Kinematics Kinematic Equations and Falling Objects

Size: px
Start display at page:

Download "Kinematics Kinematic Equations and Falling Objects"

Transcription

1 Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017

2 Last time kinematic quantities relating graphs

3 Overview derivation of kinematics equations using kinematics equations

4 Equations that describe motion in terms of position, velocity, acceleration, and time. To solve kinematics problems: identify what equations apply, then do some algebra to find the quantity you need.

5 For constant velocity (a = 0): x = vt (1)

6 For constant velocity (a = 0): x = vt (1) In general, when velocity is not constant, this is always true: x = v avg t

7 Always true: x = v avg t (2) This is just a rearrangement of the definition of average velocity: average velocity, v avg v avg = x t where x is the displacement that occurs in a time interval t.

8 If acceleration is constant (a = const): From v avg = x t, we also have: v = v 0 + at Note that Equation crosses the velocity ax graphical interpretatio I of Figure 2 9, the equ Also, note that m Equation 2 7 has the sa v avg = v i + v f 2 v v EXERCISE 2 2 A ball is thrown straight of the ball is m/s 2 a s, and b. Solution 1 v av = 2(v 0 + v) a. Substituting t = 0.5 (a) 1 Figure from James S. Walker Physics. v 0 O t t v = b. Similarly, using t = v =

9 Recall, x = v avg t and v avg = v i+v f 2 (constant acceleration) Substituting the second in to the first: ( vi + v f x = 2 ) t (3)

10 From the definition of acceleration: We can integrate this expression. a = dv dt

11 From the definition of acceleration: We can integrate this expression. For constant acceleration: a = dv dt v(t) = v i + at (4) where v i is the velocity at t = 0 and v(t) is the velocity at time t.

12 For constant acceleration: x(t) = x i + v i t at2 Equivalently, x = v i t at2 (5) How do we know this?

13 For constant acceleration: x(t) = x i + v i t at2 Equivalently, x = v i t at2 (5) How do we know this? Integrate!

14 The last equation we will derive is a scaler equation.

15 The last equation we will derive is a scaler equation. ( ) vi + v f x = t 2 We could also write this as: ( vi + v f ( x) i = 2 ) t i where x, v i, and v f could each be positive or negative.

16 The last equation we will derive is a scaler equation. ( ) vi + v f x = t 2 We could also write this as: ( vi + v f ( x) i = 2 ) t i where x, v i, and v f could each be positive or negative. We do the same for equation (4): v f i = (v i + at) i

17 The last equation we will derive is a scaler equation. ( ) vi + v f x = t 2 We could also write this as: ( vi + v f ( x) = 2 ) t where x, v i, and v f could each be positive or negative. We do the same for equation (4): v f = (v i + at) Rearranging for t: t = v f v i a

18 t = v f v i a ( vi + v f ; x = 2 Substituting for t in our x equation: x = ( ) ( ) vi + v f vf v i 2 a 2a x = (v i + v f )(v f v i ) so, ) t v 2 f = v 2 i + 2 a x (6)

19 For zero acceleration: Always: x = vt For constant acceleration: x = v avg t v f = v i + at x = v i t at2 x = v i + v f t 2 vf 2 = vi a x

20 Summary For zero acceleration: x = vt Always: x = v avg t For constant acceleration: v f = v i + at x = v i t at2 x = v i + v f t 2 vf 2 = vi a x

21 Using the Kinematics Equations Example Drag racers can have accelerations as high as 26.0 m/s 2. Starting from rest (v i = 0) with that acceleration, how much distance does the car cover in 5.56 s? Before we start answering...

22 Using the Kinematics Equations Process: 1 Identify which quantity we need to find and which ones we are given. 2 Is there a quantity that we are not given and are not asked for? 1 If so, use the equation that does not include that quantity. 2 If there is not, more that one kinematics equation may be required or there may be several equivalent approaches. 3 Input known quantities and solve.

23 Using the Kinematics Equations Example Drag racers can have accelerations as high as 26.0 m/s 2. Starting from rest (v i = 0) with that acceleration, how much distance does the car cover in 5.56 s? 1 OpenStax Physics

24 Using the Kinematics Equations Example Drag racers can have accelerations as high as 26.0 m/s 2. Starting from rest (v i = 0) with that acceleration, how much distance does the car cover in 5.56 s? What equation should we use? 1 OpenStax Physics

25 Using the Kinematics Equations Example Drag racers can have accelerations as high as 26.0 m/s 2. Starting from rest (v i = 0) with that acceleration, how much distance does the car cover in 5.56 s? What equation should we use? x = v i t at2 1 OpenStax Physics

26 Using the Kinematics Equations Example Drag racers can have accelerations as high as 26.0 m/s 2. Starting from rest (v i = 0) with that acceleration, how much distance does the car cover in 5.56 s? What equation should we use? x = v i t at2 x = 1 2 at2 x = 1 2 (26.0ms 2 )(5.56s) 2 = 402 m 1 OpenStax Physics

27 t will stop farther away from its starting point, so the answer to uation Using2.15 the that Kinematics if v Equations, Ex 2.8 xi is larger, then x f will be larger. imit! A car traveling at a constant speed of 45.0 m/s passes a trooper on a motorcycle hidden behind a billboard. One second after the speeding car passes the billboard, the trooper sets out from the billboard to catch the car, accelerating at a constant rate of 3.00 AM m/s 2. How long does it take the trooper to overtake the car? sses a e secooper g at a ooper t 1.00 s t 0 t? y the er conunder Figure 2.13 (Example 2.8) A speeding car passes a hidden trooper. 1 Serway & Jewett, pg 39.

28 t will stop farther away from its starting point, so the answer to uation Using2.15 the that Kinematics if v Equations, Ex 2.8 xi is larger, then x f will be larger. imit! A car traveling at a constant speed of 45.0 m/s passes a trooper on a motorcycle hidden behind a billboard. One second after the speeding car passes the billboard, the trooper sets out from the billboard to catch the car, accelerating at a constant rate of 3.00 AM m/s 2. How long does it take the trooper to overtake the car? sses a e secooper g at a ooper t 1.00 s t 0 t? y the er conundeden Answer: Figure t = s(example 2.8) A speeding car passes a hid- trooper. 1 Serway & Jewett, pg 39.

29 Summary the kinematic equations using kinematics equations Collected Homework Due Friday, Oct 6. Quiz Tomorrow at the start of class. (Uncollected) Homework Serway & Jewett, Ch 2, onward from page 49. Conceptual Q: 7; Problems: 25, 29, 33, 39, 83

Kinematics Kinematic Equations and Falling Objects

Kinematics Kinematic Equations and Falling Objects Kinematics Kinematic Equations and Falling Objects Lana Sheridan De Anza College Sept 28, 2017 Last time kinematic quantities relating graphs Overview derivation of kinematics equations using kinematics

More information

Introduction to Mechanics Kinematics Equations

Introduction to Mechanics Kinematics Equations Introduction to Mechanics Kinematics Equations Lana Sheridan De Anza College Jan, 018 Last time more practice with graphs introduced the kinematics equations Overview rest of the kinematics equations derivations

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 16, 2018 Last time unit conversions (non-si units) order of magnitude calculations how to solve problems Overview 1-D kinematics quantities

More information

Kinematics Motion in 1-Dimension

Kinematics Motion in 1-Dimension Kinematics Motion in 1-Dimension Lana Sheridan De Anza College Jan 15, 219 Last time how to solve problems 1-D kinematics Overview 1-D kinematics quantities of motion graphs of kinematic quantities vs

More information

Chapter 3. Motion in One Dimension

Chapter 3. Motion in One Dimension Chapter 3 Motion in One Dimension Outline 3.1 Position, Velocity and Speed 3.2 Instantaneous Velocity and Speed 3.3 Acceleration 3.4 Motion Diagrams 3.5 One-Dimensional Motion with Constant Acceleration

More information

Free fall. Lana Sheridan. Oct 3, De Anza College

Free fall. Lana Sheridan. Oct 3, De Anza College Free fall Lana Sheridan De Anza College Oct 3, 2018 2018 Physics Nobel Prize Congratulations to Arthur Ashkin and to Gérard Mourou and Donna Strickland Last time the kinematics equations (constant acceleration)

More information

Mechanics Units, Dimensional Analysis, and Unit Conversion

Mechanics Units, Dimensional Analysis, and Unit Conversion Mechanics Units, Dimensional Analysis, and Unit Conversion Lana Sheridan De Anza College Sept 25, 2018 Last time introduced the course basic ideas about science and physics Overview introduce SI units

More information

Dynamics Applying Newton s Laws Introducing Energy

Dynamics Applying Newton s Laws Introducing Energy Dynamics Applying Newton s Laws Introducing Energy Lana Sheridan De Anza College Oct 23, 2017 Last time introduced resistive forces model 1: Stokes drag Overview finish resistive forces energy work Model

More information

Kinematics Varying Accelerations (1D) Vectors (2D)

Kinematics Varying Accelerations (1D) Vectors (2D) Kinematics Varying Accelerations (1D) Vectors (2D) Lana heridan De Anza College ept 29, 2017 Last time kinematic equations using kinematic equations Overview falling objects and g varying acceleration

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors. Let l, m, and

More information

Introduction to Mechanics Projectiles Time of Flight

Introduction to Mechanics Projectiles Time of Flight Introduction to Mechanics Projectiles Time of Flight Lana Sheridan De Anza College Oct 24, 2017 Last time height of a projectile Warm Up Question # 57, page 107 Child 1 throws a snowball horizontally from

More information

2D Motion Projectile Motion

2D Motion Projectile Motion 2D Motion Projectile Motion Lana heridan De Anza College Oct 3, 2017 Last time vectors vector operations 2 dimensional motion Warm Up: Quick review of Vector Expressions Let a, b, and c be (non-null) vectors.

More information

Kinematics Part I: Motion in 1 Dimension

Kinematics Part I: Motion in 1 Dimension Kinematics Part I: Motion in 1 Dimension Lana Sheridan De Anza College Sept 26, 2017 Last time introduced the course Overview basic ideas about physics units and symbols for scaling units motion in 1-dimension

More information

Dynamics Energy and Work

Dynamics Energy and Work Dynamics Energy and Work Lana Sheridan De Anza College Oct 24, 2017 Last Time resistive forces: Drag Equation Drag Equation, One more point What if the object is not dropped from rest? (See Ch 6, prob

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces

2D Kinematics: Nonuniform Circular Motion Dynamics: Forces 2D Kinematics: Nonuniform Circular Motion Dynamics: Forces Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform circular motion Introduce forces

More information

Dynamics Applying Newton s Laws The Drag Equation

Dynamics Applying Newton s Laws The Drag Equation Dynamics Applying Newton s Laws The Drag Equation Lana Sheridan De Anza College Feb 8, 2019 Last time introduced resistive forces model 1: Stokes drag Overview model 2: the Drag Equation finish resistive

More information

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

Introduction to Mechanics Projectiles

Introduction to Mechanics Projectiles Introduction to Mechanics Projectiles Lana heridan De Anza College Feb 6, 2018 Last time relative motion examples Overview another relative motion example motion with constant acceleration projectiles

More information

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2

AP Physics Free Response Practice Kinematics ANSWERS 1982B1 2 AP Physics Free Response Practice Kinematics ANSWERS 198B1 a. For the first seconds, while acceleration is constant, d = ½ at Substituting the given values d = 10 meters, t = seconds gives a = 5 m/s b.

More information

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples

Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Introduction to Mechanics Range of a Projectile Trajectory Equation More Examples Lana Sheridan De Anza College Oct 25, 2017 Last time max height of a projectile time-of-flight of a projectile range of

More information

PSI AP Physics 1 Kinematics. Free Response Problems

PSI AP Physics 1 Kinematics. Free Response Problems PSI AP Physics 1 Kinematics Free Response Problems 1. A car whose speed is 20 m/s passes a stationary motorcycle which immediately gives chase with a constant acceleration of 2.4 m/s 2. a. How far will

More information

Physics 2A Lab 1 Measuring Human Reaction Time

Physics 2A Lab 1 Measuring Human Reaction Time Physics 2A Lab 1 Measuring Human Reaction Time Lana Sheridan De Anza College Sept 25, 2018 Overview Discussion of laboratory work Theory Equipment Procedure Why we do lab work To confirm or disprove hypotheses

More information

Chapter 2: 1D Kinematics

Chapter 2: 1D Kinematics Chapter 2: 1D Kinematics Description of motion involves the relationship between position, displacement, velocity, and acceleration. A fundamental goal of 1D kinematics is to determine x(t) if given initial

More information

CHAPTER 2 MOTION IN ONE DIMENSION. Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University

CHAPTER 2 MOTION IN ONE DIMENSION. Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University CHAPTER 2 MOTION IN ONE DIMENSION Wen-Bin Jian ( 簡紋濱 ) Department of Electrophysics National Chiao Tung University OUTLINE 1. Position, Velocity and Speed 2. Instantaneous Velocity and Speed 3. Motion

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Oct 20, 2017 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Oct 30, 2017 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Lecture 2-2 02-2 1 Last time: Displacement, velocity, graphs Today: Constant acceleration, free fall 02-2 2 Simplest case with non-zero acceleration Constant acceleration: a

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Motion in 1 Dimension

Motion in 1 Dimension Motion in 1 Dimension Physics is all about describing motion. For now we are going to discuss motion in 1 dimension, which means either along the x axis or the y axis. To describe an object s motion, we

More information

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

http://geocities.com/kenahn7/ Today in this class Chap.2, Sec.1-7 Motion along a straight line 1. Position and displacement 2. 3. Acceleration Example: Motion with a constant acceleration Position and

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

Waves Standing Waves Sound Waves

Waves Standing Waves Sound Waves Waves Standing Waves Sound Waves Lana Sheridan De Anza College May 23, 2018 Last time finish up reflection and transmission standing waves Warm Up Question: Standing Waves and Resonance In the following

More information

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics

Trigonometry I. Pythagorean theorem: WEST VIRGINIA UNIVERSITY Physics Trigonometry I Pythagorean theorem: Trigonometry II 90 180 270 360 450 540 630 720 sin(x) and cos(x) are mathematical functions that describe oscillations. This will be important later, when we talk about

More information

Dynamics Applying Newton s Laws Air Resistance

Dynamics Applying Newton s Laws Air Resistance Dynamics Applying Newton s Laws Air Resistance Lana Sheridan De Anza College Feb 2, 2015 Last Time accelerated frames and rotation Overview resistive forces two models for resistive forces terminal velocities

More information

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Lana Sheridan De Anza College Nov 13, 2017 Last time inelastic collisions perfectly inelastic collisions the ballistic pendulum

More information

Fluids Applications of Fluid Dynamics

Fluids Applications of Fluid Dynamics Fluids Applications of Fluid Dynamics Lana Sheridan De Anza College April 16, 2018 Last time fluid dynamics the continuity equation Bernoulli s equation Overview Torricelli s law applications of Bernoulli

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

Energy Energy and Friction

Energy Energy and Friction Energy Energy and Friction Lana Sheridan De Anza College Oct 31, 2017 Last time energy conservation isolated and nonisolated systems Overview Isolated system example Kinetic friction and energy Practice

More information

Energy Work Kinetic Energy Potential Energy

Energy Work Kinetic Energy Potential Energy Energy Work Kinetic Energy Potential Energy Lana Sheridan De Anza College Oct 25, 2017 Last time energy work Overview Work as an integral Kinetic energy Work-Kinetic energy theorem Potential energy N through

More information

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation

Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Introduction to Mechanics Time of Flight Range of a Projectile Trajectory Equation Lana Sheridan De Anza College Feb 12, 2018 Last time projectiles launched horizontally projectiles launched at an angle

More information

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement

DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION. AP Physics Section 2-1 Reference Frames and Displacement DESCRIBING MOTION: KINEMATICS IN ONE DIMENSION AP Physics Section 2-1 Reference Frames and Displacement Model the velocity of the ball from the time it leaves my hand till the time it hits the ground?

More information

Doppler E ect Bow and Shock Waves

Doppler E ect Bow and Shock Waves Doppler E ect Bow and Shock Waves Lana Sheridan De Anza College May 30, 2018 Last time nonsinusoidal waves intensity of a wave sound level Overview sound level & perception of sound with frequency the

More information

Multiple-Choice Questions

Multiple-Choice Questions Multiple-Choice Questions 1. A rock is thrown straight up from the edge of a cliff. The rock reaches the maximum height of 15 m above the edge and then falls down to the bottom of the cliff 35 m below

More information

Motion Along a Straight Line (Motion in One-Dimension)

Motion Along a Straight Line (Motion in One-Dimension) Chapter 2 Motion Along a Straight Line (Motion in One-Dimension) Learn the concepts of displacement, velocity, and acceleration in one-dimension. Describe motions at constant acceleration. Be able to graph

More information

Ch 2. Describing Motion: Kinematics in 1-D.

Ch 2. Describing Motion: Kinematics in 1-D. Ch 2. Describing Motion: Kinematics in 1-D. Introduction Kinematic Equations are mathematic equations that describe the behavior of an object in terms of its motion as a function of time. Kinematics is

More information

Chapter 2. One Dimensional Motion

Chapter 2. One Dimensional Motion Chapter One Dimensional Motion Motion in One Dimension Displacement, Velocity and Speed Acceleration Motion with Constant Acceleration MFMcGraw-PHY 45 Chap_0b One Dim Motion-Revised 1/16/011 Introduction

More information

Introduction to Mechanics Potential Energy Energy Conservation

Introduction to Mechanics Potential Energy Energy Conservation Introduction to Mechanics Potential Energy Energy Conservation Lana Sheridan De Anza College Nov 28, 2017 Last time power conservative and nonconservative forces friction Overview conservative forces and

More information

Linear Momentum Center of Mass

Linear Momentum Center of Mass Linear Momentum Center of Mass Lana Sheridan De Anza College Nov 14, 2017 Last time the ballistic pendulum 2D collisions center of mass finding the center of mass Overview center of mass examples center

More information

Linear Momentum Collisions

Linear Momentum Collisions Linear Momentum Collisions Lana Sheridan De Anza College Nov 8, 2017 Last time applying the rocket equation conservation of momentum in isolated systems nonisolated systems impulse average force Overview

More information

Conceptual Physics Motion and Graphs Free Fall Using Vectors

Conceptual Physics Motion and Graphs Free Fall Using Vectors Conceptual Physics Motion and Graphs Free Fall Using Vectors Lana heridan De Anza College July 6, 2017 Last time Units More about size and scale Motion of objects Inertia Quantities of motion Overview

More information

Chapter 2. Motion along a Straight Line

Chapter 2. Motion along a Straight Line Chapter 2 Motion along a Straight Line 1 2.1 Motion Everything in the universe, from atoms to galaxies, is in motion. A first step to study motion is to consider simplified cases. In this chapter we study

More information

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14

Chapter 1 Problem 28: Agenda. Quantities in Motion. Displacement Isn t Distance. Velocity. Speed 1/23/14 Agenda We need a note-taker! If you re interested, see me after class. Today: HW Quiz #1, 1D Motion Lecture for this week: Chapter 2 (finish reading Chapter 2 by Thursday) Homework #2: continue to check

More information

Sierzega: Kinematics 10 Page 1 of 14

Sierzega: Kinematics 10 Page 1 of 14 Sierzega: Kinematics 10 Page 1 of 14 10.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement of an object. For

More information

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0

Summary of motion graphs Object is moving to the right (in positive direction) v = 0 a = 0 Summary of motion graphs Object is moving to the right (in positive direction) Object at rest (not moving) Position is constant v (m/s) a (m/s 2 ) v = 0 a = 0 Constant velocity Position increases at constant

More information

Rotation Moment of Inertia and Applications

Rotation Moment of Inertia and Applications Rotation Moment of Inertia and Applications Lana Sheridan De Anza College Nov 20, 2016 Last time net torque Newton s second law for rotation moments of inertia calculating moments of inertia Overview calculating

More information

Static Equilibrium Gravitation

Static Equilibrium Gravitation Static Equilibrium Gravitation Lana Sheridan De Anza College Dec 6, 2017 Overview One more static equilibrium example Newton s Law of Universal Gravitation gravitational potential energy little g Example

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h

CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h 1 / 30 CEE 271: Applied Mechanics II, Dynamics Lecture 1: Ch.12, Sec.1-3h Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, August 21, 2012 2 / 30 INTRODUCTION

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Chapter 2 Motion Along A Straight Line

Chapter 2 Motion Along A Straight Line Chapter 2 Motion Along A Straight Line Kinematics: Description of Motion Motion in one dimension (1-D) Motion of point particles Treat larger objects as particles center of mass Chapter 2 Motion in 1-D

More information

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question.

Interactive Engagement via Thumbs Up. Today s class. Next class. Chapter 2: Motion in 1D Example 2.10 and 2.11 Any Question. PHYS 01 Interactive Engagement via Thumbs Up 1 Chap.1 Sumamry Today s class SI units Dimensional analysis Scientific notation Errors Vectors Next class Chapter : Motion in 1D Example.10 and.11 Any Question

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

Introduction to Mechanics Dynamics Forces Newton s Laws

Introduction to Mechanics Dynamics Forces Newton s Laws Introduction to Mechanics Dynamics Forces Newton s Laws Lana heridan De Anza College Feb 14, 2018 Last time relative motion review projectiles and relative motion Relative Motion and Projectiles A science

More information

Physics 1120: 1D Kinematics Solutions

Physics 1120: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 Physics 1120: 1D Kinematics Solutions 1. Initially, a ball has a speed of 5.0 m/s as it rolls up an incline. Some time later, at a distance of 5.5 m up the incline, the ball has

More information

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws

2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws 2D Kinematics: Nonuniform Circular Motion Dynamics: Laws of Motion Newton s 1st & 2nd Laws Lana heridan De Anza College Oct 6, 2017 Last Time relative motion uniform circular motion Overview nonuniform

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Overview Force from a point charge Quantization of charge

More information

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits

Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Electricity and Magnetism DC Circuits Resistance-Capacitance Circuits Lana Sheridan De Anza College Feb 12, 2018 Last time using Kirchhoff s laws Overview two Kirchhoff trick problems resistance-capacitance

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back to Physics 215! (General Physics I) Thurs. Jan 18 th, 2018 Lecture01-2 1 Last time: Syllabus Units and dimensional analysis Today: Displacement, velocity, acceleration graphs Next time: More

More information

Kinematics Introduction

Kinematics Introduction Kinematics Introduction Kinematics is the study of the motion of bodies. As such it deals with the distance/displacement, speed/velocity, and the acceleration of bodies. Although we are familiar with the

More information

Lecture 2- Linear Motion Chapter 10

Lecture 2- Linear Motion Chapter 10 1 / 37 Lecture 2- Linear Motion Chapter 10 Instructor: Prof. Noronha-Hostler Course Administrator: Prof. Roy Montalvo PHY-123 ANALYTICAL PHYSICS IA Phys- 123 Sep. 12 th, 2018 Contact Already read the syllabus

More information

Chapter 2: Motion along a straight line

Chapter 2: Motion along a straight line Chapter 2: Motion along a straight line This chapter uses the definitions of length and time to study the motions of particles in space. This task is at the core of physics and applies to all objects irregardless

More information

Linear Momentum. Lana Sheridan. Nov 6, De Anza College

Linear Momentum. Lana Sheridan. Nov 6, De Anza College Linear Momentum Lana Sheridan De Anza College Nov 6, 2017 Last time energy practice Overview introducing momentum Newton s Second Law: more general form relation to force relation to Newton s third law

More information

Kinematics and One Dimensional Motion

Kinematics and One Dimensional Motion Kinematics and One Dimensional Motion Kinematics Vocabulary Kinema means movement Mathematical description of motion Position Time Interval Displacement Velocity; absolute value: speed Acceleration Averages

More information

Electricity and Magnetism Relativity and the Magnetic Field

Electricity and Magnetism Relativity and the Magnetic Field Electricity and Magnetism Relativity and the Magnetic Field Lana Sheridan De Anza College Mar 12, 2018 Overview questions about the magnetic field reference frames a preferred frame for the laws of EM?

More information

Thermodynamics Molecular Model of a Gas Molar Heat Capacities

Thermodynamics Molecular Model of a Gas Molar Heat Capacities Thermodynamics Molecular Model of a Gas Molar Heat Capacities Lana Sheridan De Anza College May 3, 2018 Last time modeling an ideal gas at the microscopic level rms speed of molecules equipartition of

More information

Electricity and Magnetism Coulomb s Law

Electricity and Magnetism Coulomb s Law Electricity and Magnetism Coulomb s Law Lana Sheridan De Anza College Jan 10, 2018 Last time introduced charge conductors insulators induced charge Warm Up. Do both balloons A and B have a charge? ntry

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2

CHAPTER 9 MOTION ALONG A STRAIGHT LINE FORM 5 PAPER 2 PPER. particle moves in a straight line and passes through a fixed point O, with a velocity of m s. Its acceleration, a m s, t seconds after passing through O is given by a 8 4t. The particle stops after

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 11 Topic Practice Paper: Solving Quadratics (Graphically) Quadratic equations (graphical methods) 1 Grade 6 Objective: Find approximate solutions to quadratic equations using

More information

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited

IB Math SL Year 2 Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Name Date Lesson 10-4: Displacement, Velocity, Acceleration Revisited Learning Goals: How do you apply integrals to real-world scenarios? Recall: Linear Motion When an object is moving, a ball in the air

More information

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass

Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Linear Momentum 2D Collisions Extended or Composite Systems Center of Mass Lana Sheridan De Anza College Nov 13, 2017 Last time inelastic collisions perfectly inelastic collisions the ballistic pendulum

More information

Introduction to Mechanics Unit Conversions Order of Magnitude

Introduction to Mechanics Unit Conversions Order of Magnitude Introduction to Mechanics Unit Conversions Order of Magnitude Lana Sheridan De Anza College Sept 28, 2017 Last time symbols for scaling units scientific notation precision and accuracy dimensional analysis

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres. Chapter 2 Motion Cengage Learning James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Omar Torres Chapter 2 Motion Defining Motion Motion is a continuous change in position can be described by measuring the rate of change of position

More information

Rotational Motion Rotational Kinematics

Rotational Motion Rotational Kinematics Rotational Motion Rotational Kinematics Lana Sheridan De Anza College Nov 16, 2017 Last time 3D center of mass example systems of many particles deforming systems Overview rotation relating rotational

More information

Lecture 16 ME 231: Dynamics

Lecture 16 ME 231: Dynamics Kinematics of Particles (Ch. 2) Review Lecture 16 Question of the Day What is the most important concept in Chapter 2? Time Derivative of a Vector 2 Outline for Today Question of the day Where are we in

More information

Physics I Exam 1 Spring 2015 (version A)

Physics I Exam 1 Spring 2015 (version A) 95.141 Physics I Exam 1 Spring 015 (version A) Section Number Section instructor Last/First Name (PRINT) / Last 3 Digits of Student ID Number: Answer all questions, beginning each new question in the space

More information

One Dimensional Motion (Motion in a Straight Line)

One Dimensional Motion (Motion in a Straight Line) One Dimensional Motion (Motion in a Straight Line) Chapter MOTION QUANTITIES 1 Kinematics - Intro Mechanics generally consists of two parts: Kinematics and Dynamics. Mechanics Kinematics Description of

More information

PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16

PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16 PUM Physics II - Kinematics Lesson 12 Solutions Page 1 of 16 12.1 Hypothesize (Derive a Mathematical Model) Graphically we know that the area beneath a velocity vs. time graph line represents the displacement

More information

Introduction to Mechanics Units and Measurements

Introduction to Mechanics Units and Measurements Introduction to Mechanics Units and Measurements Lana Sheridan De Anza College Jan 9, 2018 Last time introduced the course basic ideas about science and physics Overview models, hypotheses, theories, and

More information

Linear Momentum Isolated Systems Nonisolated Systems: Impulse

Linear Momentum Isolated Systems Nonisolated Systems: Impulse Linear Momentum Isolated Systems Nonisolated Systems: Impulse Lana Sheridan De Anza College Nov 7, 2016 Last time introduced momentum Newton s Second Law: more general form relation to force relation to

More information

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion.

Definitions. Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Lecture 2 Definitions Mechanics: The study of motion. Kinematics: The mathematical description of motion in 1-D and 2-D motion. Dynamics: The study of the forces that cause motion. Chapter Outline Consider

More information

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws

Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Electricity and Magnetism DC Circuits Using Kirchhoff s Laws Lana Sheridan De Anza College Feb 9, 08 Last time power Kirchhoff s laws Overview more Kirchhoff examples Example with Two Batteries Find the

More information

Rotation Atwood Machine with Massive Pulley Energy of Rotation

Rotation Atwood Machine with Massive Pulley Energy of Rotation Rotation Atwood Machine with Massive Pulley Energy of Rotation Lana Sheridan De Anza College Nov 21, 2017 Last time calculating moments of inertia the parallel axis theorem Overview applications of moments

More information

2D Kinematics Relative Motion Circular Motion

2D Kinematics Relative Motion Circular Motion 2D Kinematics Relative Motion Circular Motion Lana heridan De Anza College Oct 5, 2017 Last Time range of a projectile trajectory equation projectile example began relative motion Overview relative motion

More information

HW: U1 5 (pink) 11/15 U1 7 (salmon) 11/16. Next Test: Friday! PICK UP 1. Papers & calculator TURN IN

HW: U1 5 (pink) 11/15 U1 7 (salmon) 11/16. Next Test: Friday! PICK UP 1. Papers & calculator TURN IN U1 PICK UP 1. Papers & calculator TURN IN DO NOW 1. On a half sheet solve using GUESS: If you are displaced 5m behind where you started over a time of 2 seconds. What is your velocity? HW: U1 5 (pink)

More information

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension

Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Physics 2A (Fall 2012) Chapter 2: Motion in One Dimension Whether you think you can or think you can t, you re usually right. Henry Ford It is our attitude at the beginning of a difficult task which, more

More information

Horizontal Motion 1 An object is said to be at rest, if the position of the object does not change with time with respect to its surroundings An object is said to be in motion, if its position changes

More information