Light Part II (and review) Lecture 8 2/11/2014

Size: px
Start display at page:

Download "Light Part II (and review) Lecture 8 2/11/2014"

Transcription

1 Light Part II (and review) Lecture 8 2/11/2014

2 Announcements Celebration of Knowledge (aka Exam 1) will be February 13, will include all information covered including today closed note bring a calculator (you cannot use your phone) Review Sessions (all in KSS 330): Sky: Today, February 11 Catherine: Tomorrow, February 12 BRING QUESTIONS!!!

3 Review: Electromagnetic Radiation Visible light is one part of the electromagnetic spectrum Other parts of the electromagnetic spectrum include X-rays, gammarays, radio waves, etc.

4 Review: Electromagnetic Spectrum The electromagnetic spectrum is described by: c = λf The energy of a waves is proportional to its frequency E = hf = hc λ

5 The Electromagnetic Spectrum Blue Shorter Wavelength Red Longer Wavelength λ f

6 The Speed of Light The speed of light is constant (same always, all the time, all kinds of light) The speed of light is finite i.e. not infinite... light takes time to travel from place to place!! Just like you can only travel so fast in a car, on foot, etc. 6

7 The Speed of Light Say Venus explodes right now. Assuming Venus is million miles from Earth. How long will it take before we (on Earth) see the explosion? a) we will see it instantaneously b) 1 minute c) 2 minutes d) 10 minutes Speed of Light = 670 million mph = 3 x cm/s

8 Luminosity is the total energy (light) emitted by an object in each second. Stefan-Boltzmann law Luminosity depends on an surface area (A), and its temperature (T 4 ) Luminosity = 5.67x10 8 (Α)T 4 Big and Hot objects have greater luminosity than small cool objects

9 Finish Lecture Tutorial Luminosity, Temperature and Size (pg 55) Work with a partner! Read the instructions and questions carefully. Discuss the concepts and your answers with one another. Take time to understand it now!!!! Come to a consensus answer you both agree on. If you get stuck or are not sure of your answer, ask another group.

10 If you pass white light through a prism, it separates into its component colors. long wavelengths R O Y G B I V short wavelengths spectrum

11 Which object is hotter, an object that is emitting mainly red light or mainly blue light? increasing temperature

12 Which object is hotter, an object that is emitting mainly red light or mainly blue light? increasing temperature

13 blue 460 nm green 530 nm yellow 580 nm orange 610 nm red 660 nm Filter Detector UV IR Blackbody Curve - a graph of an object s energy output versus wavelength. The PEAK of this curve is related to the object s temperature.

14 Blackbody Curve - a graph of an object s energy output versus wavelength. The WAVELENGTH that the PEAK of this curve occurs at tells us about the object s TEMPERATURE and COLOR. Energy Output UV IR Wavelength

15 Hot objects emit light that PEAKS at short wavelengths (blue). Cool objects emit light that PEAKS at long wavelengths (red) increasing temperature

16 Wien s law Relates the temperature of an object to the wavelength of the peak in the black body curve. peak = T The higher the object s temperature, the shorter the wavelength of the peak for the light emitted by the object.

17 What is the wavelength of the PEAK of this Blackbody curve A)Purple B)Red C)Green D)Yellow

18 What color is our 5800K Sun? The Sun emits all wavelengths of electromagnetic radiation (light); however, the wavelengths of light it emits most intensely are in the green/yellow part of the spectrum.

19 What color does the Sun appear? A star, like the Sun, which peaks in the middle of the visible part of the spectrum (green/ yellow light) will appear WHITE to the human eye because it is giving off nearly equal amounts of all the visible colors of light. WHITE!!

20 Our Sun What if the Sun became hotter?

21 Our Sun What if the Sun became hotter? What if the Sun became cooler?

22 Our Sun What if the Sun became hotter? What if the Sun became cooler?

23 The graph at the right shows the blackbody curve for three different stars. Which of the stars is at the highest temperature? A) Star A B) Star B C) Star C Energy Output per second Star A Star B Wavelength Star C 23

24 Tutorial: Blackbody Radiation (pg 59) Work with a partner! Read the instructions and questions carefully. Discuss the concepts and your answers with one another. Take time to understand it now!!!! Come to a consensus answer you both agree on. If you get stuck or are not sure of your answer, ask another group.

25 The Debrief

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus The electron should be thought of as a distribution or cloud of probability around the nucleus that on average behave like a point particle on a fixed circular path Types of Spectra How do spectrum lines

More information

Light III The Atom & Spectra. February 12, 2012

Light III The Atom & Spectra. February 12, 2012 Light III The Atom & Spectra February 12, 2012 Average: 65 20 Test 1 15 10 5 0 0-50 50-60 60-70 70-80 80-90 90-100 Takeaway Message: YOU NEED TO STUDY MORE you need to come to class EVERY DAY (TPS questions

More information

Photographs of a Star Cluster. Spectra of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09

Photographs of a Star Cluster. Spectra of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09 Photographs of a Star Cluster Spectra of a Star Cluster What can we learn directly by analyzing the spectrum of a star? A star s chemical composition dips in the spectral curve of lines in the absorption

More information

Spectra of a Star Cluster. Photographs of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09

Spectra of a Star Cluster. Photographs of a Star Cluster. What can we learn directly by analyzing the spectrum of a star? 4/1/09 Photographs of a Star Cluster Spectra of a Star Cluster What can we learn directly by analyzing the spectrum of a star? A star s chemical composition dips in the spectral curve of lines in the absorption

More information

Announcement Test 2. is coming up on Mar 19. Start preparing! This test will cover the classes from Feb 27 - Mar points, scantron, 1 hr.

Announcement Test 2. is coming up on Mar 19. Start preparing! This test will cover the classes from Feb 27 - Mar points, scantron, 1 hr. Announcement Test 2 is coming up on Mar 19. Start preparing! This test will cover the classes from Feb 27 - Mar 14. 50 points, scantron, 1 hr. 1 AST 103 Light, Atoms, and Spectra (continued) Analyzing

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale What can we learn from light? Temperature Energy Chemical Composition Speed towards or away from us All from the spectrum! Temperature and Radiation Why do different objects give off different forms of

More information

Atoms and Spectra October 8th, 2013

Atoms and Spectra October 8th, 2013 Atoms and Spectra October 8th, 2013 Announcements Second writing assignment due two weeks from today (again, on a news item of your choice). Be sure to make plans to visit one of the open observing nights

More information

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel)

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel) In class quiz - nature of light Moonbow with Sailboats (Matt BenDaniel) Nature of light - review Light travels at very high but finite speed. Light is electromagnetic wave characterized by wavelength (or

More information

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale

Temperature and Radiation. What can we learn from light? Temperature, Heat, or Thermal Energy? Kelvin Temperature Scale What can we learn from light? Temperature Energy Chemical Composition Speed towards or away from us All from the spectrum! Temperature and Radiation Why do different objects give off different forms of

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Observing Highlights. Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Announcements Lab Observing Trip Next week: Tues (9/28) & Thurs (9/30) let me know ASAP if you have an official conflict (class, work) - website: http://astro.physics.uiowa.edu/~clang/sgu_fall10/observing_trip.html

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation

Doppler Shifts. Doppler Shift Lecture-Tutorial: Pgs Temperature or Heat? What can we learn from light? Temp: Peak in Thermal Radiation Doppler Shift Lecture-Tutorial: Pgs. 75-80 Work with a partner or two Read directions and answer all questions carefully. Take time to understand it now! Come to a consensus answer you all agree on before

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

What is LIGHT? Reading Question

What is LIGHT? Reading Question Reading Question What is LIGHT? A. Light is a wave, like sound only much faster. B. Light is like little particles. Each one is a photon. C. Light is the absence of dark. D. A kind of energy we model with

More information

Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1. Astronomy 102, Autumn 2009, E. Agol & J. Dalcanton U.W.

Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1. Astronomy 102, Autumn 2009, E. Agol & J. Dalcanton U.W. Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1 Questions of the Day! I. What is light?! II. What are the wave/particle properties of light?! III. How do energy and wavelength vary

More information

TOPIC # 6 The RADIATION LAWS

TOPIC # 6 The RADIATION LAWS TOPIC # 6 The RADIATION LAWS More KEYS to unlocking the topics of: The GREENHOUSE EFFECT, GLOBAL WARMING & OZONE DEPLETION! Topic #6 pp 33-38 OBJECTIVES FOR TODAY S CLASS: To understand the essentials

More information

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve ASTRO 114 Lecture 15 1 Okay. What we re going to discuss today are what we call radiation laws. We ve been spending a lot of time talking about laws. We ve talked about gravitational laws, we ve talked

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019 AST 301, Lecture 2 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University January 29, 2019 Cosmic Catastrophes (AKA Collisions) james.lattimer@stonybrook.edu Properties of

More information

Magnitudes. How Powerful Are the Stars? Luminosities of Different Stars

Magnitudes. How Powerful Are the Stars? Luminosities of Different Stars How Powerful Are the Stars? Some stars are more powerful than others Power is energy output per. (Example: 00 Watts = 00 joules per second) Astronomers measure the power, or brightness of stars in ways:

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

Lecture 7. Outline. ASTR 111 Section 002. Discuss Quiz 5 Light. Light travels through empty space at a speed of 300,000 km/s

Lecture 7. Outline. ASTR 111 Section 002. Discuss Quiz 5 Light. Light travels through empty space at a speed of 300,000 km/s Lecture 7 ASTR 111 Section 002 Outline Discuss Quiz 5 Light Suggested reading: Chapter 5.1-5.2 and 5.6-5.8 of textbook Light travels through empty space at a speed of 300,000 km/s In 1676, Danish astronomer

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements Lecture 12 ASTR 111 Section 002 Measurements in Astronomy In astronomy, we need to make remote and indirect measurements Think of an example of a remote and indirect measurement from everyday life Using

More information

λ is a distance, so its units are m, cm, or mm, etc.

λ is a distance, so its units are m, cm, or mm, etc. Electromagnetic Radiation (How we get most of our information about the cosmos) Radiation travels as waves. Waves carry information and energy. Properties of a wave Examples of electromagnetic radiation:

More information

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them.

SPECTROSCOPY PRELAB. 2) Name the 3 types of spectra and, in 1 sentence each, describe them. NAME: SPECTROSCOPY PRELAB 1) What is a spectrum? 2) Name the 3 types of spectra and, in 1 sentence each, describe them. a. b. c. 3) Use Wien s law to calculate the surface temperature of the star Alnilam

More information

Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law

Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law Write answers to Q s on another paper Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law Learning Objectives To understand thermal spectra To understand Wien s Law and the Stephan-Boltzmann

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Learning Objectives! What is Electromagnetic Radiation?! What are spectra? How could we measure a spectrum?! How do wavelengths correspond to colors for optical light? Does

More information

Name... Class... Date...

Name... Class... Date... Radiation and temperature Specification reference: P6.3 Black body radiation (physics only) Aims This is an activity that has been designed to help you improve your literacy skills. In this activity you

More information

Blackbody Radiation OBJECTIVES

Blackbody Radiation OBJECTIVES Name Class Date Skills Practice Lab Blackbody Radiation A perfect absorber of radiation also happens to be a perfect radiator of that radiation as well. Such objects are called blackbodies, because darker

More information

Astronomy 1143 Quiz 2 Review

Astronomy 1143 Quiz 2 Review Astronomy 1143 Quiz 2 Review Prof. Pradhan October 1, 2018 Light 1. What is light? Light is electromagnetic energy It is both a particle (photon) and a wave 2. How is light created and what can light interact

More information

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is

Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, Is Focusing on Light What is light? Is it a particle or a wave? An age-old debate that has persisted among scientists is related to the question, "Is light a wave or a stream of particles?" Very noteworthy

More information

NATS 101 Section 13: Lecture 5. Radiation

NATS 101 Section 13: Lecture 5. Radiation NATS 101 Section 13: Lecture 5 Radiation What causes your hand to feel warm when you place it near the pot? NOT conduction or convection. Why? Therefore, there must be an mechanism of heat transfer which

More information

Chapter 8: The Family of Stars

Chapter 8: The Family of Stars Chapter 8: The Family of Stars We already know how to determine a star s surface temperature chemical composition motion Next, we will learn how we can determine its distance luminosity radius mass Measuring

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets. Lecture 23, 4/22/14 Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

More information

Stars III The Hertzsprung-Russell Diagram

Stars III The Hertzsprung-Russell Diagram Stars III The Hertzsprung-Russell Diagram Attendance Quiz Are you here today? (a) yes Here! (b) no (c) here is such a 90 s concept Today s Topics (first half) Spectral sequence and spectral types Spectral

More information

Parallax: Space Observatories. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & Universe Lecture #7 Outline

Parallax: Space Observatories. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & Universe Lecture #7 Outline Stars, Galaxies & the Universe Announcements HW#4: posted Thursday; due Monday (9/20) Reading Quiz on Ch. 16.5 Monday (9/20) Exam #1 (Next Wednesday 9/22) In class (50 minutes) first 20 minutes: review

More information

Astronomy-part 3 notes Properties of Stars

Astronomy-part 3 notes Properties of Stars Astronomy-part 3 notes Properties of Stars What are Stars? Hot balls of that shine because nuclear fusion (hydrogen to helium) is happening at their cores. They create their own. Have different which allow

More information

How does your eye form an Refraction

How does your eye form an Refraction Astronomical Instruments Eyes and Cameras: Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the bending of light

More information

c = l Light: The Cosmic Messenger 1/23/18

c = l Light: The Cosmic Messenger 1/23/18 Reading for today s and Thur class: ASTR 1040 Stars & Galaxies SDO: Post-flare ejection from solar surface Prof. Juri Toomre TAs: Peri Johnson, Ryan Horton Lecture 3 Tues 23 Jan 2018 zeus.colorado.edu/astr1040-toomre

More information

Black Body Radiation and Planck's Quantum Hypothesis

Black Body Radiation and Planck's Quantum Hypothesis Section 3: Black Body Radiation and Planck's Quantum Hypothesis Definitions Opaque materials: materials in which no light is allowed to pass through; all light is either absorbed or reflected. Radiation:

More information

CPO Science Foundations of Physics. Unit 8, Chapter 26

CPO Science Foundations of Physics. Unit 8, Chapter 26 CPO Science Foundations of Physics Unit 8, Chapter 26 Unit 8: Matter and Energy Chapter 26 Heat Transfer 26.1 Heat Conduction 26.2 Convection 26.3 Radiation Chapter 26 Objectives 1. Explain the relationship

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

Characteristics of Stars

Characteristics of Stars Characteristics of Stars Mass of a Star The mass of a star is the hardest for astronomers to determine and it can only be found based on the gravitational forces and interactions with nearby stars. We

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

AST 104 LAB 1 Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law

AST 104 LAB 1 Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law AST 104 LAB 1 Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law Learning Objectives To understand thermal spectra To understand Wien s Law and the Stephan-Boltzmann Law To understand

More information

WRAP UP OF TOPIC #5... ELECTROMANGETIC RADAITAION & THE ELECTROMAGNETIC SPECTRUM

WRAP UP OF TOPIC #5... ELECTROMANGETIC RADAITAION & THE ELECTROMAGNETIC SPECTRUM WRAP UP OF TOPIC #5... ELECTROMANGETIC RADAITAION & THE ELECTROMAGNETIC SPECTRUM ATOMS vs MOLECULES Quantum leap of electrons WITHIN an ATOM when photons are absorbed or emitted Quantum MOLECULAR MOTION

More information

Light and Atoms

Light and Atoms Light and Atoms ASTR 170 2010 S1 Daniel Zucker E7A 317 zucker@science.mq.edu.au ASTR170 Introductory Astronomy: II. Light and Atoms 1 Overview We ve looked at telescopes, spectrographs and spectra now

More information

Light is a wave. Light is also a particle! 3/23/09

Light is a wave. Light is also a particle! 3/23/09 Wavelength (λ) is the distance between successive peaks of a wave Frequency (ν) is the number of wave peaks that pass by an observer per second λ ν = the speed of a wave ( = c, for light) Light is a wave

More information

= λ. Light: The Cosmic Messenger. Continuing Topics for Today 1/24/17. Your account on Mastering Astronomy. ASTR 1040 Stars & Galaxies

= λ. Light: The Cosmic Messenger. Continuing Topics for Today 1/24/17. Your account on Mastering Astronomy. ASTR 1040 Stars & Galaxies REMINDER Your account on Mastering Astronomy ASTR 1040 Stars & Galaxies SDO: Post-flare ejection from solar surface Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 3 Tues 24 Jan 2017 zeus.colorado.edu/astr1040-toomre

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Stars. Properties of Stars

Stars. Properties of Stars Stars Properties of Stars Do all stars appear the same? How are they different? Which one looks the coolest? Hottest? Are they all the same brightness? Do they all look the same size? Luminosity: Amount

More information

Lightbulbs. Lecture 18 : Blackbody spectrum Improving lightbulb efficiency

Lightbulbs. Lecture 18 : Blackbody spectrum Improving lightbulb efficiency Lightbulbs Lecture 18 : Blackbody spectrum Improving lightbulb efficiency Reminders: HW 7 due Monday at 10pm Simulations available in G116 Reading quiz on Tuesday, 10.1 EM radiation so far EM radiation

More information

Electromagnetic Waves. Electromagnetic Spectrum. Electromagnetic Spectrum. Electromagnetic Waves. CH 27-Physics (B) Fall, 2010

Electromagnetic Waves. Electromagnetic Spectrum. Electromagnetic Spectrum. Electromagnetic Waves. CH 27-Physics (B) Fall, 2010 Electromagnetic Waves Electromagnetic Spectrum CH 27-Physics (B) Fall, 2010 Electric and magnetic fields always exist When ever one is. the other is The fields can exist in a... They are at. o to each

More information

How does your eye form an Refraction

How does your eye form an Refraction Astronomical Instruments and : Everyday Light Sensors How does your eye form an image? How do we record images? How does your eye form an image? Refraction Refraction is the of light Eye uses refraction

More information

10/21/2015. Lightbulbs. Blackbody spectrum. Temperature and total emitted power (brightness) Blackbody spectrum and temperature

10/21/2015. Lightbulbs. Blackbody spectrum. Temperature and total emitted power (brightness) Blackbody spectrum and temperature Lightbulbs EM radiation so far EM radiation is a periodic modulation of the electric field: travels as a wave Wavelength (or frequency) determines: - type of EM radiation - if in visible range, wavelength

More information

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet

A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet Student Name: Lab TA Name: A1101, Lab 5: The Hertzsprung- Russell Diagram Laboratory Worksheet One of the most basic physical properties of a star is its luminosity, the rate at which it radiates energy

More information

Astron 104 Laboratory #5 Colors of Stars

Astron 104 Laboratory #5 Colors of Stars Name: Date: Section: Astron 104 Laboratory #5 Colors of Stars Section 11.1 Introduction The night sky in a dark location is full of stars tiny pinpoints of light. It is pretty obvious from even a casual

More information

Review Questions for the new topics that will be on the Final Exam

Review Questions for the new topics that will be on the Final Exam Review Questions for the new topics that will be on the Final Exam Be sure to review the lecture-tutorials and the material we covered on the first three exams. How does speed differ from velocity? Give

More information

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here)

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) What is color? THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) Light isn t just white: colors is direct evidence that light has

More information

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies

Wave Description. Transverse and Longitudinal Waves. Physics Department 2/13/2019. Phys1411 Goderya 1. PHYS 1403 Stars and Galaxies PHYS 1403 Stars and Galaxies for Today s Class 1. How do we explain the motion of energy? 2. What is a wave and what are its properties 3. What is an electromagnetic spectrum? 4. What is a black body and

More information

Lecture #8. Light-matter interaction. Kirchoff s laws

Lecture #8. Light-matter interaction. Kirchoff s laws 1 Lecture #8 Light-matter interaction Kirchoff s laws 2 Line emission/absorption Atoms: release and absorb photons with a predefined set of energies (discrete). The number of protons determine the chemical

More information

chapter 31 Stars and Galaxies

chapter 31 Stars and Galaxies chapter 31 Stars and Galaxies Day 1:Technology and the Big Bang Studying the Stars A. Telescopes - Electromagnetic radiation emitted by stars and other objects include light, radio, and X-ray Space telescopes

More information

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: "OMEWORK #1

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: OMEWORK #1 ASTR 1120 General Astronomy: Stars & Galaxies!ATH REVIEW: Tonight, 5-6pm, in RAMY N1B23 "OMEWORK #1 -Due THU, Sept. 10, by 5pm, on Mastering Astronomy CLASS RECORDED STARTED - INFO WILL BE POSTED on CULEARN

More information

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both.

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both. Light carries energy Lecture 5 Understand Light Reading: Chapter 6 You feel energy carried by light when light hits your skin. Energy Conservation: Radiation energy will be given to molecules making your

More information

Frequency and Wavelength are walking down a street. Frequency, being the clumsy one, stubs his toe on a rock and yells in pain. Wavelength asks, Are

Frequency and Wavelength are walking down a street. Frequency, being the clumsy one, stubs his toe on a rock and yells in pain. Wavelength asks, Are Frequency and Wavelength are walking down a street. Frequency, being the clumsy one, stubs his toe on a rock and yells in pain. Wavelength asks, Are you okay? Frequency replies, I ll live, but it Hz! Waves

More information

Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae

Chapter 12: The Lives of Stars. How do we know it s there? Three Kinds of Nebulae 11/7/11. 1) Emission Nebulae 2) Reflection Nebulae 3) Dark Nebulae 11/7/11 Chapter 12: The Lives of Stars Space is Not Empty The Constellation Orion The Orion Nebula This material between the stars is called the Interstellar Medium It is very diffuse and thin. In fact

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

THE UNIVERSE CHAPTER 20

THE UNIVERSE CHAPTER 20 THE UNIVERSE CHAPTER 20 THE UNIVERSE UNIVERSE everything physical in and Includes all space, matter, and energy that has existed, now exists, and will exist in the future. How did our universe form, how

More information

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves Objectives In this lecture you will learn the following Radiation (light) exhibits both wave and particle nature. Laws governing black body radiation,

More information

10/31/2018. Chapter 7. Atoms Light and Spectra. Thursday Lab Announcement. Topics For Today s Class Black Body Radiation Laws

10/31/2018. Chapter 7. Atoms Light and Spectra. Thursday Lab Announcement. Topics For Today s Class Black Body Radiation Laws Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 7 Atoms Light and Spectra Thursday Lab Announcement Jonah will start the Lab at 6:00 PM. Two pieces of Glass and HST Lunar Phases Topics

More information

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation.

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. Light & Atoms Electromagnetic [EM] Waves Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. These have both and electric part and a magnetic part

More information

Unit 2 Lesson 2 Stars. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 2 Stars. Copyright Houghton Mifflin Harcourt Publishing Company Florida Benchmarks SC.8.N.1.6 Understand that scientific investigations involve the collection of relevant empirical evidence, the use of logical reasoning, and the application of imagination in devising

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY P R O J E C T 3 COLOUR IN ASTRONOMY Objective: Explain what colour means in an astronomical context and its relationship with the temperature of a star. Learn how to create colour-colour diagrams and how

More information

How can we describe the motion of the sun in the sky? Where is the Sun at noon today? What about the path of the Sun?

How can we describe the motion of the sun in the sky? Where is the Sun at noon today? What about the path of the Sun? The changing position of the Sun during the year! How can we describe the motion of the sun in the sky? X Zenith or overhead How can we describe the motion of the sun in the sky? Where is the Sun at noon

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled.

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled. 1 Announcements The Midterm is one week away! Bring: Calculator, scantron (big red form), pencil No notes, cellphones, or books allowed. Homework #4 is due this thursday There is no homework next week.

More information

Light - electromagnetic radiation

Light - electromagnetic radiation Astronomy & Light Astronomy is a science In science we know by doing experiments When multiple experiments give the same results we develop theories and laws In astronomy many of the experiments are done

More information

Lecture: October 6, 2010

Lecture: October 6, 2010 Lecture: October 6, 2010 Announcements: Next Observatory Opportunity: Tonight at 7:30 Problem Set 3 Due next Monday Second Exam October 25 Tides Since gravitational force decreases with (distance) 2, the

More information

Blackbody Radiation. George M. Shalhoub

Blackbody Radiation. George M. Shalhoub Blackbody Radiation by George M. Shalhoub LA SALLE UNIVERSIY 900 West Olney Ave. Philadelphia, PA 94 shalhoub@lasalle.edu Copyright 996. All rights reserved. You are welcome to use this document in your

More information

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: The interaction of light and matter. Martin D. Weinberg UMass Astronomy A100H Exploring the Universe: The interaction of light and matter Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu February 11, 2016 Read: Chap 5 02/11/16 slide 1 Exam #1: Thu 18 Feb

More information

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial)

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial) Assignments For Wed. Do Online Exercise 08 ( Doppler shift tutorial) 1 st Midterm is Friday, Oct. 12 Chapter 5 Light: The Cosmic Messenger Which forms of light are lower in energy and frequency than the

More information

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

More information

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun. 6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

10/29/2018. Chapter 7. Atoms Light and Spectra. Reminders. Topics For Today s Class. Hydrogen Atom. The Atom. Phys1411 Introductory Astronomy

10/29/2018. Chapter 7. Atoms Light and Spectra. Reminders. Topics For Today s Class. Hydrogen Atom. The Atom. Phys1411 Introductory Astronomy Phys1411 Introductory Astronomy Instructor: Dr. Goderya Chapter 7 Atoms Light and Spectra Reminders Topics For Today s Class Project 1 due November 12 th after and during Lab. Extra-credit Homework online.

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion #1: A body continues at rest or in uniform motion in a straight line unless acted upon by a force. Why doesn t the soccer ball move on its own? What causes a soccer ball to roll

More information

Astro 210 Lecture 13 Feb 16, 2011

Astro 210 Lecture 13 Feb 16, 2011 Astro 210 Lecture 13 Feb 16, 2011 Announcements Hour Exam 1 in class Friday info online HW1 bonus problem due online Friday last Planetarium shows: tomorrow and Monday registration, report forms, info

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

The Physics of Light, part 2. Astronomy 111

The Physics of Light, part 2. Astronomy 111 Lecture 7: The Physics of Light, part 2 Astronomy 111 Spectra Twinkle, twinkle, little star, How I wonder what you are. Every type of atom, ion, and molecule has a unique spectrum Ion: an atom with electrons

More information

Test ABCDE. 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic

Test ABCDE. 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic Test - 8.8 ABCDE 1. What is the oldest era on the geological timescale? A. Precambrian B. Paleozoic C. Mesozoic D. Cenozoic 2. A light-year is defined as- F. the distance from Earth to the Sun. G. the

More information

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th 1) RADIANT ENERGY (Stefan-Boltzmann Law & Wien s Law) Pgs 154-156 Pgs 154-156 - an in-class exercise 2) Earn a good

More information