GMM - Generalized Method of Moments

Size: px
Start display at page:

Download "GMM - Generalized Method of Moments"

Transcription

1 GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion Weighing marix Properies of GMM esimaors esing over-idenifying resricions Use of condiioning informaion OLS as a GMM esimaion. 6 5 Running GMM in R 7 6 Summarizing GMM 9 GMM esimaion, shor inroducion Well know ha Maximum Likelihood is generally an opimal mehod for seing up esimaors. If we know we are in a seing where ML applies, we should be using ha. However, here are many cases where ML can no be applied. Imporan cases We are no able o specify he acual probabiliy disribuion. he calculaion of he full probabiliy disribuion is no feasible. In boh cases we are no able o use neiher OLS nor ML. An alernaive way of doing esimaion is base on an old idea in saisics, ha of mahcing momens I wan o spend some ime on he analysis of he Generalized Mehod of Momens, no only because I like i, bu also because i is becoming more and more commonly used in curren research. Anoher reason ha we wan o spend some ime on GMM is ha almos all he oher mehods of analysing daa we have seen so far can be viewed as special cases of GMM. We can hus use he general resuls abou GMM problems o show resuls abou all hese special cases. his is he value of knowing he mos general cases, i is easier o specialize a general case o a special case, han o keep rack of 0 differen special cases. Anoher reason ha GMM is so popular is ha i is easy o see he mapping from he economic model o he esimaion seup.

2 2 GMM inuiion: Maching momens We will sar wih he inuiion of maching momens. Suppose x (µ 0, σ 2 ) Consider he problem of esimaing µ 0. We know ha Wha if his is all we are willing o assume? Consider By a law of large numbers, we will have hus, consider If we le increase, lim E[x ] = µ 0 x x = E[x ] = µ 0 E[x µ 0 ] = 0 x µ 0 0 as Given his, a reasonable way o esimae µ 0 is o look a he soluion of or ake as our esimaor x µ = 0, µ = x, he sample mean, which in his case is he naural esimaor. he name maching momens is coming from he fac ha e.g. he expecaion is he firs momen, and by consrucing he momen condiion x µ = 0, we are in some sense maching he firs momen, he expecaion E[x µ 0 ] = 0 2

3 3 General overview of GMM esimaion. he main ingredien of a GMM esimaion is a funcion h(θ, w ), wih θ parameers o esimae and w daa. We ofen use he erm orhogonaliy condiion abou his expecaion. By assumpion E[h(θ 0, w )] = 0 under he rue parameers θ = θ 0. Define Y = {w, w 2,..., w } g(θ, Y ) = h(θ, w ) If he number of parameers o esimae equals he number of orhogonaliy condiions, we can find ˆθ direcly as he soluion o g(ˆθ, Y ) = 0 Oherwise, if he number of parameers o esimae is less he number of orhogonaliy condiions, we can find ˆθ as ˆθ = arg min J(θ, Y ) = arg min g(θ, Y ) W g(θ, Y ) θ θ where W is some posiive definie weighing marix. o show consisency of GMM, he main seps will consis of. Show g(θ, Y ) E[h(θ, w)] for all θ 2. Assume is a unique minimum, or alernaively min E[h(θ 0, w) h(θ 0, w)] E[h(θ)] 0 θ θ 0 3. Assume coninuiy of h( ) 4. Given his, we argue ha arg min g(θ, Y) W g(θ, Y ) P θ 0 θ We will no go ino he deails of his argumen, i is similar o earlier proofs for oher cases, bu he laws of large numbers used o show his is somewha advanced. If you are ineresed, look a he references given below. 3

4 3. Weighing marix. Wha is he marix W in g(θ, Y ) W g(θ, Y ) he easies way o see wha i should be is o argue by he analogy o GLS, where we found ha b gls = arg min(y Xb) Ω (y Xb) b he marix Ω is he covariance marix of he error erms, and he inuion was ha he higher he variance of a paricular observaion, he lower weigh should i be given in he esimaion. A similar resul urns ou o be he case for GMM esimaion, he opimal W o use should be an esimae of he inverse of he covariance marix of he momen condiions. W = ( Ŝ ) S = var h(θ, w ) h(θ, w ) he weighing marix W is an imporan par of GMM, i is wha makes he mehod very robus. If we wrie ou ( ) S = var h(θ, w ) h(θ, w ) = i E[h(θ, w +i ) h(θ, w +j )], j a kind of average of he error erms. A paricular simple version is o assume independence of he error erms, which implies ha S = E[h(θ, w ) h(θ, w )], which we would esimae by Ŝ = h(θ, w ) h(θ, w ) Already we see ha o esimae he marix S you need an esimae of θ, bu o esimae θ we need an esimae of S. he way o ge around his circulariy is o proceed in seps. Esimae θ using he ideniy marix I as a weighing marix. 2. Esimae Ŝ using his θ. 3. Re esimae θ using Ŝ as a weighing marix. 3.2 Properies of GMM esimaors. he main general resuls abou GMM esimaors are ha, under he appropriae regulariy condiions, which we will no go ino, P ˆθ θ0 (ˆθ θ0 ) D N (0, V ) where V = [ DS D ] [ ] D = E g(θ, Y) θ S = covariance marix of momen condiions. 4

5 3.3 esing over-idenifying resricions Specificaion of a GMM model will consising in finding a se of momen condiions which have expecaion zero. I is ofen he case ha he model will supply more momen condiions han we have parameers o esimae. Le E[h(x, b)] = 0 be he momen condiions. Suppose we have n momen condiions and r < n parameers o esimae. If he model is correcly specified, a he rue parameers he sample equivalen of he momen condiion will go o zero for all he momen condiions. Suppose we now use only he firs r momen condiions o do he esimaion of he parameers. his will choose parameers θ o se he sample mean of h (θ, w ) h 2 (θ, w ). h r (θ, w ) = 0 where h i (θ, w ) signifies he i h elemen of h(θ, w ). If he parameers are correc, and he model correcly specified, he sample mean of he momen condiions ha are no used in he esimaion should also be close o zero. If hey are no, his is a sign ha he model is no correcly specified. he es of over-idenifying resricions measure his disance from zero of he lef over momen condiions, and will rejec he model formulaion if his saisic is large. You will ofen see his es ermed Hansen s J-es. We consruc he es saisic as J(θ) = g (θ, y)s g (θ, y) Since g (θ) is asympoically normal wih limiing covariance marix S, J(θ) is chi-square disribued wih degrees of freedom equal o he number of momen condiions less he number of parameers o esimae. he J-es is a es of he model formulaion, if J(ˆθ) > criical value, hen we may wan o hink again abou he model formulaion. In pracice his es is no very powerful, i can be hard o rejec a mis-specified model using his paricular es. 3.4 Use of condiioning informaion. he abiliy o use condiioning informaion in a meaningful way is one of he major reasons for GMM o be of very wide use. Noe a couple of ways o use condiioning informaion Use of variables in he informaion se as insrumens in he esimaion. ry o model he condiional expecaions direcly (laen variables) 5

6 4 OLS as a GMM esimaion. As anoher example of GMM seup, consider an OLS srucure y = x b + ɛ where y and x are scalars, and he following are saisfied E[ɛ ] = 0 Momen condiion Sample equivalen Solve for GMM esimaor If we define he appropriae vecors we can wrie x = E[x ɛ ] = 0 var(ɛ ) = σ 2 E[x ɛ ] = E[x (y x b)] x (y x b) = 0 ˆbGMM = x x 2. x n [ ] [ x x, y = y y 2. y n ˆbGMM = (x x) x y x y ] ɛ, ɛ = ɛ 2. ɛ n and var(ɛ) = σ 2 I Now, wha is he sandard error of he GMM esimae ˆb GMM. using he resul (ˆθ θ0 ) D N(0, V ) Mapping he OLS example ino his noaion V = ( DS D ) D = g(θ, Y) θ S = cov(momen condiions) θ = b S = σ 2 (X X) D = b x (y xb) = x x DS D = (x x)(σ 2 (x x)) (x x) = σ 2 (x x) which should be familiar. (DS D) = σ 2 (x x) 6

7 5 Running GMM in R here is a very good implemenaion of GMM esimaion in R, which covers many of he relevan applicaions for finance. he user has o do is o wrie code for calculaion of he momen condiions, and hen R akes care of he res. he momen condiions can be specified by wriing a funcion reurning he marix of momen condiions, or, in he case of a linear model, by simply wriing he linear model in he same way as a OLS regression. For documenaion of he gmm package, see?. We will use some examples o illusrae he use of he package. Exercise. Consider he model y = a + bx + ε Simulae he following model leing x be he numbers from o 0, a =, b = and ε is normally disrubued wih mean zero and variance one.. Esimae he model using OLS. 2. Esimae he model using GMM. Soluion o Exercise. he following is he R code which does his, and hen he oupu of he wo esimaions. Firs simulaing he model x <- :0 b <- a <- e <- rnorm(0) y <- a + b * x + e Running he OLS regression reg <- lm(y x) summary(reg) wih oupu lm(formula = y x) Residuals: Min Q Median 3Q Max Coefficiens: Esimae Sd. Error value Pr(> ) (Inercep) x e-05 *** --- Signif. codes: 0 âăÿ***âăź 0.00 âăÿ**âăź 0.0 âăÿ*âăź 0.05 âăÿ.âăź 0. âăÿ âăź Residual sandard error:.2 on 8 degrees of freedom Muliple R-squared: ,Adjused R-squared: F-saisic: on and 8 DF, p-value: 4.689e-05 > reg$coefficiens (Inercep) x and hen doing he same using GMM. Noe he need o load he gmm library. 7

8 library(gmm) res <- gmm(y x,x) summary(res) resuls in he oupu gmm(g = y x, x = x) Mehod: wosep Kernel: Quadraic Specral Coefficiens: Esimae Sd. Error value Pr(> ) (Inercep).3087e e e e-0 x e e e e-5 J-es: degrees of freedom is 0 J-es P-value es E(g)=0: e-29 ******* > res$coefficiens (Inercep) x

9 6 Summarizing GMM Inuiion: Maching Momens (firs momen) Also, poenially E[] = 0 E[() 2 σ 2 ] = 0 (second momen) Basis for consrucing esimaors. Allow for esimaion in many seings where esimaion oherwise impossible. Generaliy coss: Less precision when e.g. ML applies. Imporan cases: Condiional expecaions can be he basis for modelling. Robus o more general error srucure (heeroskedasiciy and auocorrelaion robus) References Pierre Chaussé. Compuing generalized mehod of momens and generalized empirical likelihood wih r. Journal of Saisical Sofware, 34(): 35,

GMM - Generalized method of moments

GMM - Generalized method of moments GMM - Generalized method of moments GMM Intuition: Matching moments You want to estimate properties of a data set {x t } T t=1. You assume that x t has a constant mean and variance. x t (µ 0, σ 2 ) Consider

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t...

t is a basis for the solution space to this system, then the matrix having these solutions as columns, t x 1 t, x 2 t,... x n t x 2 t... Mah 228- Fri Mar 24 5.6 Marix exponenials and linear sysems: The analogy beween firs order sysems of linear differenial equaions (Chaper 5) and scalar linear differenial equaions (Chaper ) is much sronger

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution

Økonomisk Kandidateksamen 2005(II) Econometrics 2. Solution Økonomisk Kandidaeksamen 2005(II) Economerics 2 Soluion his is he proposed soluion for he exam in Economerics 2. For compleeness he soluion gives formal answers o mos of he quesions alhough his is no always

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

Empirical Process Theory

Empirical Process Theory Empirical Process heory 4.384 ime Series Analysis, Fall 27 Reciaion by Paul Schrimpf Supplemenary o lecures given by Anna Mikusheva Ocober 7, 28 Reciaion 7 Empirical Process heory Le x be a real-valued

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate.

Introduction D P. r = constant discount rate, g = Gordon Model (1962): constant dividend growth rate. Inroducion Gordon Model (1962): D P = r g r = consan discoun rae, g = consan dividend growh rae. If raional expecaions of fuure discoun raes and dividend growh vary over ime, so should he D/P raio. Since

More information

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds

Kriging Models Predicting Atrazine Concentrations in Surface Water Draining Agricultural Watersheds 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Kriging Models Predicing Arazine Concenraions in Surface Waer Draining Agriculural Waersheds Paul L. Mosquin, Jeremy Aldworh, Wenlin Chen Supplemenal Maerial Number

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions Muli-Period Sochasic Models: Opimali of (s, S) Polic for -Convex Objecive Funcions Consider a seing similar o he N-sage newsvendor problem excep ha now here is a fixed re-ordering cos (> 0) for each (re-)order.

More information

3.1 More on model selection

3.1 More on model selection 3. More on Model selecion 3. Comparing models AIC, BIC, Adjused R squared. 3. Over Fiing problem. 3.3 Sample spliing. 3. More on model selecion crieria Ofen afer model fiing you are lef wih a handful of

More information

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2

Financial Econometrics Kalman Filter: some applications to Finance University of Evry - Master 2 Financial Economerics Kalman Filer: some applicaions o Finance Universiy of Evry - Maser 2 Eric Bouyé January 27, 2009 Conens 1 Sae-space models 2 2 The Scalar Kalman Filer 2 21 Presenaion 2 22 Summary

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

Statistics versus mean-field limit for Hawkes process. with Sylvain Delattre (P7)

Statistics versus mean-field limit for Hawkes process. with Sylvain Delattre (P7) Saisics versus mean-field limi for Hawkes process wih Sylvain Delare (P7) The model We have individuals. Z i, := number of acions of he i-h individual unil ime. Z i, jumps (is increased by 1) a rae λ i,

More information

Lecture Notes 2. The Hilbert Space Approach to Time Series

Lecture Notes 2. The Hilbert Space Approach to Time Series Time Series Seven N. Durlauf Universiy of Wisconsin. Basic ideas Lecure Noes. The Hilber Space Approach o Time Series The Hilber space framework provides a very powerful language for discussing he relaionship

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

1 Review of Zero-Sum Games

1 Review of Zero-Sum Games COS 5: heoreical Machine Learning Lecurer: Rob Schapire Lecure #23 Scribe: Eugene Brevdo April 30, 2008 Review of Zero-Sum Games Las ime we inroduced a mahemaical model for wo player zero-sum games. Any

More information

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims

Problem Set 5. Graduate Macro II, Spring 2017 The University of Notre Dame Professor Sims Problem Se 5 Graduae Macro II, Spring 2017 The Universiy of Nore Dame Professor Sims Insrucions: You may consul wih oher members of he class, bu please make sure o urn in your own work. Where applicable,

More information

Ensamble methods: Bagging and Boosting

Ensamble methods: Bagging and Boosting Lecure 21 Ensamble mehods: Bagging and Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Ensemble mehods Mixure of expers Muliple base models (classifiers, regressors), each covers a differen par

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details!

Finish reading Chapter 2 of Spivak, rereading earlier sections as necessary. handout and fill in some missing details! MAT 257, Handou 6: Ocober 7-2, 20. I. Assignmen. Finish reading Chaper 2 of Spiva, rereading earlier secions as necessary. handou and fill in some missing deails! II. Higher derivaives. Also, read his

More information

A Bayesian Approach to Spectral Analysis

A Bayesian Approach to Spectral Analysis Chirped Signals A Bayesian Approach o Specral Analysis Chirped signals are oscillaing signals wih ime variable frequencies, usually wih a linear variaion of frequency wih ime. E.g. f() = A cos(ω + α 2

More information

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1)

Chapter 11. Heteroskedasticity The Nature of Heteroskedasticity. In Chapter 3 we introduced the linear model (11.1.1) Chaper 11 Heeroskedasiciy 11.1 The Naure of Heeroskedasiciy In Chaper 3 we inroduced he linear model y = β+β x (11.1.1) 1 o explain household expendiure on food (y) as a funcion of household income (x).

More information

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models

5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models 5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models General form of nonlinear or linear regression models: y = h(x,β) + ε, ε iid N(0,σ ). Assume ha he x and ε sochasically independen. his assumpion

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

Ensamble methods: Boosting

Ensamble methods: Boosting Lecure 21 Ensamble mehods: Boosing Milos Hauskrech milos@cs.pi.edu 5329 Senno Square Schedule Final exam: April 18: 1:00-2:15pm, in-class Term projecs April 23 & April 25: a 1:00-2:30pm in CS seminar room

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

Affine term structure models

Affine term structure models Affine erm srucure models A. Inro o Gaussian affine erm srucure models B. Esimaion by minimum chi square (Hamilon and Wu) C. Esimaion by OLS (Adrian, Moench, and Crump) D. Dynamic Nelson-Siegel model (Chrisensen,

More information

Christos Papadimitriou & Luca Trevisan November 22, 2016

Christos Papadimitriou & Luca Trevisan November 22, 2016 U.C. Bereley CS170: Algorihms Handou LN-11-22 Chrisos Papadimiriou & Luca Trevisan November 22, 2016 Sreaming algorihms In his lecure and he nex one we sudy memory-efficien algorihms ha process a sream

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19 Sequenial Imporance Sampling (SIS) AKA Paricle Filering, Sequenial Impuaion (Kong, Liu, Wong, 994) For many problems, sampling direcly from he arge disribuion is difficul or impossible. One reason possible

More information

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS

Financial Econometrics Jeffrey R. Russell Midterm Winter 2009 SOLUTIONS Name SOLUTIONS Financial Economerics Jeffrey R. Russell Miderm Winer 009 SOLUTIONS You have 80 minues o complee he exam. Use can use a calculaor and noes. Try o fi all your work in he space provided. If

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model

Modal identification of structures from roving input data by means of maximum likelihood estimation of the state space model Modal idenificaion of srucures from roving inpu daa by means of maximum likelihood esimaion of he sae space model J. Cara, J. Juan, E. Alarcón Absrac The usual way o perform a forced vibraion es is o fix

More information

) were both constant and we brought them from under the integral.

) were both constant and we brought them from under the integral. YIELD-PER-RECRUIT (coninued The yield-per-recrui model applies o a cohor, bu we saw in he Age Disribuions lecure ha he properies of a cohor do no apply in general o a collecion of cohors, which is wha

More information

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Exercise: Building an Error Correction Model of Private Consumption. Part II Testing for Cointegration 1

Exercise: Building an Error Correction Model of Private Consumption. Part II Testing for Cointegration 1 Bo Sjo 200--24 Exercise: Building an Error Correcion Model of Privae Consumpion. Par II Tesing for Coinegraion Learning objecives: This lab inroduces esing for he order of inegraion and coinegraion. The

More information

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION REVIEW OF MAXIMUM LIKELIHOOD ESIMAION [] Maximum Likelihood Esimaor () Cases in which θ (unknown parameer) is scalar Noaional Clarificaion: From now on, we denoe he rue alue of θ as θ o hen, iew θ as a

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

14 Autoregressive Moving Average Models

14 Autoregressive Moving Average Models 14 Auoregressive Moving Average Models In his chaper an imporan parameric family of saionary ime series is inroduced, he family of he auoregressive moving average, or ARMA, processes. For a large class

More information

Kalman filtering for maximum likelihood estimation given corrupted observations.

Kalman filtering for maximum likelihood estimation given corrupted observations. alman filering maimum likelihood esimaion given corruped observaions... Holmes Naional Marine isheries Service Inroducion he alman filer is used o eend likelihood esimaion o cases wih hidden saes such

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Lecture 2 April 04, 2018

Lecture 2 April 04, 2018 Sas 300C: Theory of Saisics Spring 208 Lecure 2 April 04, 208 Prof. Emmanuel Candes Scribe: Paulo Orensein; edied by Sephen Baes, XY Han Ouline Agenda: Global esing. Needle in a Haysack Problem 2. Threshold

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Solutions Problem Set 3 Macro II (14.452)

Solutions Problem Set 3 Macro II (14.452) Soluions Problem Se 3 Macro II (14.452) Francisco A. Gallego 04/27/2005 1 Q heory of invesmen in coninuous ime and no uncerainy Consider he in nie horizon model of a rm facing adjusmen coss o invesmen.

More information

Stability and Bifurcation in a Neural Network Model with Two Delays

Stability and Bifurcation in a Neural Network Model with Two Delays Inernaional Mahemaical Forum, Vol. 6, 11, no. 35, 175-1731 Sabiliy and Bifurcaion in a Neural Nework Model wih Two Delays GuangPing Hu and XiaoLing Li School of Mahemaics and Physics, Nanjing Universiy

More information

Lecture 4. Classical Linear Regression Model: Overview

Lecture 4. Classical Linear Regression Model: Overview Lecure 4 Classical Linear Regression Model: Overview Regression Regression is probably he single mos imporan ool a he economerician s disposal. Bu wha is regression analysis? I is concerned wih describing

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

Robert Kollmann. 6 September 2017

Robert Kollmann. 6 September 2017 Appendix: Supplemenary maerial for Tracable Likelihood-Based Esimaion of Non- Linear DSGE Models Economics Leers (available online 6 Sepember 207) hp://dx.doi.org/0.06/j.econle.207.08.027 Rober Kollmann

More information

Y, where. 1 Estimate St.error

Y, where. 1 Estimate St.error 1 HG Feb 2014 ECON 5101 Exercises III - 24 Feb 2014 Exercise 1 In lecure noes 3 (LN3 page 11) we esimaed an ARMA(1,2) for daa) for he period, 1978q2-2013q2 Le Y ln BNP ln BNP (Norwegian Model: Y Y, where

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

An introduction to the theory of SDDP algorithm

An introduction to the theory of SDDP algorithm An inroducion o he heory of SDDP algorihm V. Leclère (ENPC) Augus 1, 2014 V. Leclère Inroducion o SDDP Augus 1, 2014 1 / 21 Inroducion Large scale sochasic problem are hard o solve. Two ways of aacking

More information

Retrieval Models. Boolean and Vector Space Retrieval Models. Common Preprocessing Steps. Boolean Model. Boolean Retrieval Model

Retrieval Models. Boolean and Vector Space Retrieval Models. Common Preprocessing Steps. Boolean Model. Boolean Retrieval Model 1 Boolean and Vecor Space Rerieval Models Many slides in his secion are adaped from Prof. Joydeep Ghosh (UT ECE) who in urn adaped hem from Prof. Dik Lee (Univ. of Science and Tech, Hong Kong) Rerieval

More information

Let us start with a two dimensional case. We consider a vector ( x,

Let us start with a two dimensional case. We consider a vector ( x, Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

More information

The Strong Law of Large Numbers

The Strong Law of Large Numbers Lecure 9 The Srong Law of Large Numbers Reading: Grimme-Sirzaker 7.2; David Williams Probabiliy wih Maringales 7.2 Furher reading: Grimme-Sirzaker 7.1, 7.3-7.5 Wih he Convergence Theorem (Theorem 54) and

More information

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t.

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t. Insrucions: The goal of he problem se is o undersand wha you are doing raher han jus geing he correc resul. Please show your work clearly and nealy. No credi will be given o lae homework, regardless of

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Measurement Error 1: Consequences Page 1. Definitions. For two variables, X and Y, the following hold: Expectation, or Mean, of X.

Measurement Error 1: Consequences Page 1. Definitions. For two variables, X and Y, the following hold: Expectation, or Mean, of X. Measuremen Error 1: Consequences of Measuremen Error Richard Williams, Universiy of Nore Dame, hps://www3.nd.edu/~rwilliam/ Las revised January 1, 015 Definiions. For wo variables, X and Y, he following

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data

Chapter 2. Models, Censoring, and Likelihood for Failure-Time Data Chaper 2 Models, Censoring, and Likelihood for Failure-Time Daa William Q. Meeker and Luis A. Escobar Iowa Sae Universiy and Louisiana Sae Universiy Copyrigh 1998-2008 W. Q. Meeker and L. A. Escobar. Based

More information

13.3 Term structure models

13.3 Term structure models 13.3 Term srucure models 13.3.1 Expecaions hypohesis model - Simples "model" a) shor rae b) expecaions o ge oher prices Resul: y () = 1 h +1 δ = φ( δ)+ε +1 f () = E (y +1) (1) =δ + φ( δ) f (3) = E (y +)

More information

Book Corrections for Optimal Estimation of Dynamic Systems, 2 nd Edition

Book Corrections for Optimal Estimation of Dynamic Systems, 2 nd Edition Boo Correcions for Opimal Esimaion of Dynamic Sysems, nd Ediion John L. Crassidis and John L. Junins November 17, 017 Chaper 1 This documen provides correcions for he boo: Crassidis, J.L., and Junins,

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Block Diagram of a DCS in 411

Block Diagram of a DCS in 411 Informaion source Forma A/D From oher sources Pulse modu. Muliplex Bandpass modu. X M h: channel impulse response m i g i s i Digial inpu Digial oupu iming and synchronizaion Digial baseband/ bandpass

More information