Ap ( A + B+ C) h A + B h + C h A h + B h + Ch A h + B h Ch A h + Ch h Ah + C ( ). Sustitute the epressio i step for the pretheticll eclosed epressio i step : h Ap Ah C ( + ) h ( + + ). Quic Review.. si cos < o [, ], so the curve is cocve dow o [, ].. > o [, ], so the curve is cocve up o [, ].. < o [, ], so the curve is cocve dow o [, ].

22 Sectio.. cos si o [, ], so the curve is cocve dow o [, ].. e > o [, ], so the curve is cocve up o [, ].. e < o [, ], so the curve is cocve dow o [, ].. > o [, ], so the curve is cocve up o [, ].. csc cot ( csc )( csc ) + (csc cot )(cot ) csc + csc cot > o [, ], so the curve is cocve up o [, ].. < o [, ], so the curve is cocve dow o [, ].. cos + si si + cos < o [, ], so the curve is cocve dow. Sectio. Eercises. () f( ), h f() T () () f ( ), f ( ) The pproimtio is ect. + (c). () f( ), h f() T (). () f ( ), f ( ) > o [, ] The proimtio is overestimte. (c). () f( ), h f() T (). () f ( ), f ( ) > o [, ] The proimtio is overestimte. (c). () f ( ), h f() T () f ( ), f ( ) > o [, ] The pproimtio is overestimte. (c) l l.

23 Sectio.. () f( ), h f( ) T ( + ()+ + + ). () / / f ( ), f ( ) < o [, ] The pproimtio is uderestimte. (c) /. () f( ) si, h f () T +. + ()+ +. () f ( ) cos, f ( ) si < o [, ] The pproimtio is uderestimte. (c) si cos h. T ( ) f( ) ( + ( ) + ( ) + ( ) + ( ) + ( ) + ) h. T ( ) f( ) ( + ( ) + ( ) + ( ) + ( ) + ( ) + ). (. (.) (.) (.).)( ) ft. () ( + ( ) + ( ) + ( ) + + ( ) + )( ),, ft () You pl to strt with, fish. You ited to hve (. )(, ), fish to e cught. Sice,., the tow c sell t most liceses.. Sum the trpezoids d multipl to chge secods to hours (. ( ) (.. )( ) (.. )( ) + (..)( + ) + (..)( + ) + (.. ) ( + ) + (.. ) ( + ) + (.. )( + ) + (.. )( + ) + (.. )( + ) + (.. )( + )). mi feet.. Sum the trpezoids d multipl to chge secods to hours. ( + ( ) + ( ) + ( ) + ( ) + ( )+ ( ) + ( ) + ). mi feet.. () / () + () +. () / () + () +. () / () + (). () / () l l l.. () ( + ( ) + ( ) + ( ) + ( )). () / / / ( ) ( )

24 Sectio. /. () si si si ( )+ + + si si + si. () si cos cos ( cos) ( ). () f( ), h f () S ( + ( )+ ( )+ ( )+ ) ( ) () E s (c) For f ( ), M si ce f ( ) ( ). f (d) Simpso s Rule for cuic polomils will lws give ect vlues sice f ( ) for ll cuic polomils.. The verge of the discrete tempertures gives equl weight to the low vlues t the ed.. () ( + i + i + + i + ) v( f ). i () We re pproimtig the re uder the temperture grph. B doulig the edpoits, the error i the first d lst trpezoids icreses.. Setch grph of lie segmets joied t shrp corers. Oe emple:. S., S.. S., S.. S., S. usig. s lower limit S., S. usig. s lower limit. S., S.. () T. () T. T. E T.... T (c) E E T (d), h, M ET ET E T ( ). () S. S S.. () E S (c) E s.. E s (d), h, M E s E s ( ) s T E s

25 Sectio. i.. h i. Estimte the re to e [ + (. ) + ( ) + ( ) + ( ) + (. ) + ]. i. Note tht the t cross-sectio is represeted the shded re, ot the etire wig cross-sectio. Usig Simpso s Rule, estimte the cross-sectio re to e [ ] [. + (.) + (.) + (.) + (.) + (. ) +.]. ft Legth ( l) l / ft. ft. ft. Flse. The Trpezoidl Rule will over estimte the itegrl if it is cocve up.. Flse. For emple, the two pproimtios will e the sme if f is costt o [, ].. A. LRAM < T < RRAM, so RRAM <.. e e e e e. B e + e + e + e /. C. si si + si. C si si si / () + ( + ). () f ( ) cos( ) f ( ) i si( ) + cos( ) si ( ) + cos( ) () [, ] [, ] (c) The grph shows tht f ( ) so f ( ) for. h (d) ET ( ) ( h )( ) h. (e) For < h., ET. <. (f) ( ) h.. () f ( ) i cos( ) si( ) si( ) cos ( ) si ( ) ( ) f ( ) i si ( ) cos ( ) i cos ( ) si( ) ( )si( ) cos ( ) () [, ] [, ] ( (c) The grph shows tht f ) ( ) so ( f ) ( ) for.. T. S h (d) ES ( ) ( h )( ) h. (e) For < h., ES. <. (f) ( ) h. h [ ] h [ ] + h [ ] LRAM + RRAM h [ ] [ h ( ) + ( h)( )] + T MRAM, where h. Quic Quiz Sectios. d.. C. f( ) (( )( + ) + ( )( + ) + ( )( + )) (si ). D. si cos (si ( )) (si ( )) cos cos.

26 Chpter Review d t. C. df ( ) e dt df ( ) ( ) ( ) e.. () + + ( ) (si si(. ) si(. ) + si(. ) + si( )). () F icreses o [, ] d [, ] ecuse si( t ) > d (c) f() t si( t ) dt K K K Chpter Review ( ).. RRAM : LRAM : MRAM : T ( LRAM + RRAM ) +.. ( ). LRAM MRAM RRAM l l l l.. () f( ) f( ) The sttemet is true. - () [ f( ) + g( )] f ( ) + g( ) f( ) + f( ) The sttemet is true. g( )

27 Chpter Review. Cotiued (c) If f( ) g( ) o [, ], the f ( ) g( ), ut this is ot true sice f( ) f( ) + f( ) + d g ( ). The sttemet is flse.. () Volume of oe clider: rh si ( m) Δ Totl volume: V lim mi si ( ) Δ () Use si o[, ]. i NINT ( si,,, ).. () Approimtios m vr. Usig Simpso s Rule, the re uder the curve is pproimtel [ + (.) + () + () + (.) + (.) + (. ) + (. ) + (. ) + ( ) + ]. The od trveled out. m. (). () Positio (m) s Time (sec) The curve is lws icresig ecuse the velocit is lws positive, d the grph is steepest whe the velocit is highest, t t. () si (c) (d) (e) ( ) + ( si ) t i. The grph is ove the -is for < d elow the -is for < Totl re ( ) ( ) [ ] [ ]. The grph is ove the -is for -is for < Totl re / cos / / / si si ( ) ( ) < cos. ( ). / /. cos si. + ( ) + ( ) d elow the. ( s s + ) ds s s + s... ( ) / / d ( ) dt t t / / t dt t ( ) / /. sec θ dθ tθ e. e l. ( + ) ( + ) ( + ) ( )

28 Chpter Review. + ( + ) ( ). sec t sec / /. si( ) cos( ). d + + l l l. Grph o [, ]. The regio uder the curve is qurter of circle of rdius. ( ). Grph o [, ]. The regio uder the curve cosists of two trigles. ( + )( ) ( )( ). Grph o [, ].. () Note tht ech itervl is d hours Upper estimte: ( ). L Lower estimte: ( ). L () [..).).) + ( + ( + + ( +.]. L. () Upper estimte: ( ). ft Lower estimte: ( ). ft () [..).).) ] + ( + ( + + ( +. ft. Oe possile swer: The is importt ecuse it correspods to the ctul phsicl qutit Δ i Riem sum. Without the Δ, our itegrl pproimtios would e w off.. f( ) f( ) + f( ) ( ) + + [ ] +. Let f( ) + si m f sice m si mi f sice mi si (mi f )( ) + si (m f )( ) < + si /. () v( ) The regio uder the curve rdius. is hlf circle of ( )... / / () v( ) d d d + cos d + cos ( ) i ( ) + cos ( ) d dt + t +

29 Chpter Review d d. dt t + t + i ( ) c ( ) t dt + / dt + t c( ) + The totl cost for pritig ewsletters is $.. v() I ( + t) dt [ t+ t Rich s verge dil ivetor is cses. ct (). It () + t v() c ( + t) dt + t t Rich s verge dil holdig cost is $. We could lso s (.).. ( t - t + ) dt t -t +t Usig grphig clcultor,. or... () True, ecuse g ( ) f( ). () True, ecuse g is differetile. (c) True, ecuse g ( ) f(). (d) Flse, ecuse g () f () >. (e) True, ecuse g ( ) f() d g () f () >. (f) Flse, ecuse g () f (). (g) True, ecuse g ( ) f( ), d f is icresig fuctio which icludes the poit (, ).. + F() F( ) si t. ( ) dt + t. + Thus, it stisfies coditio i. () + t dt () + + Thus, it stisfies coditio ii.. Grph (). t dt + t + + ( ) +. () Ech itervl is mi h. [. + (. ) + (. ) + + (. ) +. ]. gl () ( mi/h) h/gl. mi/gl. () Usig the freefll equtio s gt from Sectio., the distce A flls i secods is ( )( ) ft. Whe her prchute opes, her ltitude is ft. () The distce B flls i secods is ( )( ) ft. Whe her prchute opes, her ltitude is ft. (c) Let t represet the umer of secods fter A jumps. For t sec, A s positio is give SA () t ( t ) t, so A lds t t sec. For t + sec, B s positio is give SB () t ( t ) t, so B lds t t. sec. B lds first.

30 Chpter Review. () Are of the trpezoid ( + + h)( ) h( ) Are of the rectgle ( h ) h h ( + ) + ( h) h ( + + ) () Let h. h S [ ] [ h ( + + ) + h ( + + ) + + h ( + + )] Sice ech epressio of the form h ( i + i + i) is equl to twice the re of the ith of rectgles plus the re of the ith of i MRAM + T trpezoids, S.. () g() f() t dt () g() f() t dt ()() (c) g( ) f() t dt f() t dt ( ) (d) g ( ) f( ); Sice f( )> for < < d f( )< for < <, g( ) hs reltive mimum t. (e) g ( ) f( ) The equtio of the tget lie is ( ) ( + ) or + (f) g ( ) f ( ), f ( ) t d f ( )is ot defied t. The iflectio poits re t d. Note tht g ( ) f ( )is udefied t s well, ut sice g ( ) f ( ) is egtive o oth sides of, is ot iflectio poit. (g) Note tht the solute mimum is g( ) d the solute miimum is g( ) f() t dt f() t dt ( ). The rge of g is,. /. () NINT( e,,, ). / NINT( e,,, ). () The re is.. First estimte the surfce re of the swmp. [ + ( ) + ( ) + ( ) + ( ) + ( ) + ] ft d ( ft)( ft )i d ft. () V ( v ) si ( t) m Usig NINT: v( V ) Vm si t dt ( ) ( ) ( Vm) ( Vm) si ( t) dt ( Vm) V rms V m ( ) V m () V m. volts. () Rtdt () (. ( ) +. )., which is the totl umer of gllos of wter tht flowed through the pipe durig the hour period. () Yes, ecuse R() R(), the Me Vlue Theorem gurtees tht there is umer c etwee d such tht R () c. (c) Qt ( ). ( + ( ) ( ) ). gl / hr. f () () + () f ( ) + f () () + + ( + ) f ( ) f( ) + c f ( ) c + ( + c) c f ( ) +. () g ( ) ( ( ) ( ( ))) g ( ) ( ( + )) () g( ) f( ) (c) The miimum vlue is g ( ) (d) g hs poit of iflectio t. It is the ol plce where the slope goes from positive to egtive.

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles. AP Clculus Notes: Uit 6 Defiite Itegrls Sllus Ojective:.4 The studet will pproimte defiite itegrl usig rectgles. Recll: If cr is trvelig t costt rte (cruise cotrol), the its distce trveled is equl to rte

More information

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why? AB CALCULUS: 5.3 Positio vs Distce Velocity vs. Speed Accelertio All the questios which follow refer to the grph t the right.. Whe is the prticle movig t costt speed?. Whe is the prticle movig to the right?

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

BC Calculus Review Sheet

BC Calculus Review Sheet BC Clculus Review Sheet Whe you see the words. 1. Fid the re of the ubouded regio represeted by the itegrl (sometimes 1 f ( ) clled horizotl improper itegrl). This is wht you thik of doig.... Fid the re

More information

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1 SECTION 5. PGE 78.. DMS: CLCULUS.... 5. 6. CHPTE 5. Sectio 5. pge 78 i + + + INTEGTION Sums d Sigm Nottio j j + + + + + i + + + + i j i i + + + j j + 5 + + j + + 9 + + 7. 5 + 6 + 7 + 8 + 9 9 i i5 8. +

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x Chpter 6 Applictios Itegrtio Sectio 6. Regio Betwee Curves Recll: Theorem 5.3 (Cotiued) The Fudmetl Theorem of Clculus, Prt :,,, the If f is cotiuous t ever poit of [ ] d F is tiderivtive of f o [ ] (

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

the midpoint of the ith subinterval, and n is even for

the midpoint of the ith subinterval, and n is even for Mth4 Project I (TI 89) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Math1242 Project I (TI 84) Name:

Math1242 Project I (TI 84) Name: Mth4 Project I (TI 84) Nme: Riem Sums d Defiite Itegrls The re uder the grph of positive fuctio is give y the defiite itegrl of the fuctio. The defiite itegrl c e pproimted y the followig sums: Left Riem

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS REVIEW OF CHAPTER 5 MATH 4 (SECTION C): EEMENTARY CACUUS.. Are.. Are d Estimtig with Fiite Sums Emple. Approimte the re of the shded regio R tht is lies ove the -is, elow the grph of =, d etwee the verticl

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Pre-Calculus - Chapter 3 Sections Notes

Pre-Calculus - Chapter 3 Sections Notes Pre-Clculus - Chpter 3 Sectios 3.1-3.4- Notes Properties o Epoets (Review) 1. ( )( ) = + 2. ( ) =, (c) = 3. 0 = 1 4. - = 1/( ) 5. 6. c Epoetil Fuctios (Sectio 3.1) Deiitio o Epoetil Fuctios The uctio deied

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days Clculus AP U5 Itegrtio (AP) Nme: Big ide Clculus is etire rch of mthemtics. Clculus is uilt o two mjor complemetry ides. The first is differetil clculus, which is cocered with the istteous rte of chge.

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/ UNIT (COMMON) Time llowed Two hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios. ALL questios

More information

National Quali cations AHEXEMPLAR PAPER ONLY

National Quali cations AHEXEMPLAR PAPER ONLY Ntiol Quli ctios AHEXEMPLAR PAPER ONLY EP/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite

More information

For students entering Honors Precalculus Summer Packet

For students entering Honors Precalculus Summer Packet Hoors PreClculus Summer Review For studets eterig Hoors Preclculus Summer Pcket The prolems i this pcket re desiged to help ou review topics from previous mthemtics courses tht re importt to our success

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

5.3. The Definite Integral. Limits of Riemann Sums

5.3. The Definite Integral. Limits of Riemann Sums . The Defiite Itegrl 4. The Defiite Itegrl I Sectio. we ivestigted the limit of fiite sum for fuctio defied over closed itervl [, ] usig suitervls of equl width (or legth), s - d>. I this sectio we cosider

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION

334 MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION MATHS SERIES DSE MATHS PREVIEW VERSION B SAMPLE TEST & FULL SOLUTION TEST SAMPLE TEST III - P APER Questio Distributio INSTRUCTIONS:. Attempt ALL questios.. Uless otherwise specified, ll worig must be

More information

Differentiation Formulas

Differentiation Formulas AP CALCULUS BC Fil Notes Trigoometric Formuls si θ + cos θ = + t θ = sec θ 3 + cot θ = csc θ 4 si( θ ) = siθ 5 cos( θ ) = cosθ 6 t( θ ) = tθ 7 si( A + B) = si Acos B + si B cos A 8 si( A B) = si Acos B

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Mathematics Extension 2

Mathematics Extension 2 04 Bored of Studies Tril Emitios Mthemtics Etesio Writte b Crrotsticks & Trebl Geerl Istructios Totl Mrks 00 Redig time 5 miutes. Workig time 3 hours. Write usig blck or blue pe. Blck pe is preferred.

More information

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b, 3 6 6 CHAPTER 5 INTEGRALS CAS 5. Fid the ect re uder the cosie curve cos from to, where. (Use computer lger sstem oth to evlute the sum d compute the it.) I prticulr, wht is the re if? 6. () Let A e the

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

INTEGRATION 5.1. Estimating with Finite Sums. Chapter. Area EXAMPLE 1. Approximating Area

INTEGRATION 5.1. Estimating with Finite Sums. Chapter. Area EXAMPLE 1. Approximating Area Chpter 5 INTEGRATION OVERVIEW Oe of the gret chievemets of clssicl geometr ws to oti formuls for the res d volumes of trigles, spheres, d coes. I this chpter we stud method to clculte the res d volumes

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

BC Calculus Path to a Five Problems

BC Calculus Path to a Five Problems BC Clculus Pth to Five Problems # Topic Completed U -Substitutio Rule Itegrtio by Prts 3 Prtil Frctios 4 Improper Itegrls 5 Arc Legth 6 Euler s Method 7 Logistic Growth 8 Vectors & Prmetrics 9 Polr Grphig

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

5.1 - Areas and Distances

5.1 - Areas and Distances Mth 3B Midterm Review Writte by Victori Kl vtkl@mth.ucsb.edu SH 63u Office Hours: R 9:5 - :5m The midterm will cover the sectios for which you hve received homework d feedbck Sectios.9-6.5 i your book.

More information

Simpson s 1/3 rd Rule of Integration

Simpson s 1/3 rd Rule of Integration Simpso s 1/3 rd Rule o Itegrtio Mjor: All Egieerig Mjors Authors: Autr Kw, Chrlie Brker Trsormig Numericl Methods Eductio or STEM Udergrdutes 1/10/010 1 Simpso s 1/3 rd Rule o Itegrtio Wht is Itegrtio?

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

* power rule: * fraction raised to negative exponent: * expanded power rule:

* power rule: * fraction raised to negative exponent: * expanded power rule: Mth 15 Iteredite Alger Stud Guide for E 3 (Chpters 7, 8, d 9) You use 3 5 ote crd (oth sides) d scietific clcultor. You re epected to kow (or hve writte o our ote crd) foruls ou eed. Thik out rules d procedures

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

f ( x) ( ) dx =

f ( x) ( ) dx = Defiite Itegrls & Numeric Itegrtio Show ll work. Clcultor permitted o, 6,, d Multiple Choice. (Clcultor Permitted) If the midpoits of equl-width rectgles is used to pproximte the re eclosed etwee the x-xis

More information

Numerical Integration

Numerical Integration Numericl tegrtio Newto-Cotes Numericl tegrtio Scheme Replce complicted uctio or tulted dt with some pproimtig uctio tht is esy to itegrte d d 3-7 Roerto Muscedere The itegrtio o some uctios c e very esy

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

18.01 Calculus Jason Starr Fall 2005

18.01 Calculus Jason Starr Fall 2005 18.01 Clculus Jso Strr Lecture 14. October 14, 005 Homework. Problem Set 4 Prt II: Problem. Prctice Problems. Course Reder: 3B 1, 3B 3, 3B 4, 3B 5. 1. The problem of res. The ciet Greeks computed the res

More information

Mathematical Notation Math Calculus for Business and Social Science

Mathematical Notation Math Calculus for Business and Social Science Mthemticl Nottio Mth 190 - Clculus for Busiess d Socil Sciece Use Word or WordPerfect to recrete the followig documets. Ech rticle is worth 10 poits d should e emiled to the istructor t jmes@richld.edu.

More information

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2] Mrkig Scheme for HCI 8 Prelim Pper Q Suggested Solutio Mrkig Scheme y G Shpe with t lest [] fetures correct y = f'( ) G ll fetures correct SR: The mimum poit could be i the first or secod qudrt. -itercept

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions!

Name: A2RCC Midterm Review Unit 1: Functions and Relations Know your parent functions! Nme: ARCC Midterm Review Uit 1: Fuctios d Reltios Kow your pret fuctios! 1. The ccompyig grph shows the mout of rdio-ctivity over time. Defiitio of fuctio. Defiitio of 1-1. Which digrm represets oe-to-oe

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there

Mean Value Theorem for Integrals If f(x) is a continuous function on [a,b] then there Itegrtio, Prt 5: The Me Vlue Theorem for Itegrls d the Fudmetl Theorem of Clculus, Prt The me vlue theorem for derivtives tells us tht if fuctio f() is sufficietly ice over the itervl [,] the t some poit

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the

Lecture 2. Rational Exponents and Radicals. 36 y. b can be expressed using the. Rational Exponent, thus b. b can be expressed using the Lecture. Rtiol Epoets d Rdicls Rtiol Epoets d Rdicls Lier Equtios d Iequlities i Oe Vrile Qudrtic Equtios Appedi A6 Nth Root - Defiitio Rtiol Epoets d Rdicls For turl umer, c e epressed usig the r is th

More information

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte

Fall 2004 Math Integrals 6.1 Sigma Notation Mon, 15/Nov c 2004, Art Belmonte Fll Mth 6 Itegrls 6. Sigm Nottio Mo, /Nov c, Art Belmote Summr Sigm ottio For itegers m d rel umbers m, m+,...,, we write k = m + m+ + +. k=m The left-hd side is shorthd for the fiite sum o right. The

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

National Quali cations SPECIMEN ONLY

National Quali cations SPECIMEN ONLY AH Ntiol Quli ctios SPECIMEN ONLY SQ/AH/0 Mthemtics Dte Not pplicble Durtio hours Totl mrks 00 Attempt ALL questios. You my use clcultor. Full credit will be give oly to solutios which coti pproprite workig.

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Indices and Logarithms

Indices and Logarithms the Further Mthemtics etwork www.fmetwork.org.uk V 7 SUMMARY SHEET AS Core Idices d Logrithms The mi ides re AQA Ed MEI OCR Surds C C C C Lws of idices C C C C Zero, egtive d frctiol idices C C C C Bsic

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Riemann Integral and Bounded function. Ng Tze Beng

Riemann Integral and Bounded function. Ng Tze Beng Riem Itegrl d Bouded fuctio. Ng Tze Beg I geerlistio of re uder grph of fuctio, it is ormlly ssumed tht the fuctio uder cosidertio e ouded. For ouded fuctio, the rge of the fuctio is ouded d hece y suset

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before 8.1 Arc Legth Wht is the legth of curve? How c we pproximte it? We could do it followig the ptter we ve used efore Use sequece of icresigly short segmets to pproximte the curve: As the segmets get smller

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 998 MATHEMATICS 4 UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 miutes redig time) DIRECTIONS TO CANDIDATES Attempt ALL questios ALL questios re of equl vlue All

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

Chapter Real Numbers

Chapter Real Numbers Chpter. - Rel Numbers Itegers: coutig umbers, zero, d the egtive of the coutig umbers. ex: {,-3, -, -,,,, 3, } Rtiol Numbers: quotiets of two itegers with ozero deomitor; termitig or repetig decimls. ex:

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

5.1 Estimating with Finite Sums Calculus

5.1 Estimating with Finite Sums Calculus 5.1 ESTIMATING WITH FINITE SUMS Emple: Suppose from the nd to 4 th hour of our rod trip, ou trvel with the cruise control set to ectl 70 miles per hour for tht two hour stretch. How fr hve ou trveled during

More information

The Exponential Function

The Exponential Function The Epoetil Fuctio Defiitio: A epoetil fuctio with bse is defied s P for some costt P where 0 d. The most frequetly used bse for epoetil fuctio is the fmous umber e.788... E.: It hs bee foud tht oyge cosumptio

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information