Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions

Size: px
Start display at page:

Download "Math 242: Principles of Analysis Fall 2016 Homework 7 Part B Solutions"

Transcription

1 Mat 22: Principles of Analysis Fall 206 Homework 7 Part B Solutions. Sow tat f(x) = x 2 is not uniformly continuous on R. Solution. Te equation is equivalent to f(x) = 0 were f(x) = x 2 sin(x) 3. Since f(0) = 3 < 0 an f(3) = 6 sin(3) > 5 > 0 an f is continuous on [0, 3], te Intermeiate Value Teorem implies tat tere exists c (0, 3) suc tat f(c ) Since f( 3) = 6 sin( 3) > 5 > 0 an f is continuous on [ 3, 0], te Intermeiate Value Teorem implies tat tere exists c 2 ( 3, 0) suc tat f(c 2 ) Since c > 0 an c 2 < 0, tese roots are istinct. 2. A function f is Lipscitz on an interval I if tere exists a constant L > 0 suc tat f(y) f(x) L y x for every x, y I. (a) Sow f(x) = x 2 is Lipscitz on [ M, M] for any M > 0. Solution. For any x, y [ M, M] we ave f(y) f(x) = y 2 x 2 = y + x y x ( y + x ) y x 2M y x, an tus f is Lipscitz on [ M, M] wit constant L = 2M. (b) Sow tat if f is Lipscitz on I, ten f is uniformly continuous on I. Solution. Given ϵ > 0, coose δ = ϵ/l. Ten for any x, y I suc tat y x < δ we ave f(y) f(x) L y x < Lδ = ϵ. Tus f is uniformly continuous on I. (c) Sow f(x) = x is uniformly continuous on [0, ], but not Lipscitz on [0, ]. Solution. Since f is continuous on [0, ], f is uniformly continuous on [0, ]. Suppose f were Lipscitz on [0, ]. Ten for some constant L > 0 we woul ave f(y) f(x) L y x for all x, y [0, ]. Fixing x = 0, tis woul imply f(y) L y for all y [0, ]. Setting y = for eac n N ten gives n f(/n) L/n. Tis is equivalent to n L/n, or n L for all n N. Since tere is no suc constant L, f is not Lipscitz. () Prove tat if f as erivative f tat is continuous on [a, b], ten f is Lipscitz on [a, b]. Solution. Since f is continuous on [a, b], te Extreme Value Teorem implies tat f attains a maximum an a minimum on [a, b]. Tus f is boune on [a, b], so tere exists some M > 0 suc tat f (x) M for all x [a, b]. Given any x, y [a, b], we may suppose witout loss of generality tat x < y. Ten applying te Mean Value Teorem to f on [x, y], tere exists some c (x, y) suc tat f(y) f(x) = f (c)(y x). Hence so f is Lipscitz on [a, b]. f(y) f(x) = f (c) y x M y x

2 3. Use te efinition to fin te erivative of eac function. (a) f(x) = x Solution. For c 0 we ave Tus f (x) = x 2. f (c) x c (b) s(x) = sin(x) Solution. For any c R we ave Tus s (x) = cos(x). x c x c x c c x xc x c x c xc = c. 2 s sin(c + ) sin(c) (c) sin(c) cos() + sin() cos(c) sin(c) sin(c)[cos() ] + sin() cos(c) sin(c)[cos() ] sin() cos(c) + lim 0 ( ) 0 ( cos() = sin(c) lim + cos(c) lim 0 = sin(c) 0 + cos(c) = cos(c). ) sin(). (a) Use inuction to prove tat x (xn ) = nx n for all n N. Hint: Write x n+ = x n x an use te prouct rule. Solution. Wen n =, we ave (x) = = x x0, so te statement is true. Now suppose te statement ols for some n. Ten, by te prouct rule, x (xn+ ) = x (xn x) = nx n x + x n = nx n + x n = (n + )x n. (b) Use eiter te quotient rule or cain rule, togeter wit te result of part (a), to prove tat te erivative of x (xn ) = nx n for all negative integers n. Solution. If n Z an n < 0, ten m = n N, so by (a) x xm = mx m. Tus, by te quotient rule x (xn ) = x x = mxm = mx m = nx n. m (x m ) 2 5. Let f(x) = x sin(/x) for x 0 an f(0) Sow tat f is ifferentiable everywere except x 2

3 Solution. For x 0, te prouct rule an cain rule imply tat f is ifferentiable wit erivative f (x) = x cos(/x) ( /x 2 ) + sin(/x). On te oter an f (0) f(x) f(0) x 0 x sin(/x) x sin(/x). As sown in class, tis limit oes not exist, so f is not ifferentiable at x 6. Let f(x) = x 2 sin(/x) for x 0 an f(0) (a) Sow f is ifferentiable everywere (incluing x = 0). Solution. For x 0, te prouct rule an cain rule imply tat f is ifferentiable wit erivative Next, f (x) = x 2 cos(/x) ( /x 2 ) + 2x sin(/x) = 2x sin(/x) cos(/x). f (0) f(x) f(0) x 0 x 2 sin(/x) x x sin(/x). Since x sin(/x) x for all x 0 an lim x x = 0, te squeeze teorem implies tat lim x sin(/x) = 0, so f is ifferentiable at x = 0 wit f (0) (b) Sow f is not continuous at x Solution. Since f (0) = 0, in orer for f to be continuous at x = 0 we woul nee lim f (x) As above, by te squeeze teorem, we know lim 2x sin(/x) Tus, since lim cos(/x) oes not exist, it follows tat lim f (x) oes not exist. Hence f is not continuous at x 7. (a) Prove tat te polynomial p(x) = x 3 3x 2 + 6x + 2 as exactly one real root. Solution. Since p is a polynomial, p is continuous on te interval [ 2, 0]. Tus, since p( 2) = 20 < 0 an p(0) = 2 > 0, te Intermeiate Value Teorem implies tere exists c [0, 2] suc tat p(c) Tis proves p as a real root. To see tat p as only one real real, suppose tere exists a secon root c 2. Ten since p(c) = p(c 2 ) = 0, Rolle s Teorem implies tere exists some point c 3 between c an c 2 suc tat p (c 3 ) But p(x) = 3x 2 6x+6 = 3(x ) 2 +3, so p(x) 0 for all x an tus p cannot ave two roots. (b) Sow tat te equation x 2 = 3 + sin(x) as exactly two solutions. Solution. Te equation is equivalent to f(x) = 0 were f(x) = x 2 sin(x) 3. We first sow tat tis equation can ave at most two solutions. Suppose instea tat tere exist c < c 2 < c 3 suc tat f(c ) = f(c 2 ) = f(c 3 ) Since f 3

4 is continuous on [c, c 2 ] an ifferentiable on (c, c 2 ), te Mean Value Teorem implies tat tere exists c (c, c 2 ) suc tat f (c ) = f(c 2) f(c ) c 2 c = 0 c 2 c Similarly, tere exists c 5 (c 2, c 3 ) suc tat f (c 5 ) Next, since f is continuous on [c, c 5 ] an ifferentiable on (c, c 5 ), te Mean Value Teorem implies tat tere exists c 6 (c, c 5 ) suc tat f (c 6 ) = f (c 5 ) f (c ) c 5 c = 0 c 5 c But tis is impossible since f (x) = 2 + sin(x) for all x. Next we sow tat f oes in fact ave two roots. Since f(0) = 3 < 0 an f(3) = 6 sin(3) > 5 > 0 an since f is continuous on [0, 3], te Intermeiate Value Teorem implies tat tere exists c (0, 3) suc tat f(c ) Since f( 3) = 6 sin( 3) > 5 > 0 an f is continuous on [ 3, 0], te Intermeiate Value Teorem implies tat tere exists c 2 ( 3, 0) suc tat f(c 2 ) Since c > 0 an c 2 < 0, tese roots are istinct. (c) Prove tat te equation x = 3x 3 + as exactly two solutions. Solution. Rewrite te equation as x 3x 3 = 0 an set f(x) = x 3x 3. Ten x is a solution of te equation if an only if f(x) Since f is a polynomial, f is continuous everywere. Since f(0) = < 0 an f() = 63 > 0, te Intermeiate Value Teorem implies tere exists c [0, ] suc tat f(c ) Since f( ) = 3 > 0 an f(0) = < 0, te Intermeiate Value Teorem implies tere exists c 2 [, 0] suc tat f(c 2 ) To see tat tese are te only two solutions, first notice tat f (x) = x 3 9x 2 = x 2 (x 9). Tus f (x) > 0 for all x > 9, an terefore f is strictly increasing on ( 9, ). Tis implies f can ave at most one root in te interval ( 9, ), namely c 2. Next, f (x) < 0 for x (, 0) or x (0, 9 ). Tus f is strictly ecreasing on eac of tese intervals, an can ave at most one root in eac interval. But f(0) =, so f(x) < 0 for all x (0, 9 ) an tus f as no roots in tat interval. Te point c must be te one root of f in te interval (, 0). Hence f as exactly two roots. 8. Suppose f is ifferentiable everywere an f (x) 2 for all x R. Sow tat tere is at most one number c suc tat f(c) = 2c + 3. Solution. Let g(x) = f(x) 2x. Ten g is ifferentiable everywere an g (x) = f (x) 2 0 for all x R. Suppose tere exist real numbers c < c 2 suc tat f(c ) = 2c + 3 an f(c 2 ) = 2c Ten g(c ) = g(c 2 ) = 3. By te Mean Value Teorem, tere exists c (c, c 2 ) suc tat g (c) = g(c 2) g(c ) c 2 c Tis contraicts te fact tat g (x) 0 for all x.

5 9. Suppose f is twice ifferentiable on R, f(0) = 5, f(2) = 8 an f(7) = 2. (a) State two values tat f (x) must attain for x (0, 7). Solution. Applying te Mean Value Teorem on te interval [0, 7] implies tere exists c (0, 7) suc tat f (c ) = f(7) f(0) 7 0 = 3 7. Applying te Mean Value Teorem on te interval [0, 2] implies tere exists c 2 (0, 2) suc tat f f(2) f(0) (c 2 ) = = Applying te Mean Value Teorem on te interval [2, 7] implies tere exists c 3 (2, 7) suc tat f f(7) f(2) (c 3 ) = = Also, since f is continuous on [0, 7], te Extreme Value Teorem implies tat f attains a max an a min on [0, 7]. Since f(2) = 8 is greater tan f(0) an f(7), te maximum value is attaine at some point c (0, 7). By Teorem.3.3, f (c ) (b) Sow tat tere is at least one point c (0, 7) wit f (c) < 0. Solution. Since c 2 < c 3, applying te Mean Value Teorem to f on [c 2, c 3 ] implies tat tere exists some c (c 2, c 3 ) suc tat f (c) = f (c 3 ) f (c 2 ) c 3 c 2 = c 3 c 2 < 0. 5

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x)

Using the definition of the derivative of a function is quite tedious. f (x + h) f (x) Derivative Rules Using te efinition of te erivative of a function is quite teious. Let s prove some sortcuts tat we can use. Recall tat te efinition of erivative is: Given any number x for wic te limit

More information

2.4 Exponential Functions and Derivatives (Sct of text)

2.4 Exponential Functions and Derivatives (Sct of text) 2.4 Exponential Functions an Derivatives (Sct. 2.4 2.6 of text) 2.4. Exponential Functions Definition 2.4.. Let a>0 be a real number ifferent tan. Anexponential function as te form f(x) =a x. Teorem 2.4.2

More information

160 Chapter 3: Differentiation

160 Chapter 3: Differentiation 3. Differentiation Rules 159 3. Differentiation Rules Tis section introuces a few rules tat allow us to ifferentiate a great variety of functions. By proving tese rules ere, we can ifferentiate functions

More information

(a 1 m. a n m = < a 1/N n

(a 1 m. a n m = < a 1/N n Notes on a an log a Mat 9 Fall 2004 Here is an approac to te eponential an logaritmic functions wic avois any use of integral calculus We use witout proof te eistence of certain limits an assume tat certain

More information

Differential Calculus Definitions, Rules and Theorems

Differential Calculus Definitions, Rules and Theorems Precalculus Review Differential Calculus Definitions, Rules an Teorems Sara Brewer, Alabama Scool of Mat an Science Functions, Domain an Range f: X Y a function f from X to Y assigns to eac x X a unique

More information

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable.

Derivatives. if such a limit exists. In this case when such a limit exists, we say that the function f is differentiable. Derivatives 3. Derivatives Definition 3. Let f be a function an a < b be numbers. Te average rate of cange of f from a to b is f(b) f(a). b a Remark 3. Te average rate of cange of a function f from a to

More information

0.1 Differentiation Rules

0.1 Differentiation Rules 0.1 Differentiation Rules From our previous work we ve seen tat it can be quite a task to calculate te erivative of an arbitrary function. Just working wit a secon-orer polynomial tings get pretty complicate

More information

Rules of Differentiation

Rules of Differentiation LECTURE 2 Rules of Differentiation At te en of Capter 2, we finally arrive at te following efinition of te erivative of a function f f x + f x x := x 0 oing so only after an extene iscussion as wat te

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

Math 161 (33) - Final exam

Math 161 (33) - Final exam Name: Id #: Mat 161 (33) - Final exam Fall Quarter 2015 Wednesday December 9, 2015-10:30am to 12:30am Instructions: Prob. Points Score possible 1 25 2 25 3 25 4 25 TOTAL 75 (BEST 3) Read eac problem carefully.

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT01A1: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT01A1: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 22 Marc 2017 Semester Test 1 Scripts will be available for collection from Tursay morning. For marking

More information

MATH 1A Midterm Practice September 29, 2014

MATH 1A Midterm Practice September 29, 2014 MATH A Midterm Practice September 9, 04 Name: Problem. (True/False) If a function f : R R is injective, ten f as an inverse. Solution: True. If f is injective, ten it as an inverse since tere does not

More information

Calculus I - Spring 2014

Calculus I - Spring 2014 NAME: Calculus I - Spring 04 Midterm Exam I, Marc 5, 04 In all non-multiple coice problems you are required to sow all your work and provide te necessary explanations everywere to get full credit. In all

More information

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x

Exam 1 Solutions. x(x 2) (x + 1)(x 2) = x Eam Solutions Question (0%) Consider f() = 2 2 2 2. (a) By calculating relevant its, determine te equations of all vertical asymptotes of te grap of f(). If tere are none, say so. f() = ( 2) ( + )( 2)

More information

Differentiation Rules and Formulas

Differentiation Rules and Formulas Differentiation Rules an Formulas Professor D. Olles December 1, 01 1 Te Definition of te Derivative Consier a function y = f(x) tat is continuous on te interval a, b]. Ten, te slope of te secant line

More information

This file is /conf/snippets/setheader.pg you can use it as a model for creating files which introduce each problem set.

This file is /conf/snippets/setheader.pg you can use it as a model for creating files which introduce each problem set. Yanimov Almog WeBWorK assignment number Sections 3. 3.2 is ue : 08/3/207 at 03:2pm CDT. Te (* replace wit url for te course ome page *) for te course contains te syllabus, graing policy an oter information.

More information

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4.

Solution. Solution. f (x) = (cos x)2 cos(2x) 2 sin(2x) 2 cos x ( sin x) (cos x) 4. f (π/4) = ( 2/2) ( 2/2) ( 2/2) ( 2/2) 4. December 09, 20 Calculus PracticeTest s Name: (4 points) Find te absolute extrema of f(x) = x 3 0 on te interval [0, 4] Te derivative of f(x) is f (x) = 3x 2, wic is zero only at x = 0 Tus we only need

More information

f(x + h) f(x) f (x) = lim

f(x + h) f(x) f (x) = lim Introuction 4.3 Some Very Basic Differentiation Formulas If a ifferentiable function f is quite simple, ten it is possible to fin f by using te efinition of erivative irectly: f () 0 f( + ) f() However,

More information

Exam 1 Review Solutions

Exam 1 Review Solutions Exam Review Solutions Please also review te old quizzes, and be sure tat you understand te omework problems. General notes: () Always give an algebraic reason for your answer (graps are not sufficient),

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

SECTION 2.1 BASIC CALCULUS REVIEW

SECTION 2.1 BASIC CALCULUS REVIEW Tis capter covers just te very basics of wat you will nee moving forwar onto te subsequent capters. Tis is a summary capter, an will not cover te concepts in-ept. If you ve never seen calculus before,

More information

HOMEWORK HELP 2 FOR MATH 151

HOMEWORK HELP 2 FOR MATH 151 HOMEWORK HELP 2 FOR MATH 151 Here we go; te second round of omework elp. If tere are oters you would like to see, let me know! 2.4, 43 and 44 At wat points are te functions f(x) and g(x) = xf(x)continuous,

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a?

(a) At what number x = a does f have a removable discontinuity? What value f(a) should be assigned to f at x = a in order to make f continuous at a? Solutions to Test 1 Fall 016 1pt 1. Te grap of a function f(x) is sown at rigt below. Part I. State te value of eac limit. If a limit is infinite, state weter it is or. If a limit does not exist (but is

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

Convexity and Smoothness

Convexity and Smoothness Capter 4 Convexity and Smootness 4.1 Strict Convexity, Smootness, and Gateaux Differentiablity Definition 4.1.1. Let X be a Banac space wit a norm denoted by. A map f : X \{0} X \{0}, f f x is called a

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60)

1 (10) 2 (10) 3 (10) 4 (10) 5 (10) 6 (10) Total (60) First Name: OSU Number: Last Name: Signature: OKLAHOMA STATE UNIVERSITY Department of Matematics MATH 2144 (Calculus I) Instructor: Dr. Matias Sculze MIDTERM 1 September 17, 2008 Duration: 50 minutes No

More information

University Mathematics 2

University Mathematics 2 University Matematics 2 1 Differentiability In tis section, we discuss te differentiability of functions. Definition 1.1 Differentiable function). Let f) be a function. We say tat f is differentiable at

More information

Continuity and Differentiability of the Trigonometric Functions

Continuity and Differentiability of the Trigonometric Functions [Te basis for te following work will be te definition of te trigonometric functions as ratios of te sides of a triangle inscribed in a circle; in particular, te sine of an angle will be defined to be te

More information

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules

MAT1A01: Differentiation of Polynomials & Exponential Functions + the Product & Quotient Rules MAT1A01: Differentiation of Polynomials & Exponential Functions + te Prouct & Quotient Rules Dr Craig 22 Marc 2016 Semester Test 1 Results ave been publise on Blackboar uner My Graes. Scripts will be available

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

Analytic Functions. Differentiable Functions of a Complex Variable

Analytic Functions. Differentiable Functions of a Complex Variable Analytic Functions Differentiable Functions of a Complex Variable In tis capter, we sall generalize te ideas for polynomials power series of a complex variable we developed in te previous capter to general

More information

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) *

Differential Calculus: Differentiation (First Principles, Rules) and Sketching Graphs (Grade 12) * OpenStax-CNX moule: m39313 1 Differential Calculus: Differentiation (First Principles, Rules) an Sketcing Graps (Grae 12) * Free Hig Scool Science Texts Project Tis work is prouce by OpenStax-CNX an license

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator.

Lecture XVII. Abstract We introduce the concept of directional derivative of a scalar function and discuss its relation with the gradient operator. Lecture XVII Abstract We introduce te concept of directional derivative of a scalar function and discuss its relation wit te gradient operator. Directional derivative and gradient Te directional derivative

More information

2.3 Product and Quotient Rules

2.3 Product and Quotient Rules .3. PRODUCT AND QUOTIENT RULES 75.3 Product and Quotient Rules.3.1 Product rule Suppose tat f and g are two di erentiable functions. Ten ( g (x)) 0 = f 0 (x) g (x) + g 0 (x) See.3.5 on page 77 for a proof.

More information

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015

Math 31A Discussion Notes Week 4 October 20 and October 22, 2015 Mat 3A Discussion Notes Week 4 October 20 and October 22, 205 To prepare for te first midterm, we ll spend tis week working eamples resembling te various problems you ve seen so far tis term. In tese notes

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

232 Calculus and Structures

232 Calculus and Structures 3 Calculus and Structures CHAPTER 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS FOR EVALUATING BEAMS Calculus and Structures 33 Copyrigt Capter 17 JUSTIFICATION OF THE AREA AND SLOPE METHODS 17.1 THE

More information

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)??????

does NOT exist. WHAT IF THE NUMBER X APPROACHES CANNOT BE PLUGGED INTO F(X)?????? MATH 000 Miterm Review.3 Te it of a function f ( ) L Tis means tat in a given function, f(), as APPROACHES c, a constant, it will equal te value L. Tis is c only true if f( ) f( ) L. Tat means if te verticle

More information

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 +

MATH 155A FALL 13 PRACTICE MIDTERM 1 SOLUTIONS. needs to be non-zero, thus x 1. Also 1 + MATH 55A FALL 3 PRACTICE MIDTERM SOLUTIONS Question Find te domain of te following functions (a) f(x) = x3 5 x +x 6 (b) g(x) = x+ + x+ (c) f(x) = 5 x + x 0 (a) We need x + x 6 = (x + 3)(x ) 0 Hence Dom(f)

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Convexity and Smoothness

Convexity and Smoothness Capter 4 Convexity and Smootness 4. Strict Convexity, Smootness, and Gateaux Di erentiablity Definition 4... Let X be a Banac space wit a norm denoted by k k. A map f : X \{0}!X \{0}, f 7! f x is called

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition an Cain Rules James K. Peterson Department of Biological Sciences an Department of Matematical Sciences Clemson University November 2, 2018 Outline Function Composition an Continuity

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

30 is close to t 5 = 15.

30 is close to t 5 = 15. Limits Definition 1 (Limit). If te values f(x) of a function f : A B get very close to a specific, unique number L wen x is very close to, but not necessarily equal to, a limit point c, we say te limit

More information

Differentiation Rules c 2002 Donald Kreider and Dwight Lahr

Differentiation Rules c 2002 Donald Kreider and Dwight Lahr Dierentiation Rules c 00 Donal Kreier an Dwigt Lar Te Power Rule is an example o a ierentiation rule. For unctions o te orm x r, were r is a constant real number, we can simply write own te erivative rater

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

Derivatives of trigonometric functions

Derivatives of trigonometric functions Derivatives of trigonometric functions 2 October 207 Introuction Toay we will ten iscuss te erivates of te si stanar trigonometric functions. Of tese, te most important are sine an cosine; te erivatives

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) =

1 Limits Finding limits graphically. 1.3 Finding limits analytically. Examples 1. f(x) = x3 1. f(x) = f(x) = Theorem 13 (i) If p(x) is a polynomial, then p(x) = p(c) 1 Limits 11 12 Fining its graphically Examples 1 f(x) = x3 1, x 1 x 1 The behavior of f(x) as x approximates 1 x 1 f(x) = 3 x 2 f(x) = x+1 1 f(x)

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Math 1210 Midterm 1 January 31st, 2014

Math 1210 Midterm 1 January 31st, 2014 Mat 110 Midterm 1 January 1st, 01 Tis exam consists of sections, A and B. Section A is conceptual, wereas section B is more computational. Te value of every question is indicated at te beginning of it.

More information

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim QF101: Quantitative Finance September 5, 2017 Week 3: Derivatives Facilitator: Christopher Ting AY 2017/2018 I recoil with ismay an horror at this lamentable plague of functions which o not have erivatives.

More information

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim

In Leibniz notation, we write this rule as follows. DERIVATIVE OF A CONSTANT FUNCTION. For n 4 we find the derivative of f x x 4 as follows: lim .1 DERIVATIVES OF POLYNOIALS AND EXPONENTIAL FUNCTIONS c =c slope=0 0 FIGURE 1 Te grap of ƒ=c is te line =c, so fª()=0. In tis section we learn ow to ifferentiate constant functions, power functions, polnomials,

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00

SFU UBC UNBC Uvic Calculus Challenge Examination June 5, 2008, 12:00 15:00 SFU UBC UNBC Uvic Calculus Callenge Eamination June 5, 008, :00 5:00 Host: SIMON FRASER UNIVERSITY First Name: Last Name: Scool: Student signature INSTRUCTIONS Sow all your work Full marks are given only

More information

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year )

Department of Mathematics, K.T.H.M. College, Nashik F.Y.B.Sc. Calculus Practical (Academic Year ) F.Y.B.Sc. Calculus Practical (Academic Year 06-7) Practical : Graps of Elementary Functions. a) Grap of y = f(x) mirror image of Grap of y = f(x) about X axis b) Grap of y = f( x) mirror image of Grap

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Math Module Preliminary Test Solutions

Math Module Preliminary Test Solutions SSEA Summer 207 Mat Module Preliminar Test Solutions. [3 points] Find all values of tat satisf =. Solution: = ( ) = ( ) = ( ) =. Tis means ( ) is positive. Tat is, 0, wic implies. 2. [6 points] Find all

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

MATH1151 Calculus Test S1 v2a

MATH1151 Calculus Test S1 v2a MATH5 Calculus Test 8 S va January 8, 5 Tese solutions were written and typed up by Brendan Trin Please be etical wit tis resource It is for te use of MatSOC members, so do not repost it on oter forums

More information

MATH 120 Theorem List

MATH 120 Theorem List December 11, 2016 Disclaimer: Many of the theorems covere in class were not name, so most of the names on this sheet are not efinitive (they are escriptive names rather than given names). Lecture Theorems

More information

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am

UNIVERSITY OF MANITOBA DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I FIRST TERM EXAMINATION - Version A October 12, :30 am DEPARTMENT OF MATHEMATICS MATH 1510 Applied Calculus I October 12, 2016 8:30 am LAST NAME: FIRST NAME: STUDENT NUMBER: SIGNATURE: (I understand tat ceating is a serious offense DO NOT WRITE IN THIS TABLE

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Lecture Notes Di erentiating Trigonometric Functions page 1

Lecture Notes Di erentiating Trigonometric Functions page 1 Lecture Notes Di erentiating Trigonometric Functions age (sin ) 7 sin () sin 8 cos 3 (tan ) sec tan + 9 tan + 4 (cot ) csc cot 0 cot + 5 sin (sec ) cos sec tan sec jj 6 (csc ) sin csc cot csc jj c Hiegkuti,

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 -

1 + t5 dt with respect to x. du = 2. dg du = f(u). du dx. dg dx = dg. du du. dg du. dx = 4x3. - page 1 - Eercise. Find te derivative of g( 3 + t5 dt wit respect to. Solution: Te integrand is f(t + t 5. By FTC, f( + 5. Eercise. Find te derivative of e t2 dt wit respect to. Solution: Te integrand is f(t e t2.

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006

Math 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 Mat 102 TEST CHAPTERS 3 & 4 Solutions & Comments Fall 2006 f(x+) f(x) 10 1. For f(x) = x 2 + 2x 5, find ))))))))) and simplify completely. NOTE: **f(x+) is NOT f(x)+! f(x+) f(x) (x+) 2 + 2(x+) 5 ( x 2

More information

Differentiation Rules Derivatives of Polynomials and Exponential Functions

Differentiation Rules Derivatives of Polynomials and Exponential Functions Derivatives of Polynomials an Exponential Functions Differentiation Rules Derivatives of Polynomials an Exponential Functions Let s start with the simplest of all functions, the constant function f(x)

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points

MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points MA4001 Engineering Mathematics 1 Lecture 14 Derivatives of Trigonometric Functions Critical Points Dr. Sarah Mitchell Autumn 2014 An important limit To calculate the limits of basic trigonometric functions

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

MA455 Manifolds Solutions 1 May 2008

MA455 Manifolds Solutions 1 May 2008 MA455 Manifolds Solutions 1 May 2008 1. (i) Given real numbers a < b, find a diffeomorpism (a, b) R. Solution: For example first map (a, b) to (0, π/2) and ten map (0, π/2) diffeomorpically to R using

More information