Oscillations Simple Harmonic Motion

Size: px
Start display at page:

Download "Oscillations Simple Harmonic Motion"

Transcription

1 Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 1, 2017

2 Overview oscillations simple harmonic motion (SHM) spring systems energy in SHM pendula damped oscillations

3 Oscillations and Periodic Motion Many physical systems exhibit cycles of repetitive behavior. After some time, they return to their initial configuration. Examples: clocks rolling wheels a pendulum bobs on springs

4 Oscillations oscillation motion that repeats over a period of time amplitude the magnitude of the vibration; how far does the object move from its average (equilibrium) position. period the time for one complete oscillation. After 1 period, the motion repeats itself.

5 Simple Harmonic Motion The oscillations of bobs on springs and pendula are very regular and simple to describe. It is called simple harmonic motion. simple harmonic motion (SHM) any motion in which the acceleration is proportional to the displacement from equilibrium, but opposite in direction The force causing the acceleration is called the restoring force.

6 SHM and Springs If a mass is attached to a spring, the force on the mass depends on its displacement from the spring s natural length. Hooke s Law: F = kx where k is the spring constant and x is the displacement (position) of the mass. If the spring is compressed and then the mass is released, it will move outward until is stretches the spring by the same amount the spring was compressed initially before it bounces back again. (Assume no friction.) Hooke s law gives the force on the bob SHM. The spring force is the restoring force.

7 SHM and Springs How can we find an equation of motion for the block? Newton s second law: F net = F s = ma

8 SHM and Springs How can we find an equation of motion for the block? Newton s second law: F net = F s = ma Using the definition of acceleration: a = d2 x dt 2 Define d 2 x dt 2 = k m x ω = and we can write this equation as: k m d 2 x dt 2 = ω2 x

9 SHM and Springs To solve: d 2 x dt 2 = ω2 x notice that it is a second order linear differential equation. We can actually find the solutions just be inspection.

10 SHM and Springs To solve: d 2 x dt 2 = ω2 x notice that it is a second order linear differential equation. We can actually find the solutions just be inspection. A solution x(t) to this equation has the property that if we take its derivative twice, we get the same form of the function back again, but with an additional factor of ω 2.

11 SHM and Springs To solve: d 2 x dt 2 = ω2 x notice that it is a second order linear differential equation. We can actually find the solutions just be inspection. A solution x(t) to this equation has the property that if we take its derivative twice, we get the same form of the function back again, but with an additional factor of ω 2. Candidate: x(t) = A cos(ωt), where A is a constant.

12 SHM and Springs To solve: d 2 x dt 2 = ω2 x notice that it is a second order linear differential equation. We can actually find the solutions just be inspection. A solution x(t) to this equation has the property that if we take its derivative twice, we get the same form of the function back again, but with an additional factor of ω 2. Candidate: x(t) = A cos(ωt), where A is a constant. d 2 ( ) x dt 2 = ω2 A cos(ωt)

13 SHM and Springs d 2 x dt 2 = ω2 x In fact, any solutions of the form: x = B 1 cos(ωt + φ 1 ) + B 2 sin(ωt + φ 2 ) where B 1, B 2, φ 1, and φ 2 are constants. However, since sin(θ) = cos(θ + π/2), in general any solution can be written in the form: x = A cos(ωt + φ)

14 Oscillating Solutions (or equivalently, y = A sin(ωt).) x = A cos(ωt) We now call ω the angular frequency of the oscillation. 1 Figure from School of Physics webpage, University of New South Wales.

15 of 7v SHM 2 eration versus time. Notice that at A and Springs any specified time the velocity is extreme The position of 908 theout bobof atphase a givenwith time the is given position by: n agrees and the acceleration is 1808 out of phase with x = the A cos(ωt position. + φ) e define e spring and v(t) A is the amplitude of the oscillation. We could also write x max = A. x 0 A m t 0 x i A v i 0 or f, the itive and on is Figure 15.6 A block spring The speed of the particle at any point in time is: system that begins its motion from v = Aω sin(ωt + φ) rest with the block at x 5 A at t 5 0. We find that by differentiating the expression for position.

16 SHM and Springs x = A cos(ωt + φ) ω is the angular frequency of the oscillation. When t = 2π ω the block has returned to the position it had at t = 0. That is one complete cycle.

17 SHM and Springs x = A cos(ωt + φ) ω is the angular frequency of the oscillation. When t = 2π ω the block has returned to the position it had at t = 0. That is one complete cycle. Recalling that ω = k/m: Period, T = 2π m k Only depends on the mass of the bob and the spring constant. Does not depend on the amplitude.

18 SHM and Springs Question A mass-spring system has a period, T. If the mass of the bob is quadrupled (and everything else is unchanged), what happens to the period of the motion? (A) halves, T /2 (B) remains unchanged, T (C) doubles, 2T (D) quadruples, 4T

19 SHM and Springs Question A mass-spring system has a period, T. If the mass of the bob is quadrupled (and everything else is unchanged), what happens to the period of the motion? (A) halves, T /2 (B) remains unchanged, T (C) doubles, 2T (D) quadruples, 4T

20 SHM and Springs Question A mass-spring system has a period, T. If the spring constant is halved (and everything else is unchanged), what happens to the period of the motion? (A) halves, T /2 (B) is reduced by a factor of 2, so, T / 2 (C) remains unchanged, T (D) is increased by a factor of 2, so, 2T

21 SHM and Springs Question A mass-spring system has a period, T. If the spring constant is halved (and everything else is unchanged), what happens to the period of the motion? (A) halves, T /2 (B) is reduced by a factor of 2, so, T / 2 (C) remains unchanged, T (D) is increased by a factor of 2, so, 2T

22 Oscillations and Waveforms Any oscillation can be plotted against time. eg. the position of a vibrating object against time. The result is a waveform.

23 Oscillations and Waveforms Any oscillation can be plotted against time. eg. the position of a vibrating object against time. The result is a waveform. From this wave description of the motion, a lot of parameters can be specified. This allows us to quantitatively compare one oscillation to another. Examples of quantities: period, amplitude, frequency.

24 Measuring Oscillations frequency The number of complete oscillations in some amount of time. Usually, oscillations per second. f = 1 T Units of frequency: Hertz. 1 Hz = 1 s 1 If one oscillation takes a quarter of a second (0.25 s), then there are 4 oscillations per second. The frequency is 4 s 1 = 4 Hz. ω = 2πf

25 Period and frequency question What is the period, in seconds, that corresponds to each of the following frequencies? 1 10 Hz Hz 3 60 Hz 1 Hewitt, page 350, Ch 18, problem 2.

26 Waveform x = A cos(ωt + φ) x T x i A t ø f = 1 T 1 Figure from Serway & Jewett, 9th ed.

27 460 Chapter 15 Oscillatory Motion Energy in SHM a b c d e f S a max S v max S v max A 0 A x S v S a max S a max x % % % % % % Kinetic energy Potential energy Total energy t 0 T 4 T 2 3T 4 T t

28 Energy in SHM Potential Energy: U = 1 2 kx 2 = 1 2 ka2 cos 2 (ωt + φ) Kinetic Energy: K = 1 2 mv 2 = 1 2 ma2 ω 2 sin 2 (ωt + φ) Using ω 2 = k/m K + U = 1 2 ka2( cos 2 (ωt + φ) + sin 2 (ωt + φ) ) = 1 2 ka2 This does not depend on time!

29 Energy in SHM 15.3 Energy of the Simple H In either plot, notice that K U constant. U K U kx 2 K mv 2 K, U K, U 1 2 ka2 1 2 ka2 a T 2 T t A b O A x K + U = 1 see that K and U are always positive quantities 2 ka2 or zero. Because v 2 5 k/m, we can ress the 1 total Figure mechanical from Serway energy & Jewett, of 9th the ed. simple harmonic oscillator as

30 Pendula and SHM pendulum a massive bob attached to the end rod or string that will oscillate along a circular arc under the influence of gravity A pendulum bob that is displaced to one side by a small amount and released follows SHM to a good approximation. Gravity and the tension in the string provide the restoring force.

31 Pendula and SHM

32 Pendula and SHM modeled as simple harmonic motion about the equilibrium position u 0. L u T S s m g sin u The simple pendulum is anot It consists of a particle-like b that is fixed at the upper end vertical plane and is driven b the angle u is small (less than harmonic oscillator. The forces acting on the bo tational force m g S. The tange always acts toward u 5 0, oppo tion. Therefore, the tangenti Newton s second law for moti mg S where the negative sign indic The net force on thefigure pendulum A bob simple is mg sin θrium along (vertical) the arc position s, and s when the string is atpendulum. an angle θ to the vertical. expressed the tangential acc Because s 5 Lu (Eq. 10.1a wit u m m g cos u Therefore, Newton s second law for rotations (τ net = Iα) analyzing about the pivot gives: I d2 θ 2 = mg sin θ dt F t 5

33 Pendula and SHM For a simple pendulum I = ml 2 (string is massless). ml 2 d2 θ 2 = mgl sin θ dt Dividing by ml 2 : d 2 θ dt 2 = g L sin θ

34 Pendula and SHM For a simple pendulum I = ml 2 (string is massless). ml 2 d2 θ 2 = mgl sin θ dt Dividing by ml 2 : d 2 θ dt 2 = g L sin θ This is a non-linear second order differential equation, and the exact solution is a bit ugly. However, we can approximate this motion as SHM. (Remember, for SHM acceleration is proportional to displacement but in the opposite direction.)

35 Pendula and SHM For small values of θ (measured in radians!), sin θ θ. That means for small oscillations of a pendulum, the restoring force on the bob is roughly: and the motion is SHM. F = mgθ Our equation of motion becomes: where ω = g L d 2 θ dt 2 = ω2 θ

36 Pendula and SHM Equation of motion: d 2 θ dt 2 = ω2 θ We already know the solutions should be of the form θ = θ max cos(ωt + φ) where θ max is the amplitude and T = 2π ω is the period.

37 Pendula and SHM Equation of motion: d 2 θ dt 2 = ω2 θ We already know the solutions should be of the form θ = θ max cos(ωt + φ) where θ max is the amplitude and T = 2π ω is the period. Recalling that ω = g/l, for the simple pendulum: Period, T = 2π L g

38 Problem An astronaut on the Moon attaches a small brass ball to a 1.00 m length of string and makes a simple pendulum. She times 15 complete swings in a time of 75 seconds. From this measurement she calculates the acceleration due to gravity on the Moon. What is her result? 1 1 Hewitt, Conceptual Physics, problem 8, page 350.

39 Problem An astronaut on the Moon attaches a small brass ball to a 1.00 m length of string and makes a simple pendulum. She times 15 complete swings in a time of 75 seconds. From this measurement she calculates the acceleration due to gravity on the Moon. What is her result? m/s 2 1 Hewitt, Conceptual Physics, problem 8, page 350.

40 Physical Pendulum O θ h d The swinging rigid object has a moment of inertia I about the pivot. F g sin θ t brings the to center. C θ F g cos θ As before, for small angles Newton s second law for rotations (τ net = Iα) analyzing about the pivot gives: I d2 θ dt 2 = mgdθ F g

41 Physical Pendulum O θ h d The swinging rigid object has a moment of inertia I about the pivot. F g sin θ t brings the to center. C θ F g cos θ As before, for small angles Newton s second law for rotations (τ net = Iα) analyzing about the pivot gives: I d2 θ dt 2 = mgdθ Solving yields θ = θ max cos(ωt + φ), with ω = I mgd/i ; T = 2π mgd F g

42 force. In many real s also act and retard th Imagine now a system with a restoring force, but alsothe a resistive system diminishe force. energy of the system ing medium. Figure and submersed in a v in air. After being se air resistance. The o in practice. The spri transform mechanic One common ty the force is proport m tion opposite the ve force is often obser the retarding force c damping coefficient) a Damped Oscillations Figure One example of ton s second law as In the picture, that would be a fluid resistance force, R = bv. a damped oscillator is an object attached to a spring and submersed in a viscous liquid. F net = kx b dx dt = m d2 x dt 2

43 Damped Oscillations F net = kx b dx dt = m d2 x dt 2 d 2 x dt 2 + b dx m dt + k m x = 0 Solutions 1 are where ω = x = A e (b/2m)t cos(ωt + φ) k m ( b 2m) 2 and A and φ are constants. 1 See the appendix to these slides for proof.

44 Damped Oscillations 15.7 Forced x = Oscillations A e (b/2m)t cos(ωt φ) object oscillating in x all, the oscillatory es exponentially in A ectable. Any system ashed black lines in represent the expoe amplitude decays nt and object mass, tarding force. hat b/2m, v 0, the resented by Figure creases, the amplib reaches a critical d is said oscillating to be criti- solution. The amplitude decreases as Ae (b/2m)t. 0 t The decaying exponential Figure e15.21 (b/2m)t Graph shows of position versus (energy time for lost). a damped The cosine is that the amplitude of the waveform is decreasing an oscillator.

45 Summary oscillations simple harmonic motion (SHM) spring and pendulum systems damped harmonic motion (Uncollected) Homework Serway & Jewett, Ch 15, onward from page 472. OQs: 13; CQs: 5, 7; Probs: 1, 3, 9, 35, 41

46 Appendix: Damped Oscillations Solution Derivation d 2 x dt 2 + b dx m dt + k m x = 0 Suppose an exponential function is the solution to this equation: r and B are constants. Then x = B e rt B e rt (r 2 + b m r + k m r) = 0 The exponential function is not zero for any finite t, so the other factor must be zero. We must find the roots for r that make this equation true.

47 Damped Oscillations Solution Derivation This is called the characteristic equation The roots are: r 2 + b m r + k m r = 0 ( r = b ) b 2 2m ± k 2m m This means the solutions are of the form: x = e b/(2m)t ( B 1 e iωt + B 2 e iωt) where ω = k m ( ) b 2 2m

48 Damped Oscillations Solution Derivation This means the solutions are of the form: x = e b/(2m)t ( B 1 e iωt + B 2 e iωt) where ω = k m ( ) b 2 2m Recall that cos(x) = 1 2 (eix + e ix ). (If you haven t seen this, try to prove it using the series expansions of cosine and the exponential function.) We can write the solution as x = A e (b/2m)t cos(ωt + φ) where B 1 = A e iφ and B 2 = A e iφ.

Mechanics Oscillations Simple Harmonic Motion

Mechanics Oscillations Simple Harmonic Motion Mechanics Oscillations Simple Harmonic Motion Lana Sheridan De Anza College Dec 3, 2018 Last time gravity Newton s universal law of gravitation gravitational field gravitational potential energy Overview

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Chapter 15. Oscillatory Motion

Chapter 15. Oscillatory Motion Chapter 15 Oscillatory Motion Part 2 Oscillations and Mechanical Waves Periodic motion is the repeating motion of an object in which it continues to return to a given position after a fixed time interval.

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion (FIZ 101E - Summer 2018) July 29, 2018 Contents 1 Introduction 2 2 The Spring-Mass System 2 3 The Energy in SHM 5 4 The Simple Pendulum 6 5 The Physical Pendulum 8 6 The Damped Oscillations

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Chapter 15 - Oscillations

Chapter 15 - Oscillations The pendulum of the mind oscillates between sense and nonsense, not between right and wrong. -Carl Gustav Jung David J. Starling Penn State Hazleton PHYS 211 Oscillatory motion is motion that is periodic

More information

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權

本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權 本教材內容主要取自課本 Physics for Scientists and Engineers with Modern Physics 7th Edition. Jewett & Serway. 注意 本教材僅供教學使用, 勿做其他用途, 以維護智慧財產權 教材網址 : https://sites.google.com/site/ndhugp1 1 Chapter 15 Oscillatory Motion

More information

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion:

Chapter 14. Oscillations. Oscillations Introductory Terminology Simple Harmonic Motion: Chapter 14 Oscillations Oscillations Introductory Terminology Simple Harmonic Motion: Kinematics Energy Examples of Simple Harmonic Oscillators Damped and Forced Oscillations. Resonance. Periodic Motion

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW)

PHYSICS - CLUTCH CH 15: PERIODIC MOTION (NEW) !! www.clutchprep.com CONCEPT: Hooke s Law & Springs When you push/pull against a spring (FA), spring pushes back in the direction. (Action-Reaction!) Fs = FA = Ex. 1: You push on a spring with a force

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

Ch 15 Simple Harmonic Motion

Ch 15 Simple Harmonic Motion Ch 15 Simple Harmonic Motion Periodic (Circular) Motion Point P is travelling in a circle with a constant speed. How can we determine the x-coordinate of the point P in terms of other given quantities?

More information

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion 11/17/10 Chapter 14. Oscillations This striking computergenerated image demonstrates an important type of motion: oscillatory motion. Examples of oscillatory motion include a car bouncing up and down,

More information

Chapter 16: Oscillations

Chapter 16: Oscillations Chapter 16: Oscillations Brent Royuk Phys-111 Concordia University Periodic Motion Periodic Motion is any motion that repeats itself. The Period (T) is the time it takes for one complete cycle of motion.

More information

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance

Oscillations. Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance Oscillations Simple Harmonic Motion (SHM) Position, Velocity, Acceleration SHM Forces SHM Energy Period of oscillation Damping and Resonance 1 Revision problem Please try problem #31 on page 480 A pendulum

More information

The object of this experiment is to study systems undergoing simple harmonic motion.

The object of this experiment is to study systems undergoing simple harmonic motion. Chapter 9 Simple Harmonic Motion 9.1 Purpose The object of this experiment is to study systems undergoing simple harmonic motion. 9.2 Introduction This experiment will develop your ability to perform calculations

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 14-2 Chapter 14 Preview Slide 14-3 Chapter 14 Preview Slide 14-4 Chapter 14 Preview Slide 14-5

More information

Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

More information

Faculty of Computers and Information. Basic Science Department

Faculty of Computers and Information. Basic Science Department 18--018 FCI 1 Faculty of Computers and Information Basic Science Department 017-018 Prof. Nabila.M.Hassan 18--018 FCI Aims of Course: The graduates have to know the nature of vibration wave motions with

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc.

Chapter 13 Oscillations about Equilibrium. Copyright 2010 Pearson Education, Inc. Chapter 13 Oscillations about Equilibrium Periodic Motion Units of Chapter 13 Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Fundamentals Physics. Chapter 15 Oscillations

Fundamentals Physics. Chapter 15 Oscillations Fundamentals Physics Tenth Edition Halliday Chapter 15 Oscillations 15-1 Simple Harmonic Motion (1 of 20) Learning Objectives 15.01 Distinguish simple harmonic motion from other types of periodic motion.

More information

Chapter 13: Oscillatory Motions

Chapter 13: Oscillatory Motions Chapter 13: Oscillatory Motions Simple harmonic motion Spring and Hooe s law When a mass hanging from a spring and in equilibrium, the Newton s nd law says: Fy ma Fs Fg 0 Fs Fg This means the force due

More information

Lecture 18. In other words, if you double the stress, you double the resulting strain.

Lecture 18. In other words, if you double the stress, you double the resulting strain. Lecture 18 Stress and Strain and Springs Simple Harmonic Motion Cutnell+Johnson: 10.1-10.4,10.7-10.8 Stress and Strain and Springs So far we ve dealt with rigid objects. A rigid object doesn t change shape

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Chapter 13 Solutions

Chapter 13 Solutions Chapter 3 Solutions 3. x = (4.00 m) cos (3.00πt + π) Compare this with x = A cos (ωt + φ) to find (a) ω = πf = 3.00π or f =.50 Hz T = f = 0.667 s A = 4.00 m (c) φ = π rad (d) x(t = 0.50 s) = (4.00 m) cos

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Chapter 15 Periodic Motion

Chapter 15 Periodic Motion Chapter 15 Periodic Motion Slide 1-1 Chapter 15 Periodic Motion Concepts Slide 1-2 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,

More information

Slide 1 / 70. Simple Harmonic Motion

Slide 1 / 70. Simple Harmonic Motion Slide 1 / 70 Simple Harmonic Motion Slide 2 / 70 SHM and Circular Motion There is a deep connection between Simple Harmonic Motion (SHM) and Uniform Circular Motion (UCM). Simple Harmonic Motion can be

More information

Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion

Chapter 4. Oscillatory Motion. 4.1 The Important Stuff Simple Harmonic Motion Chapter 4 Oscillatory Motion 4.1 The Important Stuff 4.1.1 Simple Harmonic Motion In this chapter we consider systems which have a motion which repeats itself in time, that is, it is periodic. In particular

More information

PreClass Notes: Chapter 13, Sections

PreClass Notes: Chapter 13, Sections PreClass Notes: Chapter 13, Sections 13.3-13.7 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 25 Oscillations simple harmonic motion pendulum driven and damped oscillations http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Oscillations

More information

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014 1 Rotational Dynamics Why do objects spin? Objects can travel in different ways: Translation all points on the body travel in parallel paths Rotation all points on the body move around a fixed point An

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

!T = 2# T = 2! " The velocity and acceleration of the object are found by taking the first and second derivative of the position:

!T = 2# T = 2!  The velocity and acceleration of the object are found by taking the first and second derivative of the position: A pendulum swinging back and forth or a mass oscillating on a spring are two examples of (SHM.) SHM occurs any time the position of an object as a function of time can be represented by a sine wave. We

More information

Vibrations and Waves MP205, Assignment 4 Solutions

Vibrations and Waves MP205, Assignment 4 Solutions Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x

More information

Chapter 14 Preview Looking Ahead

Chapter 14 Preview Looking Ahead Chapter 14 Preview Looking Ahead Text: p. 438 Slide 14-1 Chapter 14 Preview Looking Back: Springs and Restoring Forces In Chapter 8, you learned that a stretched spring exerts a restoring force proportional

More information

Chapter 14 (Oscillations) Key concept: Downloaded from

Chapter 14 (Oscillations) Key concept: Downloaded from Chapter 14 (Oscillations) Multiple Choice Questions Single Correct Answer Type Q1. The displacement of a particle is represented by the equation. The motion of the particle is (a) simple harmonic with

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

More information

15 OSCILLATIONS. Introduction. Chapter Outline Simple Harmonic Motion 15.2 Energy in Simple Harmonic Motion

15 OSCILLATIONS. Introduction. Chapter Outline Simple Harmonic Motion 15.2 Energy in Simple Harmonic Motion Chapter 15 Oscillations 761 15 OSCILLATIONS Figure 15.1 (a) The Comcast Building in Philadelphia, Pennsylvania, looming high above the skyline, is approximately 305 meters (1000 feet) tall. At this height,

More information

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS

CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS CHAPTER 7: OSCILLATORY MOTION REQUIRES A SET OF CONDITIONS 7.1 Period and Frequency Anything that vibrates or repeats its motion regularly is said to have oscillatory motion (sometimes called harmonic

More information

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4.

Physics 141, Lecture 7. Outline. Course Information. Course information: Homework set # 3 Exam # 1. Quiz. Continuation of the discussion of Chapter 4. Physics 141, Lecture 7. Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Lecture 07, Page 1 Outline. Course information: Homework set # 3 Exam # 1 Quiz. Continuation of the

More information

Chapter 7 Hooke s Force law and Simple Harmonic Oscillations

Chapter 7 Hooke s Force law and Simple Harmonic Oscillations Chapter 7 Hooke s Force law and Simple Harmonic Oscillations Hooke s Law An empirically derived relationship that approximately works for many materials over a limited range. Exactly true for a massless,

More information

Physics 101 Discussion Week 12 Explanation (2011)

Physics 101 Discussion Week 12 Explanation (2011) Physics 101 Discussion Week 12 Eplanation (2011) D12-1 Horizontal oscillation Q0. This is obviously about a harmonic oscillator. Can you write down Newton s second law in the (horizontal) direction? Let

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion

Harmonic Oscillator. Outline. Oscillatory Motion or Simple Harmonic Motion. Oscillatory Motion or Simple Harmonic Motion Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109, Class Period 13 Experiment Number 11 in the Physics 121 Lab Manual (page 65) Outline Simple harmonic motion The vertical mass-spring

More information

AP Physics C Mechanics

AP Physics C Mechanics 1 AP Physics C Mechanics Simple Harmonic Motion 2015 12 05 www.njctl.org 2 Table of Contents Click on the topic to go to that section Spring and a Block Energy of SHM SHM and UCM Simple and Physical Pendulums

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

Chapter 15. Oscillations

Chapter 15. Oscillations Chapter 15 Oscillations 15.1 Simple Harmonic Motion Oscillatory Motion: Motion which is periodic in time; motion that repeats itself in time. Examples: SHM: Power line oscillates when the wind blows past.

More information

Introductory Physics PHYS101

Introductory Physics PHYS101 Introductory Physics PHYS101 Dr Richard H. Cyburt Office Hours Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu TRF 9:30-11:00am

More information

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion AP Physics 1 2016-07-20 www.njctl.org Table of Contents Click on the topic to go to that section Period and Frequency SHM and UCM Spring Pendulum Simple Pendulum Sinusoidal Nature of SHM Period and Frequency

More information

OSCILLATIONS.

OSCILLATIONS. OSCILLATIONS Periodic Motion and Oscillatory motion If a body repeats its motion along a certain path, about a fixed point, at a definite interval of time, it is said to have a periodic motion If a body

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 10 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Simple Harmonic Motion Lectures 24-25 Chapter 10 (Cutnell & Johnson, Physics 7 th edition) 1 The Ideal Spring Springs are objects that exhibit elastic behavior. It will return back

More information

Unforced Oscillations

Unforced Oscillations Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion Phase-Amplitude Conversion The Simple Pendulum and The Linearized

More information

Lab 10: Harmonic Motion and the Pendulum

Lab 10: Harmonic Motion and the Pendulum Lab 10 Harmonic Motion and the Pendulum 119 Name Date Partners Lab 10: Harmonic Motion and the Pendulum OVERVIEW A body is said to be in a position of stable equilibrium if, after displacement in any direction,

More information

Rotational motion problems

Rotational motion problems Rotational motion problems. (Massive pulley) Masses m and m 2 are connected by a string that runs over a pulley of radius R and moment of inertia I. Find the acceleration of the two masses, as well as

More information

Lecture Presentation Chapter 14 Oscillations

Lecture Presentation Chapter 14 Oscillations Lecture Presentation Chapter 14 Oscillations Suggested Videos for Chapter 14 Prelecture Videos Describing Simple Harmonic Motion Details of SHM Damping and Resonance Class Videos Oscillations Basic Oscillation

More information

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall

Physics 231. Topic 7: Oscillations. Alex Brown October MSU Physics 231 Fall Physics 231 Topic 7: Oscillations Alex Brown October 14-19 2015 MSU Physics 231 Fall 2015 1 Key Concepts: Springs and Oscillations Springs Periodic Motion Frequency & Period Simple Harmonic Motion (SHM)

More information

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO Corso di Laurea in LOGOPEDIA FISICA ACUSTICA MOTO OSCILLATORIO Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it What is an Oscillation? Oscillation

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc.

Chapter 13 Lecture. Essential University Physics Richard Wolfson 2 nd Edition. Oscillatory Motion Pearson Education, Inc. Chapter 13 Lecture Essential University Physics Richard Wolfson nd Edition Oscillatory Motion Slide 13-1 In this lecture you ll learn To describe the conditions under which oscillatory motion occurs To

More information

The Pendulum. The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations.

The Pendulum. The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations. The Pendulum Introduction: The purpose of this tab is to predict the motion of various pendulums and compare these predictions with experimental observations. Equipment: Simple pendulum made from string

More information

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration Lana Sheridan De Anza College May 17, 2018 Last time pulse propagation the wave equation Overview solutions to the wave

More information

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12

Harmonic Oscillator. Mass-Spring Oscillator Resonance The Pendulum. Physics 109 Experiment Number 12 Harmonic Oscillator Mass-Spring Oscillator Resonance The Pendulum Physics 109 Experiment Number 12 Outline Simple harmonic motion The vertical mass-spring system Driven oscillations and resonance The pendulum

More information

LAB 10: HARMONIC MOTION AND THE PENDULUM

LAB 10: HARMONIC MOTION AND THE PENDULUM 163 Name Date Partners LAB 10: HARMONIC MOION AND HE PENDULUM Galileo reportedly began his study of the pendulum in 1581 while watching this chandelier swing in Pisa, Italy OVERVIEW A body is said to be

More information

Rotation Angular Momentum

Rotation Angular Momentum Rotation Angular Momentum Lana Sheridan De Anza College Nov 28, 2017 Last time rolling motion Overview Definition of angular momentum relation to Newton s 2nd law angular impulse angular momentum of rigid

More information

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson

Chapter 14. PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman. Lectures by Wayne Anderson Chapter 14 Periodic Motion PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 14 To describe oscillations in

More information

Oscillatory Motion. Solutions of Selected Problems

Oscillatory Motion. Solutions of Selected Problems Chapter 15 Oscillatory Motion. Solutions of Selected Problems 15.1 Problem 15.18 (In the text book) A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250 N/m and

More information

Exam 3 Results !"#$%&%'()*+(,-./0% 123+#435%%6789:% Approximate Grade Cutoffs Ø A Ø B Ø C Ø D Ø 0 24 F

Exam 3 Results !#$%&%'()*+(,-./0% 123+#435%%6789:% Approximate Grade Cutoffs Ø A Ø B Ø C Ø D Ø 0 24 F Exam 3 Results Approximate Grade Cutos Ø 75-1 A Ø 55 74 B Ø 35 54 C Ø 5 34 D Ø 4 F '$!" '#!" '!!" &!" %!" $!" #!"!"!"#$%&%'()*+(,-./% 13+#435%%6789:%!()" )('!" '!(')" ')(#!" #!(#)" #)(*!" *!(*)" *)($!"

More information

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Phys101 Lectures 8, 9 Oscillations Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum Ref: 11-1,,3,4. Page 1 Oscillations of a Spring If an object oscillates

More information

Physics 8 Monday, December 4, 2017

Physics 8 Monday, December 4, 2017 Physics 8 Monday, December 4, 2017 HW12 due Friday. Grace will do a review session Dec 12 or 13. When? I will do a review session: afternoon Dec 17? Evening Dec 18? Wednesday, I will hand out the practice

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

Thursday March 30 Topics for this Lecture: Simple Harmonic Motion Kinetic & Potential Energy Pendulum systems Resonances & Damping.

Thursday March 30 Topics for this Lecture: Simple Harmonic Motion Kinetic & Potential Energy Pendulum systems Resonances & Damping. Thursday March 30 Topics for this Lecture: Simple Harmonic Motion Kinetic & Potential Energy Pendulum systems Resonances & Damping Assignment 11 due Friday Pre-class due 15min before class Help Room: Here,

More information

Rotation Atwood Machine with Massive Pulley Energy of Rotation

Rotation Atwood Machine with Massive Pulley Energy of Rotation Rotation Atwood Machine with Massive Pulley Energy of Rotation Lana Sheridan De Anza College Nov 21, 2017 Last time calculating moments of inertia the parallel axis theorem Overview applications of moments

More information

Exam II Difficult Problems

Exam II Difficult Problems Exam II Difficult Problems Exam II Difficult Problems 90 80 70 60 50 40 30 20 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Two boxes are connected to each other as shown. The system is released

More information

PREMED COURSE, 14/08/2015 OSCILLATIONS

PREMED COURSE, 14/08/2015 OSCILLATIONS PREMED COURSE, 14/08/2015 OSCILLATIONS PERIODIC MOTIONS Mechanical Metronom Laser Optical Bunjee jumping Electrical Astronomical Pulsar Biological ECG AC 50 Hz Another biological exampe PERIODIC MOTIONS

More information

PHYSICS 149: Lecture 22

PHYSICS 149: Lecture 22 PHYSICS 149: Lecture 22 Chapter 11: Waves 11.1 Waves and Energy Transport 11.2 Transverse and Longitudinal Waves 11.3 Speed of Transverse Waves on a String 11.4 Periodic Waves Lecture 22 Purdue University,

More information

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1

Mass on a Spring C2: Simple Harmonic Motion. Simple Harmonic Motion. Announcements Week 12D1 Simple Harmonic Motion 8.01 Week 1D1 Today s Reading Assignment MIT 8.01 Course Notes Chapter 3 Simple Harmonic Motion Sections 3.1-3.4 1 Announcements Sunday Tutoring in 6-15 from 1-5 pm Problem Set 9

More information

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson

Physics 132 3/31/17. March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman. Swing, Swing, Swing. Cartoon: Bill Watterson March 31, 2017 Physics 132 Prof. E. F. Redish Theme Music: Benny Goodman Swing, Swing, Swing Cartoon: Bill Watterson Calvin & Hobbes 1 Outline The makeup exam Recap: the math of the harmonic oscillator

More information

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes

4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes 4.1 KINEMATICS OF SIMPLE HARMONIC MOTION 4.2 ENERGY CHANGES DURING SIMPLE HARMONIC MOTION 4.3 FORCED OSCILLATIONS AND RESONANCE Notes I. DEFINING TERMS A. HOW ARE OSCILLATIONS RELATED TO WAVES? II. EQUATIONS

More information

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM)

Chapter 16: Oscillatory Motion and Waves. Simple Harmonic Motion (SHM) Chapter 6: Oscillatory Motion and Waves Hooke s Law (revisited) F = - k x Tthe elastic potential energy of a stretched or compressed spring is PE elastic = kx / Spring-block Note: To consider the potential

More information

10.1 The Ideal Spring and Simple Harmonic Motion

10.1 The Ideal Spring and Simple Harmonic Motion 10.1 The Ideal Spring and Simple Harmonic Motion TRANSPARENCY FIGURE 10.1 - restoring force F applied = (+)kx (10:1) Hooke s Law Restoring Force of an Ideal Spring The restoring force of an ideal spring

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

Unit 7: Oscillations

Unit 7: Oscillations Text: Chapter 15 Unit 7: Oscillations NAME: Problems (p. 405-412) #1: 1, 7, 13, 17, 24, 26, 28, 32, 35 (simple harmonic motion, springs) #2: 45, 46, 49, 51, 75 (pendulums) Vocabulary: simple harmonic motion,

More information