Thermodynamics Heat Transfer

Size: px
Start display at page:

Download "Thermodynamics Heat Transfer"

Transcription

1 Thermodynamics Heat Transfer Lana Sheridan De Anza College April 30, 2018

2 Last time heat transfer conduction Newton s law of cooling

3 Overview continue heat transfer mechanisms conduction over a distance convection radiation and Stephan s law

4 Heat Transfer When objects are in thermal contact, heat is transferred from the hotter object to the cooler object There are various mechanisms by which this happens: conduction convection radiation

5 Thermal Conduction over distance For Newton s law of cooling, we assumed we have a system at one temperature throughout, T, and an environment at another temperature T. What if we have a system that is in contact with two different environments (thermal reservoirs) at different temperatures? The system will conduct heat from one reservoir to the other. The system will not be the same temperature throughout.

6 Transfer Thermal Mechanisms Conduction in Thermal Processes over distance609 s your hand by means ame, the microscopic ositions. As the flame begin to vibrate with lide with their neighly, the amplitudes of m the flame increase ected. This increased he metal and of your The opposite faces are at different temperatures where T h T c. T h A ties of the substance estos in a flame indefough the asbestos. In uch as asbestos, cork, Energy transfer for T h T c Figure Energy transfer r conductors Rate of because heat transfer between surfaces: tals are good thermal ness Dx. that are relatively free power, P = Q T = ka arge distances. There- t x x T c through a conducting slab with a cross-sectional area A and a thick-

7 Thermal Conduction over distance Fourier s Law Imagining a subsection of the slab with an area A and an infinitesimal thickness dx: P = ka dt dx where k is the thermal conductivity and dt dx is called the temperature gradient. If k is large for a substance, the substance is a good conductor of heat. The units of k are W m 1 K 1.

8 P 5 kaa T h 2 T c b Thermal Conduction over distance The opposite ends of the rod are in thermal contact with Imagine a uniform energy rod of length reservoirs L, that different has been placed between two thermal reservoirs temperatures. for a long time. Assume for this bar k does not depend on temperature or position. L T h Energy transfer T c T h T c Insulation Figure Conduction of energy through The temperature at each point is constant in time and the a uniform, insulated rod of length L. gradient everywhere is dt dx = T h T c L the rate of energy transfer by conduction through the rod is

9 are in thermal contact with energy reservoirs at different temperatures. Thermal Conduction over distance L T h Energy transfer T c T h T c Insulation Then, Figure Conduction of energy through a uniform, insulated rod ( of length ) Th T L. c P = ka L the rate of energy transfer by conduction through the rod is P 5 kaa T h 2 T c b L

10 are in thermal contact with energy reservoirs at different temperatures. Thermal Conduction over distance L T h Energy transfer T c T h T c Insulation Then, Figure Conduction of energy through a uniform, insulated rod ( of length ) Th T L. c P = ka L the rate of energy transfer by conduction through the rod is What if there are many different bars for heat to be transferred through? P 5 kaa T h 2 T c b L

11 Thermal Conduction through multiple materials P 5 k For a compound slab containing s thermal conductivities k 1, k 2,..., the steady For situation state is (a): T h Rod 1 Rod 2 T c P = A(T h T c ) (L 1 /k 1 ) + (L 2 /k 2 ) P 5 a Rod 1 (See ex. 20.8) where T h and T c are the temperature stant) and the summation is over all s results For situation from a (b): consideration of two th b T h Rod 2 T c Figure (Quick Quiz 20.5) In which case is the rate of energy transfer larger? Q P uick = Quiz P P ( 2 You have two rods o formed from k1 A 1 different materials. T = + k ) 2A 2 (T different temperatures so h T that ener c ) L 1 L 2 can be connected in series as in Fig In which case is the rate of energy when the rods are in series. (b) The (c) The rate is the same in both cas

12 Thermal Conduction through multiple materials Compare: P = I = ( ) ka T L ( ) 1 V R On the LHS we have transfer rates, on the RHS differences that propel a transfer. L You can think of ka as a kind of resistance. k is a conductivity, like σ (electrical conductivity). Recall, R = ρl A = L σa.

13 Thermal Conduction through multiple materials For multiple thermal transfer slabs in series: P = 1 i (L i/(k i A)) T For multiple thermal transfer slabs in parallel: ( ) k i A i P = T L i i Now for convenient comparison, let r i = L i k i A i. Then r i is a thermal resistance, for the ith slab.

14 Thermal Conduction through multiple materials For multiple resistors in series: ( ) 1 I = i R V i For multiple thermal transfer slabs in series: ( ) 1 P = i r T i For multiple resistors in parallel: ( ) 1 I = V For multiple thermal transfer slabs in parallel: ( ) 1 P = T i i R i r i

15 Thermal Conduction and Ohm s Law Fourier s work on thermal conductivity inspired Ohm s model of electrical conductivity and resistance!

16 L 1 /k 1 L 2 /k 2 Thermal Conductivity Question Eq to apply to any number n of materials making up The figure P cond shows A(T H T the face C ) and. interface temperatures (18-37) of a composite slab consisting (L/k) of four materials, of identical gn in the thicknesses, denominator through tells which us to the add heat the transfer values is of steady. L/k for Rank all the materials according to their thermal conductivities, greatest first. T 7 the face and 25 C 15 C 10 C 5.0 C 10 C res of a comting of four a b c d al thicknesses, through which the heat transfer is steady. Rank the matheir thermal conductivities, greatest first. (A) a, b, c, d (B) (b and d), a, c (C) c, a, (b and d) the flame (D) (b, of c, a candle d), aor a match, you are watching thermal sported upward by convection. Such energy transfer occurs as air or water, comes in contact with an object whose tem- 1 Halliday, Resnick, Walker, page 495.

17 L 1 /k 1 L 2 /k 2 Thermal Conductivity Question Eq to apply to any number n of materials making up The figure P cond shows A(T H T the face C ) and. interface temperatures (18-37) of a composite slab consisting (L/k) of four materials, of identical gn in the thicknesses, denominator through tells which us to the add heat the transfer values is of steady. L/k for Rank all the materials according to their thermal conductivities, greatest first. T 7 the face and 25 C 15 C 10 C 5.0 C 10 C res of a comting of four a b c d al thicknesses, through which the heat transfer is steady. Rank the matheir thermal conductivities, greatest first. (A) a, b, c, d (B) (b and d), a, c (C) c, a, (b and d) the flame (D) (b, of c, a candle d), aor a match, you are watching thermal sported upward by convection. Such energy transfer occurs as air or water, comes in contact with an object whose tem- 1 Halliday, Resnick, Walker, page 495.

18 Thermal Conduction and Insulation Engineers generally prefer to quote R-values for insulation, rather than using thermal conductivity, k. For a particular material: R = L k This is its length-resistivity to heat transfer. A high value of R indicates a good insulator. The units used are ft 2 F h / Btu. (h is hours, Btu is British thermal units, 1 Btu = 1.06 kj)

19 Convection In liquids and gases convection is usually a larger contributor to heat transfer. In convection, the fluid itself circulates distributing hot (fast moving) molecules throughout the fluid. When there is gravity present, convection current circulations can occur.

20 Convection Hot fluid expands, and since it is less dense, it will have a greater buoyant force and rise. Cooler, denser fluid will tend to sink.

21 Convection Heat loss by convection from a person s hand: This type of convection is called free convection.

22 Forced Convection External energy can also drive convection by means of a pump or fan. This is used in convection ovens to evenly heat food. It is also used in cooling systems to keep cool air flowing over hot components.

23 Summary heat transfer mechanisms: conduction, convection, radiation Collected Homework due Monday, May 7. Homework Serway & Jewett: Ch 20, onward from page 615. OQs: 11; CQs: 1, 9; Probs: 43, (45, 47,) 51, 55

Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model

Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model Lana Sheridan De Anza College May 1, 2017 Last time more about phase changes work, heat, and the first law of thermodynamics P-V

More information

Conceptual Physics Heat Capacity Heat Transfer

Conceptual Physics Heat Capacity Heat Transfer Conceptual Physics Heat Capacity Heat Transfer Lana Sheridan De Anza College July 27, 2017 Last time Bernoulli s principle plasmas temperature heat Overview heat capacity thermal expansion heat transfer

More information

Thermodynamics Second Law Heat Engines

Thermodynamics Second Law Heat Engines Thermodynamics Second Law Heat Engines Lana Sheridan De Anza College May 10, 2018 Last time entropy (microscopic perspective) Overview heat engines heat pumps Carnot engines Heat Engines Steam engines

More information

Thermodynamics Heat Capacity Phase Changes

Thermodynamics Heat Capacity Phase Changes Thermodynamics Heat Capacity Phase Changes Lana Sheridan De Anza College April 24, 2018 Last time finish applying the ideal gas equation thermal energy introduced heat capacity Overview heat capacity phase

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

Thermodynamics Molecular Model of a Gas Molar Heat Capacities

Thermodynamics Molecular Model of a Gas Molar Heat Capacities Thermodynamics Molecular Model of a Gas Molar Heat Capacities Lana Sheridan De Anza College May 3, 2018 Last time modeling an ideal gas at the microscopic level rms speed of molecules equipartition of

More information

Thermodynamics Heat & Work The First Law of Thermodynamics

Thermodynamics Heat & Work The First Law of Thermodynamics Thermodynamics Heat & Work The First Law o Thermodynamics Lana Sheridan De Anza College April 26, 2018 Last time more about phase changes work, heat, and the irst law o thermodynamics Overview P-V diagrams

More information

Electricity and Magnetism Current

Electricity and Magnetism Current Electricity and Magnetism Current Lana Sheridan De Anza College Feb 2, 2018 Last time dielectrics and capacitors uses of capacitors Overview current current density drift speed Motion of Charge Up until

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Overview Force from a point charge Quantization of charge

More information

Waves Standing Waves Sound Waves

Waves Standing Waves Sound Waves Waves Standing Waves Sound Waves Lana Sheridan De Anza College May 23, 2018 Last time finish up reflection and transmission standing waves Warm Up Question: Standing Waves and Resonance In the following

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Thermodynamics Heat & Work The First Law of Thermodynamics

Thermodynamics Heat & Work The First Law of Thermodynamics Thermodynamics Heat & Work The First Law of Thermodynamics Lana Sheridan De Anza College April 26, 2016 Last time applying the ideal gas equation thermal energy heat capacity phase changes latent heat

More information

Introduction of Heat Transfer. Prepared by: Nimesh Gajjar GIT-MED

Introduction of Heat Transfer. Prepared by: Nimesh Gajjar GIT-MED Introduction of Heat Transfer Prepared by: Nimesh Gajjar GIT-MED Difference between heat and temperature Temperature is a measure of the amount of energy possessed by the molecules of a substance. It manifests

More information

heat By cillian bryan and scott doyle

heat By cillian bryan and scott doyle heat By cillian bryan and scott doyle What is heat Heat energy is the result of the movement of tiny particles called atoms molecules or ions in solids, liquids and gases. Heat energy can be transferred

More information

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy

Chapter 11. Important to distinguish between them. They are not interchangeable. They mean very different things when used in physics Internal Energy Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Linear Momentum Center of Mass

Linear Momentum Center of Mass Linear Momentum Center of Mass Lana Sheridan De Anza College Nov 14, 2017 Last time the ballistic pendulum 2D collisions center of mass finding the center of mass Overview center of mass examples center

More information

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns

Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Waves Standing Waves and Sound Beats Nonsinusoidal Wave Patterns Lana Sheridan De Anza College May 24, 2018 Last time interference and sound standing waves and sound musical instruments Reminder: Speed

More information

Physics 2: Fluid Mechanics and Thermodynamics

Physics 2: Fluid Mechanics and Thermodynamics Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, email: dnhtam@hcmiu.edu.vn HCMIU, Vietnam National University Acknowledgment: Most of these slides are supported by Prof.

More information

Thermodynamics Thermal Equilibrium Temperature

Thermodynamics Thermal Equilibrium Temperature Thermodynamics Thermal Equilibrium Temperature Lana Sheridan De Anza College April 18, 2017 Last time Torricelli s Law applications of Bernoulli s equation Overview heat, thermal equilibrium, and the 0th

More information

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE

12/21/2014 7:39 PM. Chapter 2. Energy and the 1st Law of Thermodynamics. Dr. Mohammad Suliman Abuhaiba, PE Chapter 2 Energy and the 1st Law of Thermodynamics 1 2 Homework Assignment # 2 Problems: 1, 7, 14, 20, 30, 36, 42, 49, 56 Design and open end problem: 2.1D Due Monday 22/12/2014 3 Work and Kinetic Energy

More information

Lecture 2: Fundamentals. Sourav Saha

Lecture 2: Fundamentals. Sourav Saha ME 267: Mechanical Engineering Fundamentals Credit hours: 3.00 Lecture 2: Fundamentals Sourav Saha Lecturer Department of Mechanical Engineering, BUET Email address: ssaha09@me.buet.ac.bd, souravsahame17@gmail.com

More information

Physics 2: Fluid Mechanics and Thermodynamics

Physics 2: Fluid Mechanics and Thermodynamics Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, email: dnhtam@hcmiu.edu.vn HCMIU, Vietnam National University Acknowledgment: Most of these slides are supported by Prof.

More information

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

Electricity and Magnetism Electric Field

Electricity and Magnetism Electric Field Electricity and Magnetism Electric Field Lana Sheridan De Anza College Jan 11, 2018 Last time Coulomb s Law force from many charges R/2 +8Q Warm Up Question (c) articles. p Fig. 21-19 Question 9. 10 In

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature.

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Heat Transfer Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Cold objects in a warmer room will heat up to room temperature. Question

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Chapter 18. Temperature, Heat, and the First Law of Thermodynamics Temperature

Chapter 18. Temperature, Heat, and the First Law of Thermodynamics Temperature Chapter 18 Temperature, Heat, and the First Law of Thermodynamics 18.2 Temperature 18.3: The Zeroth aw of Thermodynamics If bodies A and B are each in thermal equilibrium with a third body T, then A and

More information

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics

Chapter 18 Temperature, Heat, and the First Law of Thermodynamics. Thermodynamics and Statistical Physics Chapter 18 Temperature, Heat, and the First Law of Thermodynamics Thermodynamics and Statistical Physics Key contents: Temperature scales Thermal expansion Temperature and heat, specific heat Heat and

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 15, 219 Last time how to solve problems 1-D kinematics Overview 1-D kinematics quantities of motion graphs of kinematic quantities vs

More information

Chapter 11. Energy in Thermal Processes

Chapter 11. Energy in Thermal Processes Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler

More information

Thermodynamics Heat & Internal Energy Heat Capacity

Thermodynamics Heat & Internal Energy Heat Capacity Thermodynamics Heat & Internal Energy Heat Capacity Lana Sheridan De Anza College April 23, 2018 Last time the ideal gas equation moles and molecules Overview finish applying the ideal gas equation thermal

More information

Electricity and Magnetism Capacitors and Dielectrics

Electricity and Magnetism Capacitors and Dielectrics Electricity and Magnetism Capacitors and Dielectrics Lana Sheridan De Anza College Oct 20, 2015 Last time circuits capacitors in series and parallel Warm Up Question pictorial presentation of two pacitors

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Thermodynamics Second Law Entropy

Thermodynamics Second Law Entropy Thermodynamics Second Law Entropy Lana Sheridan De Anza College May 9, 2018 Last time entropy (macroscopic perspective) Overview entropy (microscopic perspective) Reminder of Example from Last Lecture

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

TRANSMISSION OF HEAT

TRANSMISSION OF HEAT TRANSMISSION OF HEAT Synopsis :. In general heat travels from one point to another whenever there is a difference of temperatures.. Heat flows from a body at higher temperature to a lower temperature..

More information

Oscillations Simple Harmonic Motion

Oscillations Simple Harmonic Motion Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations Oscillations and

More information

2,000-gram mass of water compared to a 1,000-gram mass.

2,000-gram mass of water compared to a 1,000-gram mass. 11.2 Heat To change the temperature, you usually need to add or subtract energy. For example, when it s cold outside, you turn up the heat in your house or apartment and the temperature goes up. You know

More information

Thermodynamics Boltzmann (Gibbs) Distribution Maxwell-Boltzmann Distribution Second Law Entropy

Thermodynamics Boltzmann (Gibbs) Distribution Maxwell-Boltzmann Distribution Second Law Entropy Thermodynamics Boltzmann (Gibbs) Distribution Maxwell-Boltzmann Distribution Second Law Entropy Lana Sheridan De Anza College May 8, 2017 Last time modeling an ideal gas at the microscopic level pressure,

More information

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed.

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed. Physics 111 Lecture 36 (Walker: 16.4-6) Heat Capacity & Specific Heat Heat Transfer May 1, 2009 Quiz (Chaps. 14 & 16) on Wed. May 6 Lecture 36 1/26 Heat Capacity (C) The heat capacity C of an object is

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

Electricity and Magnetism Electric Potential Energy Electric Potential

Electricity and Magnetism Electric Potential Energy Electric Potential Electricity and Magnetism Electric Potential Energy Electric Potential Lana Sheridan De Anza College Jan 23, 2018 Last time implications of Gauss s law introduced electric potential energy in which the

More information

Fluids, Thermodynamics, Waves, and Optics Fluids

Fluids, Thermodynamics, Waves, and Optics Fluids Fluids, Thermodynamics, Waves, and Optics Fluids Lana Sheridan De Anza College April 10, 2018 Overview static fluids pressure liquid pressure Pascal s law Elastic Properties of Solids We are considering

More information

Physical Science. Thermal Energy & Heat

Physical Science. Thermal Energy & Heat Physical Science Thermal Energy & Heat Sometimes called internal energy Depends on the object's mass, temperature, and phase (solid, liquid, gas) TOTAL potential and kinetic energy of all the particles

More information

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model

More information

TEMPERATURE. 8. Temperature and Heat 1

TEMPERATURE. 8. Temperature and Heat 1 TEMPERATURE Heat is the energy that is transferred between objects because of a temperature difference Terms such as transfer of heat or heat flow from object A to object B simply means that the total

More information

Chapter 17 Temperature and heat

Chapter 17 Temperature and heat Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

Doppler E ect Bow and Shock Waves

Doppler E ect Bow and Shock Waves Doppler E ect Bow and Shock Waves Lana Sheridan De Anza College May 30, 2018 Last time nonsinusoidal waves intensity of a wave sound level Overview sound level & perception of sound with frequency the

More information

Electricity and Magnetism Charge and Conduction Coulomb s Law

Electricity and Magnetism Charge and Conduction Coulomb s Law Electricity and Magnetism Charge and Conduction Coulomb s Law Lana Sheridan De Anza College Jan 9, 2018 Last time course structure introduced charge Overview conductors insulators induced charge quantization

More information

- Apply closed system energy balances, observe sign convention for work and heat transfer.

- Apply closed system energy balances, observe sign convention for work and heat transfer. CHAPTER : ENERGY AND THE FIRST LAW OF THERMODYNAMICS Objectives: - In this chapter we discuss energy and develop equations for applying the principle of conservation of energy. Learning Outcomes: - Demonstrate

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana Sheridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

Mechanics Units, Dimensional Analysis, and Unit Conversion

Mechanics Units, Dimensional Analysis, and Unit Conversion Mechanics Units, Dimensional Analysis, and Unit Conversion Lana Sheridan De Anza College Sept 25, 2018 Last time introduced the course basic ideas about science and physics Overview introduce SI units

More information

Chapter: Heat and States

Chapter: Heat and States Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

More information

Heat Transfer There are three mechanisms for the transfer of heat:

Heat Transfer There are three mechanisms for the transfer of heat: Heat Transfer There are three mechanisms for the transfer of heat: Conduction Convection Radiation CONDUCTION is a diffusive process wherein molecules transmit their kinetic energy to other molecules by

More information

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT

The Kinetic Theory of Matter. Temperature. Temperature. Temperature. Temperature. Chapter 6 HEAT The Kinetic Theory of Matter Hewitt/Lyons/Suchocki/Yeh Conceptual Integrated Science Chapter 6 HEAT Kinetic Theory of Matter: Matter is made up of tiny particles (atoms or molecules) that are always in

More information

Heat and Temperature

Heat and Temperature Heat and Temperature Temperature What does temperature have to do with energy? What three temperature scales are commonly used? What makes things feel hot or cold? Intro: Discussion A person from Seattle

More information

Thermal Effects. IGCSE Physics

Thermal Effects. IGCSE Physics Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

More information

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Lana Sheridan De Anza College Feb 9, 08 Last time power Kirchhoff s laws Overview more Kirchhoff examples Example with Two Batteries Find the

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

Electricity and Magnetism Force on Parallel Wires

Electricity and Magnetism Force on Parallel Wires Electricity and Magnetism Force on Parallel Wires Lana Sheridan De Anza College Mar 2, 2018 Last time Gauss s Law for magnetic fields Ampère s Law magnetic field around a straight wire solenoids Overview

More information

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat? CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators?

More information

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Lana heridan De Anza College Mar 8, 2018 Last time Lenz s law applying Faraday s law in problems technological applications Overview

More information

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Lana Sheridan De Anza College Feb 12, 2018 Last time projectiles launched horizontally projectiles launched at an angle

More information

Electric energy Radiant energy Nuclear energy

Electric energy Radiant energy Nuclear energy CHAPTER 7 LESSON 1: FORMS OF ENERGY Potential Energy Stored Energy Energy Kinetic Potential Work What is Energy? Mechanical Sound Thermal Electric Radiant Nuclear Potential is stored due to the interactions

More information

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!

Thermodynamics. Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23! Thermodynamics Thermodynamics is the study of the collective properties of a system containing many bodies (typically of order 10 23!) Chapter18 Thermodynamics Thermodynamics is the study of the thermal

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Chapter 2 Heat, Temperature and the First Law of Thermodynamics Chapter 2 Heat, Temperature and the First Law of Thermodynamics 2.1. Temperature and the Zeroth Law of Thermodynamics 2.2. Thermal Expansion 2.3. Heat and the Absorption of Heat by Solids and Liquids 2.4.

More information

Physics 1501 Lecture 35

Physics 1501 Lecture 35 Physics 1501: Lecture 35 Todays Agenda Announcements Homework #11 (Dec. 2) and #12 (Dec. 9): 2 lowest dropped Honors students: see me after the class! Todays topics Chap.16: Temperature and Heat» Latent

More information

Waves Sine Waves Energy Transfer Interference Reflection and Transmission

Waves Sine Waves Energy Transfer Interference Reflection and Transmission Waves Sine Waves Energy Transfer Interference Reflection and Transmission Lana Sheridan De Anza College May 22, 2017 Last time kinds of waves wave speed on a string pulse propagation the wave equation

More information

Energy in Thermal Processes. Heat and Internal Energy

Energy in Thermal Processes. Heat and Internal Energy Energy in Thermal Processes Heat and Internal Energy Internal energy U: associated with the microscopic components of a system: kinetic and potential energies. The larger the number of internal degrees

More information

Thermodynamics and Energy. First Law of Thermodynamics and Energy Transfer Mechanisms. Applications of Thermodynamics

Thermodynamics and Energy. First Law of Thermodynamics and Energy Transfer Mechanisms. Applications of Thermodynamics Thermodynamics and Energy The most fundamental laws of nature: First Law of Thermodynamics and Energy Transfer Mechanisms Physics Enhancement Programme Dr. M.H. CHAN Principle of Conservation of Energy

More information

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up What is energy, and what are energy transformations? What do you think?

More information

Dynamics Energy and Work

Dynamics Energy and Work Dynamics Energy and Work Lana Sheridan De Anza College Oct 24, 2017 Last Time resistive forces: Drag Equation Drag Equation, One more point What if the object is not dropped from rest? (See Ch 6, prob

More information

Thermal Energy. Chapter 6 2 Transferring Thermal Energy

Thermal Energy. Chapter 6 2 Transferring Thermal Energy Thermal Energy Chapter 6 2 Transferring Thermal Energy Objectives Compare and contrast conduction, convection, and radiation. Compare and contrast conductors and insulators. CLE 3202.2.3 Examine the applications

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat 16-1 Temperature and the Zeroth Law of Thermodynamics Definition of heat: Heat is the energy transferred between objects because of a temperature difference. Objects are

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work

Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work Chapter 20 Heat Heat Transfer Phase Changes Specific Heat Calorimetry First Law of Thermo Work HW: Conceptual: 9, 11, 15, 23, 27, 28, 29 Problems: 8, 11, 18, 2023, 30, 32, 38, 43, 46, 51, 69 Heat Energy

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Oct 20, 2017 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

K20: Temperature, Heat, and How Heat Moves

K20: Temperature, Heat, and How Heat Moves K20: Temperature, Heat, and How Heat Moves Definition of Temperature Definition of Heat How heat flows (Note: For all discussions here, particle means a particle of mass which moves as a unit. It could

More information

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up

Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up Chapter Introduction Lesson 1 Forms of Energy Lesson 2 Energy Transformations Lesson 3 Thermal Energy on the Move Chapter Wrap-Up What is energy, and what are energy transformations? What do you think?

More information

Linear Momentum. Lana Sheridan. Nov 6, De Anza College

Linear Momentum. Lana Sheridan. Nov 6, De Anza College Linear Momentum Lana Sheridan De Anza College Nov 6, 2017 Last time energy practice Overview introducing momentum Newton s Second Law: more general form relation to force relation to Newton s third law

More information

Unit 11: Temperature and heat

Unit 11: Temperature and heat Unit 11: Temperature and heat 1. Thermal energy 2. Temperature 3. Heat and thermal equlibrium 4. Effects of heat 5. Transference of heat 6. Conductors and insulators Think and answer a. Is it the same

More information

Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy

Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy Lana Sheridan De Anza College Jan 22, 2018 Last time using Gauss s law Overview implications of Gauss law electric potential

More information

Topic 2: Heat Affects Matter in Different Ways

Topic 2: Heat Affects Matter in Different Ways Topic 2: Heat Affects Matter in Different Ways 1 2.1 States of Matter and the Particle Model of Matter A. States of 1. Matter is made up of tiny particles and exist in 3 states:, and. 2. Matter can change

More information

Conduction is the transfer of heat by the direct contact of particles of matter.

Conduction is the transfer of heat by the direct contact of particles of matter. Matter and Energy Chapter 9 energy flows from a material at a higher temperature to a material at a lower temperature. This process is called heat transfer. How is heat transferred from material to material,

More information

Arctice Engineering Module 3a Page 1 of 32

Arctice Engineering Module 3a Page 1 of 32 Welcome back to the second part of the second learning module for Fundamentals of Arctic Engineering online. We re going to review in this module the fundamental principles of heat transfer. Exchange of

More information

CERT Educational Series Heat Transfer

CERT Educational Series Heat Transfer Student Lab Sheet Answer Key CERT Educational Series Heat Transfer Name Date: Are HEAT and TEMPERATURE the same thing? YES NO Heat and Temperature are not the same thing. They have different units. Heat

More information

Physical Science midterm study guide. Chapter 1 and 2

Physical Science midterm study guide. Chapter 1 and 2 Physical Science midterm study guide Chapter 1 and 2 1. Explain the difference between a scientific law and a scientific theory a. Laws generalize observations b. Theories explain observations 2. Select

More information

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper

Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid

More information

Chapter 3 Phases of Matter Physical Science

Chapter 3 Phases of Matter Physical Science Chapter 3 Phases of Matter Physical Science CH 3- States of Matter 1 What makes up matter? What is the difference between a solid, a liquid, and a gas? What kind of energy do all particles of matter have?

More information

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1) CHAPTER I ELEMENTS OF APPLIED THERMODYNAMICS 1.1. INTRODUCTION. The Air Conditioning systems extract heat from some closed location and deliver it to other places. To better understanding the principles

More information

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

Heat Transfer. Conduction Radiation Convection

Heat Transfer. Conduction Radiation Convection Heat Transfer Conduction Radiation Convection Real World Experience We are going outside to experiences heat transfer. Instructions: while outside place hand on the concrete. Note whether it feels cold

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana heridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information