KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th

Size: px
Start display at page:

Download "KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th"

Transcription

1 KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #11, Friday, February 12 th 1) RADIANT ENERGY (Stefan-Boltzmann Law & Wien s Law) Pgs Pgs an in-class exercise 2) Earn a good grade on QUIZ #3

2 EXAM #1 occurs 7 days from today, Friday, February 19 th An EXAM STUDY GUIDE was distributed Mon, Feb 8 th, and is available here in class today, and is also available online in the STUDY-GUIDE folder at the class web site The EXAM will consist of multiple-choice and short answer (quiz-like) questions You WILL NOT need a scantron sheet

3 EXAM #1 will consist of multiple choice questions AND short written-answer questions (like quiz questions) Your QUIZZES and LABS are very good STUDY GUIDES, as are our In-Class exercises You WILL NOT need a scantron sheet for the exam!!

4 HOMEWORK #2 was distributed Monday, Feb 8 th With HW #2, you will be obtaining OBSERVATIONS of the MOON every-other evening for the next two weeks Your set of OBSERVATIONS, and also your answers to QUESTIONS that will be distributed next week, are due to be handed in here in BX102 at the start of class on Friday, February 26 th HOMEWORK #2 is also available online within the class web page HOMEWORK folder You should already have TWO observations

5 NEXT WEEK s Lab will occur back in WH232 You will conduct a lab focused upon PHASES of the MOON Lab available at: QUESTIONS?

6 PICTURE OF THE DAY A FIREBALL (meteor) seen from Arizona and Southern California during Fall frictional heating causes atoms/molecules to emit..

7 THE ELECTROMAGNETIC SPECTRUM All objects are attempting to emit radiant energy at all wavelengths, but hotter objects are more effective at emitting radiant energy at ALL wavelengths,

8 RADIATION (better referred to as RADIANT ENERGY) TODAY WE CONTINUE DISCUSSING: This IS NOT the type of radiation that we worry about in regard to nuclear energy or weapons (that type of radiation involves atomic nuclei released by radioactive materials) Radiant Energy IS the electromagnetic waves (it can also considered as Light Particles) that carry energy from place to place (visible light is one such manifestation of this phenomenon) Radiant energy emission is related to Temperature usually

9 TEMPERATURE = the average kinetic energy of the particles (atoms, molecules) in a system What physical characteristic makes HOT water hotter than COLD water? The speed at which the H 2 O molecules randomly move!! If something is moving faster, is it more likely to break, or be modified by a collision? YES, it is (compared to it moving slower)

10 So, consider an atom (nucleus plus orbiting electrons) Is an electron more likely to be knocked around or off the atom in a cold situation or in a hot situation? HOT, since we know the atoms themselves are moving more rapidly and thus have more kinetic energy (energy of motion) with which to knock each other around [ the ATOM absorbs energy in this process ]

11 Eventually, such a knocked around or off electron will return to its original position within the atom When this electron returns to its original position, there is a release of energy from the atom This released energy is given off in the form of electromagnetic RADIANT ENERGY (= Light of some particular wavelength) [electrons that move to higher energy orbits or become unbound to the nucleus absorb energy; electrons that move to a lower energy orbits or rejoin the nucleus result in emission of energy]

12 So, the hotter the material, 1) the greater the rate of electrons being knocked off or moved to higher orbits and thus B) the greater the number of electrons that will be rejoining the nucleus or dropping to lower energy orbits SO C) the greater the amount of radiant energy being emitted away (we can think of this atom:electron light as VISIBLE light and ULTRAVIOLET light) look at Figure 5.19 in your text

13 At temperatures you and I experience day-to-day here in Las Cruces, it is not electrons getting knocked off or higher but rather molecules bending and stretching that result in the emission of radiant energy; this process is less energetic than the electrons leaving and rejoining the nucleus... we don t see this molecular light with our eyes; this is INFRARED light CO 2 molecule

14 A hot surfaced object generates and emits away a greater amount of radiant energy than does a cold object (per square meter of its surface) This is quantified by the: STEFAN-BOLTZMAN Law Equation: INTENSITY OF EMITTED RADIANT ENERGY = σ x TEMPERATURE 4 = σ T 4 Stefan-Boltzmann constant= 5.67 x 10-8 W m -2 K -4 in units of: Watts of energy per square meter of surface

15 RADIANT ENERGY is classified by its WAVELENGTH ( color ), or alternately by its FREQUENCY Short Wavelength High Frequency High Energy Long Wavelength Low (small) Frequency Low Energy

16 The wavelength ( color ) of light at which an object emits its GREATEST amount of radiant energy is defined by: WIEN S LAW: Wavelength at which the Most Radiant Energy is Emitted (3000 / Temperature in Kelvin) = wavelength in micrometers (one-millionth of a meter) SO The Color at which maximum energy is emitted = [3000 / T (in Kelvin)] (in units of micrometers)

17 Our eyes are tuned to visible wavelengths, from micrometers (1 µm= 10-6 meters ) Some WIEN S LAW EXAMPLES: Earth s average surface: T=288 Kelvin, Wavelength of Max = 3000/288 = 10.4 µm The Sun s Surface: T = 5800 Kelvin Wavelength of Max = 3000/5800 = 0.51 µm Hot Lava: 1500 Kelvin (2240 Fahrenheit) Wavelength of Max = 3000/1500 = 2 µm Look at Figure 5.19 in your text

18 None of the planet s in our Solar System have surface temperatures hot enough to generate any detectable VISIBLE light (radiant energy) SO as we have stated before, we see planets because they REFLECT visible light generated by the Sun BUT all of the stars we see in the night sky are themselves generating the visible light by which we see them (because those stars are HOT!) Which has a hotter surface: a RED STAR or BLUE STAR?

19 Which stars in the image below possess the COLDEST surface temperature(s)? The star trails to the left are formed by opening a camera s shutter and leaving it open for an extended period of time as the star patterns move from east-towest (due to the Earth s rotation) across the night sky. The REDDER stars possess the colder surface temperatures, which is what WIEN S LAW tells us (for objects EMITTING radiant energy)

20 The INTENSITY (watts per square meter) of RADIANT ENERGY that an object generates and emits is based upon that objects TEMPERATURE STEFAN-BOLTZMANN LAW QUANTITY = 5.67 x 10-8 x (TEMP) 4 Watts/m 2 The WAVELENGTH ( color ) at which an object emits the MOST RADIANT ENERGY: WIEN S LAW WAVELENGTH of MOST = (300 0 /TEMPERATURE) in units of micrometers (10-6 meters) Let s work through an exercise to illustrate these LAWS!!!!!

21 EARTH SUN SFC TEMPERATURE ~300 K ~5800 K (~60 o F) (~10,000 o F) Intensity of radiant 459 W/m 2 64,164,532 W/m 2 Energy Emitted (Watts per square meter) (the above numbers calculated using the Stefan-Boltzman Law) Wavelength of ~10 micrometers ~0.5 micrometers maximum radiant (infrared) energy (your eyes and yellow:green emitted mine DO NOT detect this wavelength) (the above numbers calculated using Wien s Law) Let s look at the 10-micrometer infrared wavelength world

22 Which stars in the image below are sending out the GREATEST intensity of Radiant Energy? Intensity = BRIGHTNESS If we assume that all of the stars are the same size, we would expect that the BLUEr stars, which Wien s Law tells us have hotter surfaces than the REDder stars, would also be the stars with a greater overall intensity of EMITTED RADIANT ENERGY, since the Stefan-Boltzman law tells us that the hotter surface emits away the greater intensity of radiant energy. BUT, some of the Red stars are brighter than some blue stars. what might be going on???

23 The Sun emits > 64,000,000 Watts of radiant energy per square meter at its surface but you and I do not FEEL that much energy when we stand here on Earth in the sunlight Why not???? Here on Earth, we are ~1.5 x meters (150 billion meters = 150 million kilometers) from the Sun 1 AU from the Sun 64,000,000 Watts per square meter is equal to having 640, Watt light bulbs packed into an area that is smaller than the screen these words are being projected upon.

24 As the light that the Sun emits travels outward from the Sun, it becomes spread over a greater and greater area (think of an expanding sphere, like the surface of a balloon) This spreading of the light causes its local intensity (Watts per square meter received) to decrease as it moves away from the Sun Since the surface area of the expanding light sphere increases as: 4 times π times the radius squared= 4 π Radius 2, the radiant energy intensity must decrease at the same radius-dependent rate, ( 1 / Radius 2 )

25 As sunlight expands outward from the Sun, its local intensity declines with increasing distance from the Sun (with a 1 / distance 2 dependence), because the sunlight is being spread over a bigger and bigger spherical shape, just like an expanding balloon s material gets thinner-and-thinner as the balloon is inflated larger and larger but sunlight does not POP! Note that the expanding shells of light get dimmer as they move farther-andfarther from the Sun SUN

26 CHANGE in INTENSITY of RECEIVED SUNLIGHT with INCREASING DISTANCE DISTANCE RECEIVED RATIO FROM SUN center SUNLIGHT INTENSITY Sfc (700,000 km) 64,000,000 W/m 2-1,000,000 km 31,830,980 W/m 2 1 2,000,000 km 7,957,747 W/m 2 1/4 4,000,000 km 1,989,436 W/m 2 1/16 8,000,000 km 497,359 W/m 2 1/64 16,000,000 km 124,340 W/m 2 1/256 32,000,000 km 31,085 W/m 2 1/ ,000,000 km (Mercury) 7,771 W/m 2 1/ ,000,000 km (Venus) 2,650 W/m 2 1 / 11, ,000,000 km (Earth) ~1,373 W/m 2 1 / 22,500

27 Since Pluto is on average 40 times farther from the Sun than Earth is: Sunlight intensity at Pluto = Earth / 40 2 (1370 W m -2 / 40 2 ) = 1370/1600 = 0.85 W/m 2 < 1 Watt per m 2!! We will illustrate this one over distance squared concept with a hands-on exercise during class next Monday, Feb 15 th.

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #12, Monday, February 15 th 1) Taking a look at the 10-micrometer wavelength world.. 2) The decrease in RECEIVED RADIANT ENERGY as you move away

More information

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux

A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. A Warm Up Exercise. The Solar Flux When you compare gamma ray photons with photons of radio waves, which of the following is true? Gamma rays have a shorter wavelength and less energy Gamma rays have a shorter wavelength and same energy

More information

Lecture #8. Light-matter interaction. Kirchoff s laws

Lecture #8. Light-matter interaction. Kirchoff s laws 1 Lecture #8 Light-matter interaction Kirchoff s laws 2 Line emission/absorption Atoms: release and absorb photons with a predefined set of energies (discrete). The number of protons determine the chemical

More information

F = ma P 2 = a 3 (M + m) P 2 = a 3. max T = 2900 K m

F = ma P 2 = a 3 (M + m) P 2 = a 3. max T = 2900 K m Summer 2013 Astronomy - Test 1 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled.

Announcements. There is no homework next week. Tuesday s sections (right after the midterm) will be cancelled. 1 Announcements The Midterm is one week away! Bring: Calculator, scantron (big red form), pencil No notes, cellphones, or books allowed. Homework #4 is due this thursday There is no homework next week.

More information

From Last Time Pearson Education, Inc.

From Last Time Pearson Education, Inc. From Last Time Light: Absorption, Emission, Transmission, Reflection, and Scattering c=λ x f E=h x f Light (electromagnetic radiation) extends from gamma rays (high E, high f, small λ) to radio waves (small

More information

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun.

X Rays must be viewed from space used for detecting exotic objects such as neutron stars and black holes also observing the Sun. 6/25 How do we get information from the telescope? 1. Galileo drew pictures. 2. With the invention of photography, we began taking pictures of the view in the telescope. With telescopes that would rotate

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. How do we experience light? Colors of Light. How do light and matter interact? Chapter 5 Light and Matter: Reading Messages from the Cosmos How do we experience light? The warmth of sunlight tells us that light is a form of energy We can measure the amount of energy emitted by a

More information

KNOWLEDGE GET FROM TODAY S CLASS MEETING Class Meeting #15, Monday, February 22 nd, 2016

KNOWLEDGE GET FROM TODAY S CLASS MEETING Class Meeting #15, Monday, February 22 nd, 2016 KNOWLEDGE GET FROM TODAY S CLASS MEETING Class Meeting #15, Monday, February 22 nd, 2016 1) Earth s internal composition and structure Text Page 197, Chapter 7; Text Pages 234-239 (Chapter 9) 2) What does

More information

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work

Take away concepts. What is Energy? Solar Radiation Emission and Absorption. Energy: The ability to do work Solar Radiation Emission and Absorption Take away concepts 1. 2. 3. 4. 5. 6. Conservation of energy. Black body radiation principle Emission wavelength and temperature (Wien s Law). Radiation vs. distance

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

AST 104 LAB 1 Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law

AST 104 LAB 1 Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law AST 104 LAB 1 Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law Learning Objectives To understand thermal spectra To understand Wien s Law and the Stephan-Boltzmann Law To understand

More information

10/21/2015. Lightbulbs. Blackbody spectrum. Temperature and total emitted power (brightness) Blackbody spectrum and temperature

10/21/2015. Lightbulbs. Blackbody spectrum. Temperature and total emitted power (brightness) Blackbody spectrum and temperature Lightbulbs EM radiation so far EM radiation is a periodic modulation of the electric field: travels as a wave Wavelength (or frequency) determines: - type of EM radiation - if in visible range, wavelength

More information

Lightbulbs. Lecture 18 : Blackbody spectrum Improving lightbulb efficiency

Lightbulbs. Lecture 18 : Blackbody spectrum Improving lightbulb efficiency Lightbulbs Lecture 18 : Blackbody spectrum Improving lightbulb efficiency Reminders: HW 7 due Monday at 10pm Simulations available in G116 Reading quiz on Tuesday, 10.1 EM radiation so far EM radiation

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light?

Chapter 5 Light and Matter: Reading Messages from the Cosmos. 5.1 Light in Everyday Life. How do we experience light? Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact? How do we experience light?

More information

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter

Light and Matter: Reading Messages from the Cosmos. White light is made up of many different colors. Interactions of Light with Matter Chapter 5 Lecture The Cosmic Perspective Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience light? How do light and matter interact?

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum Chapter 5 Light and Matter: Reading Messages from the Cosmos What is light? Light is a form of radiant energy Light can act either like a wave or like a particle (photon) Spectrum of the Sun 1 2 Waves

More information

ESS15 Lecture 7. The Greenhouse effect.

ESS15 Lecture 7. The Greenhouse effect. ESS15 Lecture 7 The Greenhouse effect. Housekeeping. First midterm is in one week. Open book, open notes. Covers material through end of Friday s lecture Including today s lecture (greenhouse effect) And

More information

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels

What makes the color pink? Black and white TV summary. Different color phosphors. Color TV. Different color pixels Energy What makes the color pink? Black and white TV summary Picture made from a grid of dots (pixels) Dots illuminated when electron beam hits phosphor Beam scanned across entire screen ~ 50 times a second

More information

TOPIC # 6 The RADIATION LAWS

TOPIC # 6 The RADIATION LAWS TOPIC # 6 The RADIATION LAWS More KEYS to unlocking the topics of: The GREENHOUSE EFFECT, GLOBAL WARMING & OZONE DEPLETION! Topic #6 pp 33-38 OBJECTIVES FOR TODAY S CLASS: To understand the essentials

More information

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial)

Assignments. For Wed. 1 st Midterm is Friday, Oct. 12. Do Online Exercise 08 ( Doppler shift tutorial) Assignments For Wed. Do Online Exercise 08 ( Doppler shift tutorial) 1 st Midterm is Friday, Oct. 12 Chapter 5 Light: The Cosmic Messenger Which forms of light are lower in energy and frequency than the

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect /30/2018 Lecture 5: Greenhouse Effect Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature atmosphere Wien s Law Shortwave and Longwave Radiation

More information

Chapter 5 Light and Matter: Reading Messages from the Cosmos

Chapter 5 Light and Matter: Reading Messages from the Cosmos Chapter 5 Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning How do we experience light? How do light and matter interact? How do we experience light?

More information

Lecture: October 6, 2010

Lecture: October 6, 2010 Lecture: October 6, 2010 Announcements: Next Observatory Opportunity: Tonight at 7:30 Problem Set 3 Due next Monday Second Exam October 25 Tides Since gravitational force decreases with (distance) 2, the

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING

KNOWLEDGE TO GET FROM TODAY S CLASS MEETING KNOWLEDGE TO GET FROM TODAY S CLASS MEETING Class Meeting #5, Friday, January 29 th, 2016 1) GRAVITY: (text pages 111-112, 123) 2) Isaac Newton s LAWS of MOTION (briefly) (text pages 115-117) 3) Distances

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

Astronomy 1143 Quiz 2 Review

Astronomy 1143 Quiz 2 Review Astronomy 1143 Quiz 2 Review Prof. Pradhan October 1, 2018 Light 1. What is light? Light is electromagnetic energy It is both a particle (photon) and a wave 2. How is light created and what can light interact

More information

Lecture 5: Greenhouse Effect

Lecture 5: Greenhouse Effect Lecture 5: Greenhouse Effect S/4 * (1-A) T A 4 T S 4 T A 4 Wien s Law Shortwave and Longwave Radiation Selected Absorption Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation

More information

Lecture 8: What we can learn via light

Lecture 8: What we can learn via light Lecture 8: What we can learn via light As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. Lecture 8: What we can learn

More information

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script!

OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! NAME: 1. Define using complete sentences: Globular Cluster: OPEN CLUSTER PRELAB The first place to look for answers is in the lab script! Open Cluster: Main Sequence: Turnoff point: Answer the following

More information

Chapter 5: Light and Matter: Reading Messages from the Cosmos

Chapter 5: Light and Matter: Reading Messages from the Cosmos Chapter 5 Lecture Chapter 5: Light and Matter: Reading Messages from the Cosmos Light and Matter: Reading Messages from the Cosmos 5.1 Light in Everyday Life Our goals for learning: How do we experience

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 16 1 A Solar System Is Born SECTION Our Solar System California Science Standards 8.2.g, 8.4.b, 8.4.c, 8.4.d BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc.

Chapter 5 Light: The Cosmic Messenger. Copyright 2012 Pearson Education, Inc. Chapter 5 Light: The Cosmic Messenger 5.1 Basic Properties of Light and Matter Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light is an electromagnetic

More information

Midterm Study Guide Astronomy 122

Midterm Study Guide Astronomy 122 Midterm Study Guide Astronomy 122 Introduction: 1. How is modern Astronomy different from Astrology? 2. What is the speed of light? Is it constant or changing? 3. What is an AU? Light-year? Parsec? Which

More information

Name and Student ID Section Day/Time:

Name and Student ID Section Day/Time: AY2 - Overview of the Universe - Midterm #1 - Instructor: Maria F. Duran Name and Student ID Section Day/Time: 1) Imagine we ve discovered a planet orbiting another star at 1 AU every 6 months. The planet

More information

Modern Astronomy Review #1

Modern Astronomy Review #1 Modern Astronomy Review #1 1. The red-shift of light from distant galaxies provides evidence that the universe is (1) shrinking, only (3) shrinking and expanding in a cyclic pattern (2) expanding, only

More information

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both.

Light carries energy. Lecture 5 Understand Light. Is light. Light as a Particle. ANSWER: Both. Light carries energy Lecture 5 Understand Light Reading: Chapter 6 You feel energy carried by light when light hits your skin. Energy Conservation: Radiation energy will be given to molecules making your

More information

Astro 1050 Wed. Feb. 18, 2015

Astro 1050 Wed. Feb. 18, 2015 Astro 1050 Wed. Feb. 18, 2015 Today: Begin Chapter 5: Light the Cosmic Messenger For Friday: Study for Test #1 Be sure to bring green bubble sheet, #2 pencil and a calculator. 1 Chapter 5: Light, the Cosmic

More information

CPO Science Foundations of Physics. Unit 8, Chapter 26

CPO Science Foundations of Physics. Unit 8, Chapter 26 CPO Science Foundations of Physics Unit 8, Chapter 26 Unit 8: Matter and Energy Chapter 26 Heat Transfer 26.1 Heat Conduction 26.2 Convection 26.3 Radiation Chapter 26 Objectives 1. Explain the relationship

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

TOPIC # 7 The RADIATION LAWS

TOPIC # 7 The RADIATION LAWS TOPIC # 7 The RADIATION LAWS More KEYS to unlocking the topics of: The GREENHOUSE EFFECT, GLOBAL WARMING & OZONE DEPLETION! Topic #7 pp 35-38 OBJECTIVES: To understand more essentials about the key differences

More information

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe

o Terms to know o Big Bang Theory o Doppler Effect o Redshift o Universe Standard 1: Students will understand the scientific evidence that supports theories that explain how the universe and the solar system developed. They will compare Earth to other objects in the solar system.

More information

ASTRONOMY QUIZ NUMBER 1

ASTRONOMY QUIZ NUMBER 1 ASTRONOMY QUIZ NUMBER. You read in an astronomy atlas that an object has a negative right ascension. You immediately conclude that A) the object is located in the Southern Sky. B) the object is located

More information

Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law

Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law Write answers to Q s on another paper Temperature and Luminosity of Stars: Wein s Law and the Stephan-Boltzmann Law Learning Objectives To understand thermal spectra To understand Wien s Law and the Stephan-Boltzmann

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

10/31/2017. Calculating the temperature of earth (The greenhouse effect) IR radiation. The electromagnetic spectrum

10/31/2017. Calculating the temperature of earth (The greenhouse effect)   IR radiation. The electromagnetic spectrum Calculating the temperature of earth (The greenhouse effect) EM radiation so far Spectrum of EM radiation emitted by many objects may be approximated by the blackbody spectrum Blackbody spectrum (plot

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Today in Astronomy 111: the Sun and other blackbodies

Today in Astronomy 111: the Sun and other blackbodies Today in Astronomy 111: the Sun and other blackbodies A few salient facts about the Sun Nucleosynthesis Blackbody radiation and temperatures of stars The spectrum of blackbodies, and solid angle Wien s

More information

Stellar Composition. How do we determine what a star is made of?

Stellar Composition. How do we determine what a star is made of? Stars Essential Questions What are stars? What is the apparent visual magnitude of a star? How do we locate stars? How are star classified? How has the telescope changed our understanding of stars? What

More information

Astronomy 1001/1005 Midterm (200 points) Name:

Astronomy 1001/1005 Midterm (200 points) Name: Astronomy 1001/1005 Midterm (00 points) Name: Instructions: Mark your answers on this test AND your bubble sheet You will NOT get your bubble sheet back One page of notes and calculators are allowed Use

More information

Astronomy 1504/15014 Section 20

Astronomy 1504/15014 Section 20 1 point each Astronomy 1504/15014 Section 20 Midterm 1 (Practice Exam) September 21, 2015 Exam Version A Choose the answer that best completes the question. Read each problem carefully and read through

More information

OBJECTIVES FOR TODAY S CLASS:

OBJECTIVES FOR TODAY S CLASS: OBJECTIVES FOR TODAY S CLASS: To understand the key differences between Solar radiation & Terrestrial radiation based on the principles of the Radiation Laws. WRAP UP OF TOPIC #4... ELECTROMANGETIC RADIATION

More information

Astronomy 150: Killer Skies. Lecture 20, March 7

Astronomy 150: Killer Skies. Lecture 20, March 7 Assignments: Astronomy 150: Killer Skies HW6 due next time at start of class Lecture 20, March 7 Office Hours begin after class or by appointment Night Observing continues this week, 7-9 pm last week!

More information

Light - electromagnetic radiation

Light - electromagnetic radiation Astronomy & Light Astronomy is a science In science we know by doing experiments When multiple experiments give the same results we develop theories and laws In astronomy many of the experiments are done

More information

Solution for Homework# 3. Chapter 5 : Review & Discussion

Solution for Homework# 3. Chapter 5 : Review & Discussion Solution for Homework# 3 Chapter 5 : Review & Discussion. The largest telescopes are reflecting telescopes, primarily because of 3 distinct disadvantages of the refracting telescope. When light passes

More information

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION

THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION VISUAL PHYSICS ONLINE THERMODYNAMICS METHODS OF HEAT TRANSFER RADIATION Radiation is the energy transferred by electromagnetic waves mainly infrared (IR), visible and ultraviolet (UV). All materials radiate

More information

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT

Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 1 Problem Set 4 is due Thursday. Problem Set 5 will be out today or tomorrow. Launch Latest from MASCOT 3 Continuous Spectra: Thermal Radiation The equations below quantitatively summarize the light-emitting

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 17 Heat: Q = Energy transferred due to microscopic contact Recap - Heat Transfer Heat can: Change temperature Q = mc!t c = specific heat For water: c= 1.0 cal/(g

More information

Answer Key for Exam C

Answer Key for Exam C Answer Key for Exam C 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

Answer Key for Exam B

Answer Key for Exam B Answer Key for Exam B 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

What Is Air Temperature?

What Is Air Temperature? 2.2 Read What Is Air Temperature? In Learning Set 1, you used a thermometer to measure air temperature. But what exactly was the thermometer measuring? What is different about cold air and warm air that

More information

Light, Energy and Matter

Light, Energy and Matter Announcements You should see a polling session active if you are using the REEF app. Make sure you are signed in I have thee iclickers to loan out. First come, first served. If you borrow one, please remember

More information

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises

4. THE SOLAR SYSTEM 1.1. THE SUN. Exercises 4. THE SOLAR SYSTEM 1.1. THE SUN The sun is the star located in the center of the solar system. The sun is a yellow star, since its superficial temperature is about 5.500 C (although, the temperature can

More information

PRE-LAB FOR PLANETARY ATMOSPHERES

PRE-LAB FOR PLANETARY ATMOSPHERES PRE-LAB FOR PLANETARY ATMOSPHERES 1. Find pictures of Venus, Earth, and Mars in an astronomy textbook or other book or online at a website. Estimate, to the nearest 10%, the percentage of surface of each

More information

Answer Key for Exam D

Answer Key for Exam D Answer Key for Exam D 2 points each Choose the answer that best completes the question. Read each problem carefully and read through all the answers. Take your time. If a question is unclear, ask for clarification

More information

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1

ASTR : Stars & Galaxies (Spring 2019)... Study Guide for Midterm 1 ASTR-1200-01: Stars & Galaxies (Spring 2019)........................ Study Guide for Midterm 1 The first midterm exam for ASTR-1200 takes place in class on Wednesday, February 13, 2019. The exam covers

More information

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline Lecture Outline 5.1 Basic Properties of Light and Matter Chapter 5: Light: The Cosmic Messenger Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light

More information

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus

Types of Spectra. How do spectrum lines form? 3/30/09. Electron cloud. Atom. Nucleus The electron should be thought of as a distribution or cloud of probability around the nucleus that on average behave like a point particle on a fixed circular path Types of Spectra How do spectrum lines

More information

COLOR MAGNITUDE DIAGRAMS

COLOR MAGNITUDE DIAGRAMS COLOR MAGNITUDE DIAGRAMS What will you learn in this Lab? This lab will introduce you to Color-Magnitude, or Hertzsprung-Russell, Diagrams: one of the most useful diagnostic tools developed in 20 th century

More information

Which property of a star would not change if we could observe it from twice as far away? a) Angular size b) Color c) Flux d) Parallax e) Proper Motion

Which property of a star would not change if we could observe it from twice as far away? a) Angular size b) Color c) Flux d) Parallax e) Proper Motion Exam #1 is in class next monday 25 multiple-choice questions 50 minutes Similar to questions asked in class Review sheet to be posted this week. We will have two 1-hour review sessions Friday 5-6pm (with

More information

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation?

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation? 5 Radiation and Spectra 1 Radiation and Spectra What is light? According to Webster: a.something that makes vision possible b.the sensation aroused by stimulation of the visual receptors c.electromagnetic

More information

Textbook Chapters 24 - Stars Textbook Chapter 25 - Universe. Regents Earth Science with Ms. Connery

Textbook Chapters 24 - Stars Textbook Chapter 25 - Universe. Regents Earth Science with Ms. Connery Textbook Chapters 24 - Stars Textbook Chapter 25 - Universe Regents Earth Science with Ms. Connery SPECTROSCOPY is the study of light. Read to learn - textbook pages 674-677 STAR LIGHT gives us characteristics

More information

What are the three basic types of spectra?

What are the three basic types of spectra? Learning from Light Our goals for learning What are the three basic types of spectra? How does light tell us what things are made of? How does light tell us the temperatures of planets and stars? How do

More information

Astronomy 150: Killer Skies Lecture 35, April 23

Astronomy 150: Killer Skies Lecture 35, April 23 Assignments: ICES available online Astronomy 150: Killer Skies Lecture 35, April 23 HW11 due next Friday: last homework! note: lowest HW score dropped but: HW11 material will be on Exam 3, so be sure to

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Announcements. Office hours this Tuesday will be 1-2 pm.

Announcements. Office hours this Tuesday will be 1-2 pm. Announcements Scores for first exam on ICON The average was 53.4 or 67%. The curve is A:80-68, B:64-56, C:52-40, D:36-32, F < 30. Material for problem about Kepler satellite was not adequately covered,

More information

Name... Class... Date...

Name... Class... Date... Radiation and temperature Specification reference: P6.3 Black body radiation (physics only) Aims This is an activity that has been designed to help you improve your literacy skills. In this activity you

More information

Hertzsprung-Russell Diagram 7 Oct

Hertzsprung-Russell Diagram 7 Oct Hertzsprung-Russell Diagram 7 Oct Outline Thermal radiation Wien s Law Stefan Boltzmann Law Hertzsprung Russell diagram There are 3 types of stars: main sequence or dwarfs, giants, white dwarfs Missouri

More information

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation.

Light & Atoms. Electromagnetic [EM] Waves. Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. Light & Atoms Electromagnetic [EM] Waves Light and several other forms of radiation are called electromagnetic waves or electromagnetic radiation. These have both and electric part and a magnetic part

More information

Astro 1050 Mon. Apr. 3, 2017

Astro 1050 Mon. Apr. 3, 2017 Astro 1050 Mon. Apr. 3, 017 Today: Chapter 15, Surveying the Stars Reading in Bennett: For Monday: Ch. 15 Surveying the Stars Reminders: HW CH. 14, 14 due next monday. 1 Chapter 1: Properties of Stars

More information

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today.

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today. Outline Homework #5 was due today. Next homework is #6 due next Friday at 11:50 am. There will be another make-up nighttime observing session in November. Stay tuned. I will be teaching Paul s class on

More information

WRAP UP OF TOPIC #5... ELECTROMANGETIC RADAITAION & THE ELECTROMAGNETIC SPECTRUM

WRAP UP OF TOPIC #5... ELECTROMANGETIC RADAITAION & THE ELECTROMAGNETIC SPECTRUM WRAP UP OF TOPIC #5... ELECTROMANGETIC RADAITAION & THE ELECTROMAGNETIC SPECTRUM ATOMS vs MOLECULES Quantum leap of electrons WITHIN an ATOM when photons are absorbed or emitted Quantum MOLECULAR MOTION

More information

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do.

The Sun: Our Star. The Sun is an ordinary star and shines the same way other stars do. The Sun: Our Star The Sun is an ordinary star and shines the same way other stars do. Announcements q Homework # 4 is due today! q Units 49 and 51 Assigned Reading Today s Goals q Today we start section

More information

FALL 2004 Final Exam, Part A

FALL 2004 Final Exam, Part A Physics 152 FALL 2004 Final Exam, Part A Roster No.: Score: 23 pts. possible Exam time limit: 2 hours. You may use a calculator and both sides of 2 sheets of notes, handwritten only. Closed book; no collaboration.

More information

Characteristics of Stars

Characteristics of Stars Characteristics of Stars Mass of a Star The mass of a star is the hardest for astronomers to determine and it can only be found based on the gravitational forces and interactions with nearby stars. We

More information

Astron 104 Laboratory #5 Colors of Stars

Astron 104 Laboratory #5 Colors of Stars Name: Date: Section: Astron 104 Laboratory #5 Colors of Stars Section 11.1 Introduction The night sky in a dark location is full of stars tiny pinpoints of light. It is pretty obvious from even a casual

More information

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements

Lecture 12. Measurements in Astronomy. Using Light. ASTR 111 Section 002. In astronomy, we need to make remote and indirect measurements Lecture 12 ASTR 111 Section 002 Measurements in Astronomy In astronomy, we need to make remote and indirect measurements Think of an example of a remote and indirect measurement from everyday life Using

More information

Midterm Exam. IT Posting scores Finding out about missed questions Reminder about dropping lowest of 3

Midterm Exam. IT Posting scores Finding out about missed questions Reminder about dropping lowest of 3 Midterm Exam #&%?@)#$! IT Posting scores Finding out about missed questions Reminder about dropping lowest of 3 Nature of Light 10/3 Apparent versus Actual Brightness 10/6 Electromagnetic Spectrum of Light

More information

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars.

A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. A star is a massive sphere of gases with a core like a thermonuclear reactor. They are the most common celestial bodies in the universe are stars. They radiate energy (electromagnetic radiation) from a

More information

Announcements. Lecture 11 Properties of Stars. App Bright = L / 4!d 2

Announcements. Lecture 11 Properties of Stars. App Bright = L / 4!d 2 Announcements Quiz#3 today at the end of 60min lecture. Homework#3 will be handed out on Thursday. Due October 14 (next Thursday) Review of Mid-term exam will be handed out next Tuesday. Mid-term exam

More information

Announcements. - Marie Friday 3/17, 4-5pm NatSci2 Annex Plato Sunday, 3/20, 3-4pm, NatSci2 Annex 101

Announcements. - Marie Friday 3/17, 4-5pm NatSci2 Annex Plato Sunday, 3/20, 3-4pm, NatSci2 Annex 101 Announcements Please fill out an on-line course evaluation Final Exam: Wednesday, 3/22, 7:30pm - 3 hours - same format, rules as midterm: multiple choice with formula sheet, closed book and notes, bring

More information

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets

Today. Kirchoff s Laws. Emission and Absorption. Stellar Spectra & Composition. Doppler Effect & Motion. Extrasolar Planets Today Kirchoff s Laws Emission and Absorption Stellar Spectra & Composition Doppler Effect & Motion Extrasolar Planets Three basic types of spectra Continuous Spectrum Intensity Emission Line Spectrum

More information

AT 350 EXAM #1 February 21, 2008

AT 350 EXAM #1 February 21, 2008 This exam covers Ahrens Chapters 1 and 2, plus related lecture notes Write the letter of the choice that best completes the statement or answers the question. b_ 1. The Earth s atmosphere is currently

More information

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: "OMEWORK #1

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: OMEWORK #1 ASTR 1120 General Astronomy: Stars & Galaxies!ATH REVIEW: Tonight, 5-6pm, in RAMY N1B23 "OMEWORK #1 -Due THU, Sept. 10, by 5pm, on Mastering Astronomy CLASS RECORDED STARTED - INFO WILL BE POSTED on CULEARN

More information

14 Heating and Cooling of Planets AND Daytime Observations

14 Heating and Cooling of Planets AND Daytime Observations Name: Date: 14 Heating and Cooling of Planets AND Daytime Observations 14.1 Heating and Cooling Introduction With this lab exercise we will investigate the ability of the radiant energy from the Sun to

More information

Black Hole Binary System. Outline - Feb. 25, Constraining the Size of the Region that Contains the Invisible Mass

Black Hole Binary System. Outline - Feb. 25, Constraining the Size of the Region that Contains the Invisible Mass Outline - Feb. 25, 2010 Black Hole Binary System Observational evidence for Black Holes (pgs. 600-601) Properties of Stars (Ch. 16) Luminosities (pgs. 519-523) Temperatures (pg. 524) Optical image of Cygnus

More information