Electricity and Magnetism Current

Size: px
Start display at page:

Download "Electricity and Magnetism Current"

Transcription

1 Electricity and Magnetism Current Lana Sheridan De Anza College Feb 2, 2018

2 Last time dielectrics and capacitors uses of capacitors

3 Overview current current density drift speed

4 Motion of Charge Up until now, we have mostly considered charges in fixed positions. We will now look at steadily moving charges, particularly in circuits.

5 negative Flow of charges in amoving circuit horizontally Current is the rate of flow of charge. ure Rank the current in these four Conventional current is said to flow from the positive terminal to the negative terminal. However, actually it is negatively charged electrons that flow through metal wires: c current, i d 1 Figure from Serway and Jewett, 9th ed. +

6 e). ure Electric 26-2 shows Current a section of a conductor, part of a conducting loop in urrent has been established. If charge dq passes through a hypothetical uch as Electric aa) in time current, dt,then I, is the the current rate of i through flow ofthat charge plane through is defined some as defined plane: i dq (definition of current). I = dq (26-1) dt dt can find the charge that passes through the plane in a time interval ng from 0 to t by integration: The defined plane might be aa. However, since charge is q dq t i dt, conserved if an amount of charge Q flows through aa (26-2) 0, then the the current same amount i may vary of with charge time. Q must flow through bb and cc in the same time interval. -2 The current i the conductor has value at planes andcc. i a a' b b' c The current is the same in any cross section. i c' i Fig. 2 electro loop is electri side th impos ence b that ar of the duces loop, f the fie around charge The c

7 Average Electric Current I avg = Q t Q is a net amount of charge and t is a time interval. The flowing charge could be electrons in a conductor, positive or negative ions in a solution, electrons and ions in a plasma, etc.

8 Current PART 3 Charge will only 26-2 move ELECTRIC when there CURRENT is a net force on it. 683 A supplying a potential difference across two points on a wire will do this. regardless of lectric field can s are available, ting loop is no rial making up them to move electron flow does not vary ucting loop in a hypothetical is defined as i i (a) i i Battery + i (b)

9 Current Charge will only move when there is a net force on it. A supplying a potential difference across two points on a wire will do this. However, notice that if there is a potential difference between two points in a wire, that must mean that there is a non-zero electric PART 3 field between those points 26-2 ELECTRIC - even though CURRENTthe wire 683 is a conductor! d conducting loop regardless of same potential. No electric field can conduction electrons are available, re is no current. the loop,the conducting loop is no act inside the material making up n electrons, causing them to move ery short time, the electron flow in its steady state (it does not vary ctor, part of a conducting loop in e dq passes through a hypothetical t i through that plane is defined as n of current). (26-1) Fig (a) A loop of copper in electrostatic equilibrium.the entire i i i (a) Battery + i (b) i

10 Electric Current The units of current are Amps, A. Formally, amperes. (After André-Marie Ampère.) 1 A = 1 C/s Current is a scalar, however, a negative sign can be used to indicate a current flowing backwards through a loop.

11 Conventional Current By convention, current is labeled indicating the direction in which positive charge carriers would move. Of course, in very many circumstances, and particularly in conducting metals, electrons, which are negative charge carries, are the moving charges. This means that a current arrow is drawn opposite to the direction of motion of electrons.

12 Conventional Current A conducting wire: + Current is said to current, be due to i positive charges that c are propelled by dthe electric field. We imagine positive charges moving: tive charge carriv d i harges in the direcd electric field E : move through four L regions. e direction of + + : ty J and the v d nt arrow are e direction. E + J

13 perature. Current Question uick Quiz 27.1 Consider positive and negative charges moving horizontally through QuickQuiz the four 27.1: regions Consider shown positive in Figure and negative Rank the charges current moving these four regions horizontally from highest through to lowest. the four regions. Rank the current in these four regions from highest to lowest. a b c d Figure 27.4 (Quick Quiz 27.1) Charges move through four regions. (A) b, a, c, d (B) a, (b and c), d (C) d, (b and c), a (D) b, d, a, c

14 perature. Current Question uick Quiz 27.1 Consider positive and negative charges moving horizontally through QuickQuiz the four 27.1: regions Consider shown positive in Figure and negative Rank the charges current moving these four regions horizontally from highest through to lowest. the four regions. Rank the current in these four regions from highest to lowest. a b c d Figure 27.4 (Quick Quiz 27.1) Charges move through four regions. (A) b, a, c, d (B) a, (b and c), d (C) d, (b and c), a (D) b, d, a, c

15 Current and Junctions Since charge is conserved, all charge that flows into a point, must flow out of it as well. We can apply this to a junction: a point at which wires join or split. This gives Kirchhoff s junction rule: Junction Rule The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

16 that are connected to the terminals of the battery. The battery thus produces an electric field within the Current and Junctions the same in loop, from terminal to terminal, and tion. Junction Rule the field causes charges to move around the loop. This movement of The sum of the currents charges is entering a current i. any junction must be equal to the sum of the currents leaving that junction. planes aa, bb,and the conductor, no e fact that charge is, an electron must h plane cc. In the en hose, a drop of se at the other end. The current into the junction must equal the current out (charge is conserved). i 0 i 1 a i 2 ampere (A), which C/s. In the diagram, i 0 = i 1 + i 2. (a) i 1

17 n because in most situations, the assumed motion Question one direction has the same effect as the actual iers in the opposite direction. (When the effect is convention and describe the actual motion.) What are the magnitude and direction of the current i in the lower right-hand wire? n of a circuit. rection of the wire? 2 A 1 A 2 A 2 A 3 A 4 A i asses a point 1 Halliday, Resnick, Walker, 9th ed, page 684.

18 n because in most situations, the assumed motion Question one direction has the same effect as the actual iers in the opposite direction. (When the effect is convention and describe the actual motion.) What are the magnitude and direction of the current i in the lower right-hand wire? n of a circuit. rection of the wire? 2 A 1 A 2 A 2 A 3 A 4 A i i = 8 A to the right. asses a point 1 Halliday, Resnick, Walker, 9th ed, page 684.

19 Current Density Current Density, J The current per unit area through a conductor. J = I A Strictly, this is the average current density through the area A, assuming the area A is perpendicular to the direction of the current. This view of current density will be sufficient for most purposes in this course.

20 Current Density More formally, current density can be defined so that current is very similar to flux: I = J da A Whereas flux: Φ E = A E da Current density J can be compared with the electric field, E. Air flow v θ θ A v v (a) (b) (c) (d)

21 Current Density (26-5) we see Current that the density SI can be represented with streamlines that are. denser where the current density is higher. field with electric (cf. electric field and electric field lines) epresented with a t, which is toward uctor at the left to i served during the f current cannot er in the narrower se in current denensity. nduction electrons he conductor does randomly, but now Fig Streamlines representing current density in the flow of charge through a constricted conductor.

22 v d t drif where q is the charge on each whic carr Figure 27.2 A segment of a uniform conductor of cross-sectional lel to the axis of the cylinder, the Conduction electrons can be thoughin of the as moving x direction in a random in a time way, is, t The random motion of the inter colliding area A. with atoms. mot required charge carriers for is the modified charge by carriers repe i whose the field, magnitude and they have is a equal drift with an E-field: to the l Electrons with E = 0: velocity opposite the direction zigz the same as that required for all th of the electric field. is ap the circular area at one end. With S field E prod D the Dividing both sides of this equatio opp conductor is Y inte ecul I from av the S In reality, the speed v d of the tem ch drift speed. To understand the m With a an external field, they tend towhich drift b in the opposite charge carriers direction are Q fre u to the field lines. Figure is, the 27.3 potential (a) A schematic difference acros th Microscopic Model of Current a

23 Drift Speed The drift speed v d of charge carriers in a conductor is the average speed at which a charge carrier is expected to move through a conductor. The average speed of a charge carrier through a circuit, by definition is: v avg = x t 810 Chapter 27 Current and Resistance How far ( x) do we expect a charge carrier to move in time t? x q S v d A conductor of cros ductor of length D A Dx. If n repres other words, the c na Dx. Therefore, v d t where q is the cha

24 Drift Speed Need an expression relating v avg to current. Suppose there are n free conduction electrons per unit volume. Then n A x electrons move through a cross section A in time t. (Vol = A x) I = Q t = (na x)e t

25 Drift Speed Need an expression relating v avg to current. Suppose there are n free conduction electrons per unit volume. Then n A x electrons move through a cross section A in time t. (Vol = A x) I = Q t = (na x)e t Then we can rearrange: x t = I nae

26 Drift Speed Putting this back into the expression for v d : v d = x t = I nae v d = I nae = J ne (J = I/A)

27 Drift velocity We can also express this as a vector relation: rri- - E :. f J = n q v d Current is said to be due to positive charges that are propelled by the electric field. where q is the charge of the charge carrier. + + i L t speed v d in the direction opposite that of the applied v d E J

28 Drift Speed of an Electron in Copper What is the drift speed of the conduction electrons in a copper wire with radius r = 900 µm when it has a uniform current I = 17 ma? Assume that each copper atom contributes one conduction electron to the current and that the current density is uniform across the wire s cross section.

29 Drift Speed of an Electron in Copper How many electrons per unit volume? Same as number of copper atoms: n = N A ρ M = ( mol 1 )( kg/m 3 ) kg/mol N A is Avagadro s number, M is the molar mass (kgs per mole of copper), and ρ is copper s density. n = m 3 This is the number of free conduction electrons in a cubic meter of copper. (A lot.)

30 Drift Speed of an Electron in Copper v d = = I nae ( A) ( m 3 )(πr 2 )( C)

31 Drift Speed of an Electron in Copper v d = = I nae ( A) ( m 3 )(πr 2 )( C) v d = m/s Very slow!

32 Summary current current density drift speed 2nd Collected Homework due Monday, Feb 12. Homework Serway & Jewett: PREVIOUS: Ch 26, onward from page 799. Problems: 43, 47, 49, 53, 63 NEW: Ch 27, onward from page 824. Problems: 1, 5, 7

Current and Resistance

Current and Resistance Chapter 26 Current and Resistance Copyright 26-1 Electric Current As Fig. (a) reminds us, any isolated conducting loop regardless of whether it has an excess charge is all at the same potential. No electric

More information

Electricity and Magnetism Current and Resistance Resistance and Resistivity

Electricity and Magnetism Current and Resistance Resistance and Resistivity Electricity and Magnetism Current and Resistance Resistance and Resistivity Lana Sheridan De Anza College Feb 5, 2018 Last time current current density drift velocity : J (ne)v : d. Warm Up Question (26-7)

More information

Chapter 3: Current and Resistance. Direct Current Circuits

Chapter 3: Current and Resistance. Direct Current Circuits Chapter 3: Current and Resistance. Direct Current Circuits 3.1. Electric Current 3.2. Resistance and Resistivity 3.3. Ohm s Law and a Microscopic View of Ohm s Law 3.4. Semiconductors and Superconductors

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Lana Sheridan De Anza College Feb 9, 08 Last time power Kirchhoff s laws Overview more Kirchhoff examples Example with Two Batteries Find the

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9,

Look over Chapter 26 sections 1-7 Examples 3, 7. Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, Look over Chapter 26 sections 1-7 Examples 3, 7 Look over Chapter 18 sections 1-5, 8 over examples 1, 2, 5, 8, 9, 1)How to find a current in a wire. 2)What the Current Density and Draft Speed are. 3)What

More information

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field

Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Electricity and Magnetism Eddy Currents Faraday s Law and Electric Field Lana heridan De Anza College Mar 8, 2018 Last time Lenz s law applying Faraday s law in problems technological applications Overview

More information

Thermodynamics Heat Transfer

Thermodynamics Heat Transfer Thermodynamics Heat Transfer Lana Sheridan De Anza College April 30, 2018 Last time heat transfer conduction Newton s law of cooling Overview continue heat transfer mechanisms conduction over a distance

More information

Chapter 26 Current and Resistance

Chapter 26 Current and Resistance Chapter 26 Current and Resistance Electric Current Although an electric current is a stream of moving charges, not all moving charges constitute an electric current. If there is to be an electric current

More information

Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance

Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance Electricity and Magnetism Energy of the Magnetic Field Mutual Inductance Lana Sheridan De Anza College Mar 14, 2018 Last time inductors resistor-inductor circuits Overview wrap up resistor-inductor circuits

More information

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power

Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Electricity and Magnetism Current and Resistance Ohm s Law Exotic Conductors Power Lana Sheridan De Anza College Feb 6, 2018 Last time resistance resistivity conductivity Ohm s Law Overview Drude model

More information

2 A bank account for electricity II: flows and taxes

2 A bank account for electricity II: flows and taxes PHYS 89 Lecture problems outline Feb 3, 204 Resistors and Circuits Having introduced capacitors, we now expand our focus to another very important component of a circuit resistors. This entails more interesting

More information

Mechanics Units, Dimensional Analysis, and Unit Conversion

Mechanics Units, Dimensional Analysis, and Unit Conversion Mechanics Units, Dimensional Analysis, and Unit Conversion Lana Sheridan De Anza College Sept 25, 2018 Last time introduced the course basic ideas about science and physics Overview introduce SI units

More information

10/14/2018. Current. Current. QuickCheck 30.3

10/14/2018. Current. Current. QuickCheck 30.3 Current If QCurrent is the total amount of charge that has moved past a point in a wire, we define the current I in the wire to be the rate of charge flow: The SI unit for current is the coulomb per second,

More information

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

More information

Electric Currents. Resistors (Chapters 27-28)

Electric Currents. Resistors (Chapters 27-28) Electric Currents. Resistors (Chapters 27-28) Electric current I Resistance R and resistors Relation between current and resistance: Ohm s Law Resistivity ρ Energy dissipated by current. Electric power

More information

Linear Momentum Center of Mass

Linear Momentum Center of Mass Linear Momentum Center of Mass Lana Sheridan De Anza College Nov 14, 2017 Last time the ballistic pendulum 2D collisions center of mass finding the center of mass Overview center of mass examples center

More information

AP Physics C. Electric Circuits III.C

AP Physics C. Electric Circuits III.C AP Physics C Electric Circuits III.C III.C.1 Current, Resistance and Power The direction of conventional current Suppose the cross-sectional area of the conductor changes. If a conductor has no current,

More information

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A)

Electric Current. Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric current is I Average Electric

More information

Electricity and Magnetism Force on Parallel Wires

Electricity and Magnetism Force on Parallel Wires Electricity and Magnetism Force on Parallel Wires Lana Sheridan De Anza College Mar 2, 2018 Last time Gauss s Law for magnetic fields Ampère s Law magnetic field around a straight wire solenoids Overview

More information

Electricity and Magnetism B-Fields from Moving Charges

Electricity and Magnetism B-Fields from Moving Charges Electricity and Magnetism B-Fields from Moving Charges Lana Sheridan De Anza College Feb 28, 2018 Last time force on a curved current carrying wire torque on a wire loop magnetic dipole moment Overview

More information

and in a simple circuit Part 2

and in a simple circuit Part 2 Current, Resistance, and Voltage in a simple circuit Part 2 Electric Current Whenever electric charges of like signs move, an electric current is said to exist. Look at the charges flowing perpendicularly

More information

Exam 2 Solutions. = /10 = / = /m 3, where the factor of

Exam 2 Solutions. = /10 = / = /m 3, where the factor of PHY049 Fall 007 Prof. Yasu Takano Prof. Paul Avery Oct. 17, 007 Exam Solutions 1. (WebAssign 6.6) A current of 1.5 A flows in a copper wire with radius 1.5 mm. If the current is uniform, what is the electron

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

PHY102 Electricity Course Summary

PHY102 Electricity Course Summary TOPIC 1 ELECTOSTTICS PHY1 Electricity Course Summary Coulomb s Law The magnitude of the force between two point charges is directly proportional to the product of the charges and inversely proportional

More information

Electricity and Magnetism Magnetic Field from Moving Charges

Electricity and Magnetism Magnetic Field from Moving Charges Electricity and Magnetism Magnetic Field from Moving Charges Lana Sheridan De Anza College Nov 17, 2015 Last time force on a wire with a current in a B-field torque on a wire loop in a B-field motors relating

More information

Electricity and Magnetism Charge and Conduction Coulomb s Law

Electricity and Magnetism Charge and Conduction Coulomb s Law Electricity and Magnetism Charge and Conduction Coulomb s Law Lana Sheridan De Anza College Jan 9, 2018 Last time course structure introduced charge Overview conductors insulators induced charge quantization

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Electricity and Magnetism Electric Potential Energy Electric Potential

Electricity and Magnetism Electric Potential Energy Electric Potential Electricity and Magnetism Electric Potential Energy Electric Potential Lana Sheridan De Anza College Jan 23, 2018 Last time implications of Gauss s law introduced electric potential energy in which the

More information

Electric Current. You must know the definition of current, and be able to use it in solving problems.

Electric Current. You must know the definition of current, and be able to use it in solving problems. Today s agenda: Electric Current. You must know the definition of current, and be able to use it in solving problems. Current Density. You must understand the difference between current and current density,

More information

AP Physics C - E & M

AP Physics C - E & M Slide 1 / 27 Slide 2 / 27 AP Physics C - E & M Current, Resistance & Electromotive Force 2015-12-05 www.njctl.org Slide 3 / 27 Electric Current Electric Current is defined as the movement of charge from

More information

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 2, March 5th, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy

Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy Electricity and Magnetism Implications of Gauss s Law Electric Potential Energy Lana Sheridan De Anza College Jan 22, 2018 Last time using Gauss s law Overview implications of Gauss law electric potential

More information

Dynamics Applying Newton s Laws Introducing Energy

Dynamics Applying Newton s Laws Introducing Energy Dynamics Applying Newton s Laws Introducing Energy Lana Sheridan De Anza College Oct 23, 2017 Last time introduced resistive forces model 1: Stokes drag Overview finish resistive forces energy work Model

More information

Electric Currents & Resistance

Electric Currents & Resistance Electric Currents & Resistance Electric Battery A battery produces electricity by transforming chemical energy into electrical energy. The simplest battery contains two plates or rods made of dissimilar

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapter 25 University Physics (PHY 2326) Lecture 7 Electrostatics and electrodynamics Capacitance and capacitors capacitors with dielectrics Electric current current and drift speed resistance and Ohm

More information

Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model

Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model Thermodynamics Heat Transfer The Kinetic Theory of Gases Molecular Model Lana Sheridan De Anza College May 1, 2017 Last time more about phase changes work, heat, and the first law of thermodynamics P-V

More information

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers**

Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Chapters 24/25: Current, Circuits & Ohm s law Thursday September 29 th **Register your iclickers** Conductors under dynamic conditions Current, current density, drift velocity Ohm s law Types of conductor

More information

Electricity and Magnetism Electric Field

Electricity and Magnetism Electric Field Electricity and Magnetism Electric Field Lana Sheridan De Anza College Jan 11, 2018 Last time Coulomb s Law force from many charges R/2 +8Q Warm Up Question (c) articles. p Fig. 21-19 Question 9. 10 In

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

PHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 27 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 27 Lecture RANDALL D. KNIGHT Chapter 27 Current and Resistance IN THIS CHAPTER, you will learn how and why charge moves through a wire

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Chapter 25: Electric Current

Chapter 25: Electric Current Chapter 25: Electric Current Conductors and Charge Carriers Consider a conducting piece of metal: The valence electrons are weakly bound to the nuclei form a fluidlike sea of electrons that can move through

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 15, 219 Last time how to solve problems 1-D kinematics Overview 1-D kinematics quantities of motion graphs of kinematic quantities vs

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

SCS 139 Applied Physic II Semester 2/2011

SCS 139 Applied Physic II Semester 2/2011 SCS 139 Applied Physic II Semester 2/2011 Practice Questions for Magnetic Forces and Fields (I) 1. (a) What is the minimum magnetic field needed to exert a 5.4 10-15 N force on an electron moving at 2.1

More information

Chapter 26 & 27. Electric Current and Direct- Current Circuits

Chapter 26 & 27. Electric Current and Direct- Current Circuits Chapter 26 & 27 Electric Current and Direct- Current Circuits Electric Current and Direct- Current Circuits Current and Motion of Charges Resistance and Ohm s Law Energy in Electric Circuits Combination

More information

Current. Lecture 10. Chapter Physics II. Course website:

Current. Lecture 10. Chapter Physics II. Course website: Lecture 10 Chapter 30 Physics II Current Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii 95.144 Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html A Model

More information

Physics 142 Steady Currents Page 1. Steady Currents

Physics 142 Steady Currents Page 1. Steady Currents Physics 142 Steady Currents Page 1 Steady Currents If at first you don t succeed, try, try again. Then quit. No sense being a damn fool about it. W.C. Fields Electric current: the slow average drift of

More information

Electricity and Magnetism. Motional EMF Faraday s Law

Electricity and Magnetism. Motional EMF Faraday s Law Electricity and Magnetism Ampère s Law Motional EMF Faraday s Law Lana heridan De Anza College Nov 19, 2015 Last time magnetic fields from moving charges magnetic fields around current-carrying wires forces

More information

Physics 1502: Lecture 8 Today s Agenda. Today s Topic :

Physics 1502: Lecture 8 Today s Agenda. Today s Topic : Physics 1502: Lecture 8 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics today: due next Friday Go to masteringphysics.com

More information

Note 5: Current and Resistance

Note 5: Current and Resistance Note 5: Current and Resistance In conductors, a large number of conduction electrons carry electricity. If current flows, electrostatics does not apply anymore (it is a dynamic phenomenon) and there can

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 1 1. Pumping Chagres We need to establish a potential difference between the ends of a device to make charge carriers follow through the device. To generate a steady flow of charges,

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

Electricity and Magnetism Electric Flux Gauss s Law

Electricity and Magnetism Electric Flux Gauss s Law Electricity and Magnetism Electric Flux Gauss s Law Lana heridan De Anza College Jan 18, 2018 Last time conductors in electric fields electric flux Overview electric flux Gauss s law Gauss s law applied

More information

Phys102 Second Major-161 Zero Version Coordinator: Dr. Naqvi Monday, December 12, 2016 Page: 1

Phys102 Second Major-161 Zero Version Coordinator: Dr. Naqvi Monday, December 12, 2016 Page: 1 Coordinator: Dr. Naqvi Monday, December 12, 2016 Page: 1 Q1. Two point charges, with charges q1 and q2, are placed a distance r apart. Which of the following statements is TRUE if the electric field due

More information

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

Ch. 21: Current, Resistance, Circuits

Ch. 21: Current, Resistance, Circuits Ch. 21: Current, Resistance, Circuits Current: How charges flow through circuits Resistors: convert electrical energy into thermal/radiative energy Electrical Energy & Power; Household Circuits Time-Dependent

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

Thermodynamics Second Law Heat Engines

Thermodynamics Second Law Heat Engines Thermodynamics Second Law Heat Engines Lana Sheridan De Anza College May 10, 2018 Last time entropy (microscopic perspective) Overview heat engines heat pumps Carnot engines Heat Engines Steam engines

More information

Physics 2212 G Quiz #4 Solutions Spring 2018 = E

Physics 2212 G Quiz #4 Solutions Spring 2018 = E Physics 2212 G Quiz #4 Solutions Spring 2018 I. (16 points) The circuit shown has an emf E, three resistors with resistance, and one resistor with resistance 3. What is the current through the resistor

More information

AP Physics C - E & M

AP Physics C - E & M AP Physics C - E & M Current and Circuits 2017-07-12 www.njctl.org Electric Current Resistance and Resistivity Electromotive Force (EMF) Energy and Power Resistors in Series and in Parallel Kirchoff's

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Overview Force from a point charge Quantization of charge

More information

AP Physics C Electricity and Magnetism

AP Physics C Electricity and Magnetism AP Physics C Electricity and Magnetism Course overview This is a calculus based course in physics. The course is the equivalent of an introductory engineering course in Physics. The main objective of the

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State

θ θ θ θ current I Fig. 6.1 The conductor and the magnetic field are both in the plane of the paper. State 3 1 (a) A straight conductor carrying a current I is at an angle θ to a uniform magnetic field of flux density B, as shown in Fig. 6.1. magnetic field, flux density B θ θ θ θ current I Fig. 6.1 The conductor

More information

Handout 8: Sources of magnetic field. Magnetic field of moving charge

Handout 8: Sources of magnetic field. Magnetic field of moving charge 1 Handout 8: Sources of magnetic field Magnetic field of moving charge Moving charge creates magnetic field around it. In Fig. 1, charge q is moving at constant velocity v. The magnetic field at point

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Chapter 25 Current, Resistance, and Electromotive Force

Chapter 25 Current, Resistance, and Electromotive Force Chapter 25 Current, Resistance, and Electromotive Force Lecture by Dr. Hebin Li Goals for Chapter 25 To understand current and how charges move in a conductor To understand resistivity and conductivity

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Chapter 27. Current And Resistance

Chapter 27. Current And Resistance Chapter 27 Current And Resistance Electric Current Electric current is the rate of flow of charge through some region of space The SI unit of current is the ampere (A) 1 A = 1 C / s The symbol for electric

More information

Electric_Field_core_P1

Electric_Field_core_P1 Electric_Field_core_P1 1. [1 mark] An electron enters the region between two charged parallel plates initially moving parallel to the plates. The electromagnetic force acting on the electron A. causes

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Chapter 25 Current Resistance, and Electromotive Force

Chapter 25 Current Resistance, and Electromotive Force Chapter 25 Current Resistance, and Electromotive Force 1 Current In previous chapters we investigated the properties of charges at rest. In this chapter we want to investigate the properties of charges

More information

Electric currents (primarily, in metals)

Electric currents (primarily, in metals) Electric currents (primarily, in metals) Benjamin Franklin was experimenting electricity in the mid- XVIII Century. Nobody knew if it was the positive charges or negative charges carrying the current through

More information

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Physics II we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron. Particle Symbol Charge (e) Mass (kg) Proton P +1 1.67

More information

Chapter 27: Current and Resistance

Chapter 27: Current and Resistance Chapter 7: Current and esistance In this section of the course we will be studying the flow of electric charge, current, in a circuit. We have already seen electric current when we first discussed electric

More information

FXA 2008 ELECTRIC CHARGE (Q) 1. Candidates should be able to : Electric charge is a property possessed by protons and electrons.

FXA 2008 ELECTRIC CHARGE (Q) 1. Candidates should be able to : Electric charge is a property possessed by protons and electrons. ELECTRIC CHARGE (Q) 1 Candidates should be able to : Explain that electric current is a net flow of charged particles. Explain that electric current in a metal is due to the movement of electrons, whereas

More information

Rotation Moment of Inertia and Applications

Rotation Moment of Inertia and Applications Rotation Moment of Inertia and Applications Lana Sheridan De Anza College Nov 20, 2016 Last time net torque Newton s second law for rotation moments of inertia calculating moments of inertia Overview calculating

More information

Electric Currents and Circuits

Electric Currents and Circuits Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

More information

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is:

Figure 1 A) 2.3 V B) +2.3 V C) +3.6 V D) 1.1 V E) +1.1 V Q2. The current in the 12- Ω resistor shown in the circuit of Figure 2 is: Term: 13 Wednesday, May 1, 014 Page: 1 Q1. What is the potential difference V B -V A in the circuit shown in Figure 1 if R 1 =70.0 Ω, R=105 Ω, R 3 =140 Ω, ε 1 =.0 V and ε =7.0 V? Figure 1 A).3 V B) +.3

More information

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014

Direct Currents. We will now start to consider charges that are moving through a circuit, currents. Sunday, February 16, 2014 Direct Currents We will now start to consider charges that are moving through a circuit, currents. 1 Direct Current Current usually consists of mobile electrons traveling in conducting materials Direct

More information

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

More information

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011 Basic Electronics Introductory Lecture Course for Technology and Instrumentation in Particle Physics 2011 Chicago, Illinois June 9-14, 2011 Presented By Gary Drake Argonne National Laboratory drake@anl.gov

More information

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply

Current. I = ei e = en e Av d. The current, which is Coulomb s per second, is simply Current The current, which is Coulomb s per second, is simply I = ei e = en e Av d e is the charge is the electron! ne is the density of electrons! A is the cross sectional area of the wire! vd is the

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

More information

Waves Standing Waves Sound Waves

Waves Standing Waves Sound Waves Waves Standing Waves Sound Waves Lana Sheridan De Anza College May 23, 2018 Last time finish up reflection and transmission standing waves Warm Up Question: Standing Waves and Resonance In the following

More information

Physics Will Farmer. May 5, Physics 1120 Contents 2

Physics Will Farmer. May 5, Physics 1120 Contents 2 Physics 1120 Will Farmer May 5, 2013 Contents Physics 1120 Contents 2 1 Charges 3 1.1 Terms................................................... 3 1.2 Electric Charge..............................................

More information

6 Chapter. Current and Resistance

6 Chapter. Current and Resistance 6 Chapter Current and Resistance 6.1 Electric Current... 6-2 6.1.1 Current Density... 6-2 6.2 Ohm s Law... 6-5 6.3 Summary... 6-8 6.4 Solved Problems... 6-9 6.4.1 Resistivity of a Cable... 6-9 6.4.2 Charge

More information

Physics 208, Spring 2016 Exam #3

Physics 208, Spring 2016 Exam #3 Physics 208, Spring 206 Exam #3 A Name (Last, First): ID #: Section #: You have 75 minutes to complete the exam. Formulae are provided on an attached sheet. You may NOT use any other formula sheet. You

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017) Solutions to PHY2049 Exam 2 (Nov. 3, 207) Problem : In figure a, both batteries have emf E =.2 V and the external resistance R is a variable resistor. Figure b gives the electric potentials V between the

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Chapter 18 Electric Currents

Chapter 18 Electric Currents Chapter 18 Electric Currents 1 The Electric Battery Volta discovered that electricity could be created if dissimilar metals were connected by a conductive solution called an electrolyte. This is a simple

More information

Physics 222, Spring 2010 Quiz 3, Form: A

Physics 222, Spring 2010 Quiz 3, Form: A Physics 222, Spring 2010 Quiz 3, Form: A Name: Date: Instructions You must sketch correct pictures and vectors, you must show all calculations, and you must explain all answers for full credit. Neatness

More information

Announcements. final exam average (excluding regrades): 79% regrade requests are due by Thursday, Sept 28 in recitation

Announcements. final exam average (excluding regrades): 79% regrade requests are due by Thursday, Sept 28 in recitation Announcements final exam average (excluding regrades): 79% ill file. regrade requests are due by Thursday, Sept 28 in recitation On a separate sheet of paper, explain the reason for your request. This

More information