5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models

Size: px
Start display at page:

Download "5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models"

Transcription

1 5. NONLINEAR MODELS [1] Nonlinear (NL) Regression Models General form of nonlinear or linear regression models: y = h(x,β) + ε, ε iid N(0,σ ). Assume ha he x and ε sochasically independen. his assumpion implies ha: hx (, β ) E ε = 0 β i ; k 1 hx (, β ) E ε = 0 β β i k k. Example 1: y x = β + ε. Example : = + +ε, where x is a scalar. 3x y β β e β 1 Example 3: y Ax x β β 3 = + ε. (*) 3 NLLS-1

2 [] Esimaion of NL models Definiion: Le S( β ) =Σ ( y h( x, β )). he NLLS (Nonlinear leas squares) esimaor, ˆNL β, minimizes S(β). Assumpions: See Greene, Chaper 9. Facs: 1) p ˆ β β lim NL o = (consisen). [No guaranee ha E ( ) ˆNL β = β.] o ) ˆ 1 β β N p σ Σ H β H β ( NL o) d 0 k 1, lim ( o) ( o) where H ( β ) = h( x, β)/ β., If we define H ( β ) H1( β ) H ( β ), H( β ) H( β) = Σ H ( β) H ( β). = : H 3) Le s = S( ˆ β )/, hen, NL NL ( β ) ( ) 4) ˆ β, ( ˆ NL N β s NL H βnl ) H( ˆ βnl ). plim s NL = σ. 5) R = 1 - SSE/SS, where SSE = S( ˆ β NL ). here is no guaranee ha 0 R 1. NLLS-

3 Example: y hen, 3x = β + β e β + ε. 1 hx (, β ) hx (, β) β x hx (, β) = 1; = e ; = βxe β β β 1 β3x hus, H ( β ) = e. β3x βxe 1 3 β x 3 3. <Skechy Proof of Consisency> From S( ˆ βnl)/ β = 0k 1, Σ H ( ˆ β )( y h( ˆ β )) = 0. = 1 NL NL k 1 aylor expansiion around β = β o : 0 Σ k 1 H( βo)( y h( βo)) h( βo) +Σ ˆ y h o H o H o NL o. β β h( βo) ( ) ( ) ( ( β )) ( β ) ( β ) ( β β ) ˆ βnl βo Σ y h ( βo) H ( βo) H( βo) β β Σ H ( β )( y h( β )). o o NLLS-3

4 1 h( βo) ( ) ( ) ˆ βnl βo Σ y h ( βo) H ( βo) H ( βo) β β 1 ΣH( βo)( y h( βo)) 1 h( βo) 1 ε H βo H β o H βo Σ ( ) ( ) Σ ( ) ε β β 1 Σ H( βo) H( βo) 0k 1 = 0 k 1. <Skechy Proof of Asympoic Normaliy> Noe ha 1 h( βo) ( ) ( ) ˆ βnl βo Σ y h ( βo) H ( βo) H ( βo) β β 1 ΣH( βo)( y h( βo)) 1 1 Σ H( βo) H( βo) Σ H( βo)( y h( βo)). Bu 1 1 ΣH( βo)( y h( βo)) = ΣH( βo) ε 1 d N 0 k 1, plim σ Σ H( βo) H( βo). NLLS-4

5 [3] SPECIFICAION ESS CASE A: Same dependen variables under boh he null and he alernaives H o : y = h o (x,β) + ε. H a : y = h a (w,γ) + ε. (A) (B) Example: h o (x,β) = β 1 + β x ; h a (w,γ) = γ 1 + γ ln(x ). [Even if he models are linear, we sill can perform J or P ess.] (1) J es: Davidson and Mackinnon (1981, Economerica) Consruc he following auxiliary model: y = (1-α)h o (x,β) + αh a (w,γ) + ε. If H o is correc, α = 0. Le ˆNL γ be he NLLS esimaor of γ from (B). Replace h a (w,γ) (C) by ˆ a a h = h ( w, ˆ ) (fied value of y from (B)): γ NL o ˆa y = (1 α) h ( x, β) + αh + error. (D) Do NLLS on (D), and esimae β and α joinly. Using he esimaes, we can perform a -es for H o : α = 0. [In he sense ha we esimae β and α joinly, we call he es J-es.] NLLS-5

6 () P-es: An alernaive o J-es. Ge ˆNL β and ˆNL γ by NLLS on boh (A) and (B). Consider he following auxiliary regression: ˆo ˆ o ( ˆa ˆo y h = H b + h h ) α + error, (E) where hˆo o h (, ˆ = x β NL) ˆa a, h = h ( w, ˆ γ NL) and Hˆ = H ( x, ˆ β. o o ) NL Do OLS on (E) and esimae b and α. hen, perform -es for H o : α = 0. CASE B: Differen dependen variables H o : y = h o (x,β) + ε. H a : g(y ) = h a (w,γ) + ε, where g(y ) is a funcion of y (e.g., g(y ) = ln(y )). Example: H o : y = β 1 + β x + ε H a : ln(y ) = γ 1 + γ ln(x ) + ε NLLS-6

7 P es: Esimae boh β and γ by NLLS (or OLS). Consruc he following auxiliary model: ˆo ˆ o ˆa ( ( ˆo y h = H b+ h g h )) α + error. (F) Do OLS on (F), and es H o : α = 0. Example: H o : y = x β + ε H a : ln(y ) = w γ + ε, where x = [1,x,...,x k ] and w = [1,ln(x ),...,ln(x k )]. Explain in deail how you would es H o. NLLS-7

8 [EXAMPLE] Daa: (WAGE.WF1 or WAGE.X from Wooldridge s websie) # of observaions (): wage monhly earnings. hours average weekly hours 3. IQ IQ score 4. KWW knowledge of world work score 5. educ years of educaion 6. exper years of work experience 7. enure years wih curren employer 8. age age in years 9. married =1 if married 10. black =1 if black 11. souh =1 if live in souh 1. urban =1 if live in SMSA 13. sibs number of siblings 14. brhord birh order 15. meduc moher's educaion 16. feduc faher's educaion 17. lwage naural log of wage H o : lwage = β exp 1 + βeduc + β3 er +ε. γ 3 γ 4 H a : lwage 1 ( educ exper ) = γ + γ + + ε. NLLS-8

9 <J-es> = SEP 1 = Esimae he model under H a : Dependen Variable: LWAGE Mehod: Leas Squares Sample: Included observaions: 935 Esimaion seings: ol= , derivs=analyic Iniial Values: C(1)= , C()= , C(3)= , C(4)= Convergence achieved afer 80 ieraions LWAGE=C(1)+C()*(EDUC^C(3)+EXPER^C(4)) Coefficien Sd. Error -Saisic Prob. C(1) C() C(3) C(4) R-squared Mean dependen var Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Durbin-Wason sa Ge fiya = lwage - resid NLLS-9

10 = SEP = Esimae lwage = (1 α)( β1+ βeduc + β3exer) + α fiya + error. Dependen Variable: LWAGE Mehod: Leas Squares Dae: 04/09/0 ime: 1:6 Sample: Included observaions: 935 Esimaion seings: ol= , derivs=analyic Iniial Values: C(1)= , C()= , C(3)=1.141, C(4)= Convergence achieved afer ieraions LWAGE=(1-C(1))*(C()+C(3)*EDUC+C(4)*EXPER)+C(1)*FIYA Coefficien Sd. Error -Saisic Prob. C(1) C() C(3) C(4) R-squared Mean dependen var Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Durbin-Wason sa Do no rejec H o : C(1) = 0 (α = 0). NLLS-10

11 <P-es> = SEP 1 = Esimae he model under H o : Dependen Variable: LWAGE Mehod: Leas Squares Sample: Included observaions: 935 LWAGE=C(1)+C()*EDUC+C(3)*EXPER Coefficien Sd. Error -Saisic Prob. C(1) C() C(3) R-squared Mean dependen var Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Durbin-Wason sa Ge fiy0 = lwage resid and res0 = resid. NLLS-11

12 = SEP = Esimae he model under H a : Dependen Variable: LWAGE Mehod: Leas Squares Sample: Included observaions: 935 Esimaion seings: ol= , derivs=analyic Iniial Values: C(1)= , C()= , C(3)= , C(4)= Convergence achieved afer 80 ieraions LWAGE=C(1)+C()*(EDUC^C(3)+EXPER^C(4)) Coefficien Sd. Error -Saisic Prob. C(1) C() C(3) C(4) R-squared Mean dependen var Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Durbin-Wason sa Ge fiya = lwage resid. NLLS-1

13 = SEP 3 = Esimae res0= β1 + βeduc + β3exp er + α( fiya fiy0). Dependen Variable: RES0 Mehod: Leas Squares Sample: Included observaions: 935 RES0=C(1)+C()*EDUC+C(3)*EXPER+C(4)*(FIYA-FIY0) Coefficien Sd. Error -Saisic Prob. C(1) C() C(3) 9.34E C(4) R-squared Mean dependen var 3.38E-15 Adjused R-squared S.D. dependen var S.E. of regression Akaike info crierion Sum squared resid Schwarz crierion Log likelihood Durbin-Wason sa Do no rejec H o a 5% of significance level. NLLS-13

14 [4] NL models wih unknown parameers in LHS General form: g(y,δ) = h(x,β) + ε, ε iid N(0,σ ). Example: Generalized Cobb-Douglas Funcion ln(y ) + δy = β 1 + β (1-β 3 )ln(k ) + β β 3 ln(l ) + ε. If δ = 0, he funcion becomes Cobb-Douglas. Esimaion: 1) NLLS could be inconsisen. Even if i is consisen, compuaion of he covariance marix of he NLLS esimaor could be complicaed. ) Do MLE. (See Greene.) Example: Box-Cox ransformaion Define: y (δ) = [y δ - 1]/δ ; x j (λ) = [x λ j - 1]/λ, j =,..., k. Assume ha λ is all he same for j, we can allow λ o vary over differen j. If λ = 1, x j (1) = x j - 1 (linear). If λ 0, x j (λ) ln(x j ) (log). NLLS-14

15 Box-Cox Model: k y 1 j= xj ( δ ) = β +Σ ( λ) β +ε. j y (δ) = x (λ) β + ε, where x (λ) = [1,x (λ),...,x k (λ)] and β = [β 1,...,β k ]. Use MLE o esimae δ, λ and β. NLLS-15

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A

Licenciatura de ADE y Licenciatura conjunta Derecho y ADE. Hoja de ejercicios 2 PARTE A Licenciaura de ADE y Licenciaura conjuna Derecho y ADE Hoja de ejercicios PARTE A 1. Consider he following models Δy = 0.8 + ε (1 + 0.8L) Δ 1 y = ε where ε and ε are independen whie noise processes. In

More information

Regression with Time Series Data

Regression with Time Series Data Regression wih Time Series Daa y = β 0 + β 1 x 1 +...+ β k x k + u Serial Correlaion and Heeroskedasiciy Time Series - Serial Correlaion and Heeroskedasiciy 1 Serially Correlaed Errors: Consequences Wih

More information

Time series Decomposition method

Time series Decomposition method Time series Decomposiion mehod A ime series is described using a mulifacor model such as = f (rend, cyclical, seasonal, error) = f (T, C, S, e) Long- Iner-mediaed Seasonal Irregular erm erm effec, effec,

More information

Generalized Least Squares

Generalized Least Squares Generalized Leas Squares Augus 006 1 Modified Model Original assumpions: 1 Specificaion: y = Xβ + ε (1) Eε =0 3 EX 0 ε =0 4 Eεε 0 = σ I In his secion, we consider relaxing assumpion (4) Insead, assume

More information

Lecture 15. Dummy variables, continued

Lecture 15. Dummy variables, continued Lecure 15. Dummy variables, coninued Seasonal effecs in ime series Consider relaion beween elecriciy consumpion Y and elecriciy price X. The daa are quarerly ime series. Firs model ln α 1 + α2 Y = ln X

More information

Distribution of Estimates

Distribution of Estimates Disribuion of Esimaes From Economerics (40) Linear Regression Model Assume (y,x ) is iid and E(x e )0 Esimaion Consisency y α + βx + he esimaes approach he rue values as he sample size increases Esimaion

More information

Stationary Time Series

Stationary Time Series 3-Jul-3 Time Series Analysis Assoc. Prof. Dr. Sevap Kesel July 03 Saionary Time Series Sricly saionary process: If he oin dis. of is he same as he oin dis. of ( X,... X n) ( X h,... X nh) Weakly Saionary

More information

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests

Outline. lse-logo. Outline. Outline. 1 Wald Test. 2 The Likelihood Ratio Test. 3 Lagrange Multiplier Tests Ouline Ouline Hypohesis Tes wihin he Maximum Likelihood Framework There are hree main frequenis approaches o inference wihin he Maximum Likelihood framework: he Wald es, he Likelihood Raio es and he Lagrange

More information

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1

Modeling and Forecasting Volatility Autoregressive Conditional Heteroskedasticity Models. Economic Forecasting Anthony Tay Slide 1 Modeling and Forecasing Volailiy Auoregressive Condiional Heeroskedasiciy Models Anhony Tay Slide 1 smpl @all line(m) sii dl_sii S TII D L _ S TII 4,000. 3,000.1.0,000 -.1 1,000 -. 0 86 88 90 9 94 96 98

More information

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t

R t. C t P t. + u t. C t = αp t + βr t + v t. + β + w t Exercise 7 C P = α + β R P + u C = αp + βr + v (a) (b) C R = α P R + β + w (c) Assumpions abou he disurbances u, v, w : Classical assumions on he disurbance of one of he equaions, eg. on (b): E(v v s P,

More information

GMM - Generalized Method of Moments

GMM - Generalized Method of Moments GMM - Generalized Mehod of Momens Conens GMM esimaion, shor inroducion 2 GMM inuiion: Maching momens 2 3 General overview of GMM esimaion. 3 3. Weighing marix...........................................

More information

Cointegration and Implications for Forecasting

Cointegration and Implications for Forecasting Coinegraion and Implicaions for Forecasing Two examples (A) Y Y 1 1 1 2 (B) Y 0.3 0.9 1 1 2 Example B: Coinegraion Y and coinegraed wih coinegraing vecor [1, 0.9] because Y 0.9 0.3 is a saionary process

More information

Wisconsin Unemployment Rate Forecast Revisited

Wisconsin Unemployment Rate Forecast Revisited Wisconsin Unemploymen Rae Forecas Revisied Forecas in Lecure Wisconsin unemploymen November 06 was 4.% Forecass Poin Forecas 50% Inerval 80% Inerval Forecas Forecas December 06 4.0% (4.0%, 4.0%) (3.95%,

More information

STAD57 Time Series Analysis. Lecture 5

STAD57 Time Series Analysis. Lecture 5 STAD57 Time Series Analysis Lecure 5 1 Exploraory Daa Analysis Check if given TS is saionary: µ is consan σ 2 is consan γ(s,) is funcion of h= s If no, ry o make i saionary using some of he mehods below:

More information

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1

Vectorautoregressive Model and Cointegration Analysis. Time Series Analysis Dr. Sevtap Kestel 1 Vecorauoregressive Model and Coinegraion Analysis Par V Time Series Analysis Dr. Sevap Kesel 1 Vecorauoregression Vecor auoregression (VAR) is an economeric model used o capure he evoluion and he inerdependencies

More information

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8)

Econ107 Applied Econometrics Topic 7: Multicollinearity (Studenmund, Chapter 8) I. Definiions and Problems A. Perfec Mulicollineariy Econ7 Applied Economerics Topic 7: Mulicollineariy (Sudenmund, Chaper 8) Definiion: Perfec mulicollineariy exiss in a following K-variable regression

More information

Econ Autocorrelation. Sanjaya DeSilva

Econ Autocorrelation. Sanjaya DeSilva Econ 39 - Auocorrelaion Sanjaya DeSilva Ocober 3, 008 1 Definiion Auocorrelaion (or serial correlaion) occurs when he error erm of one observaion is correlaed wih he error erm of any oher observaion. This

More information

Lecture 10 Estimating Nonlinear Regression Models

Lecture 10 Estimating Nonlinear Regression Models Lecure 0 Esimaing Nonlinear Regression Models References: Greene, Economeric Analysis, Chaper 0 Consider he following regression model: y = f(x, β) + ε =,, x is kx for each, β is an rxconsan vecor, ε is

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Unit Root Time Series. Univariate random walk

Unit Root Time Series. Univariate random walk Uni Roo ime Series Univariae random walk Consider he regression y y where ~ iid N 0, he leas squares esimae of is: ˆ yy y y yy Now wha if = If y y hen le y 0 =0 so ha y j j If ~ iid N 0, hen y ~ N 0, he

More information

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu)

CH Sean Han QF, NTHU, Taiwan BFS2010. (Joint work with T.-Y. Chen and W.-H. Liu) CH Sean Han QF, NTHU, Taiwan BFS2010 (Join work wih T.-Y. Chen and W.-H. Liu) Risk Managemen in Pracice: Value a Risk (VaR) / Condiional Value a Risk (CVaR) Volailiy Esimaion: Correced Fourier Transform

More information

OBJECTIVES OF TIME SERIES ANALYSIS

OBJECTIVES OF TIME SERIES ANALYSIS OBJECTIVES OF TIME SERIES ANALYSIS Undersanding he dynamic or imedependen srucure of he observaions of a single series (univariae analysis) Forecasing of fuure observaions Asceraining he leading, lagging

More information

Testing the Random Walk Model. i.i.d. ( ) r

Testing the Random Walk Model. i.i.d. ( ) r he random walk heory saes: esing he Random Walk Model µ ε () np = + np + Momen Condiions where where ε ~ i.i.d he idea here is o es direcly he resricions imposed by momen condiions. lnp lnp µ ( lnp lnp

More information

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter Sae-Space Models Iniializaion, Esimaion and Smoohing of he Kalman Filer Iniializaion of he Kalman Filer The Kalman filer shows how o updae pas predicors and he corresponding predicion error variances when

More information

Distribution of Least Squares

Distribution of Least Squares Disribuion of Leas Squares In classic regression, if he errors are iid normal, and independen of he regressors, hen he leas squares esimaes have an exac normal disribuion, no jus asympoic his is no rue

More information

Testing for a Single Factor Model in the Multivariate State Space Framework

Testing for a Single Factor Model in the Multivariate State Space Framework esing for a Single Facor Model in he Mulivariae Sae Space Framework Chen C.-Y. M. Chiba and M. Kobayashi Inernaional Graduae School of Social Sciences Yokohama Naional Universiy Japan Faculy of Economics

More information

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t.

(a) Set up the least squares estimation procedure for this problem, which will consist in minimizing the sum of squared residuals. 2 t. Insrucions: The goal of he problem se is o undersand wha you are doing raher han jus geing he correc resul. Please show your work clearly and nealy. No credi will be given o lae homework, regardless of

More information

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models

A Specification Test for Linear Dynamic Stochastic General Equilibrium Models Journal of Saisical and Economeric Mehods, vol.1, no.2, 2012, 65-70 ISSN: 2241-0384 (prin), 2241-0376 (online) Scienpress Ld, 2012 A Specificaion Tes for Linear Dynamic Sochasic General Equilibrium Models

More information

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION

REVIEW OF MAXIMUM LIKELIHOOD ESTIMATION REVIEW OF MAXIMUM LIKELIHOOD ESIMAION [] Maximum Likelihood Esimaor () Cases in which θ (unknown parameer) is scalar Noaional Clarificaion: From now on, we denoe he rue alue of θ as θ o hen, iew θ as a

More information

Solutions to Odd Number Exercises in Chapter 6

Solutions to Odd Number Exercises in Chapter 6 1 Soluions o Odd Number Exercises in 6.1 R y eˆ 1.7151 y 6.3 From eˆ ( T K) ˆ R 1 1 SST SST SST (1 R ) 55.36(1.7911) we have, ˆ 6.414 T K ( ) 6.5 y ye ye y e 1 1 Consider he erms e and xe b b x e y e b

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS

CHAPTER 17: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS Basic Economerics, Gujarai and Porer CHAPTER 7: DYNAMIC ECONOMETRIC MODELS: AUTOREGRESSIVE AND DISTRIBUTED-LAG MODELS 7. (a) False. Economeric models are dynamic if hey porray he ime pah of he dependen

More information

Properties of Autocorrelated Processes Economics 30331

Properties of Autocorrelated Processes Economics 30331 Properies of Auocorrelaed Processes Economics 3033 Bill Evans Fall 05 Suppose we have ime series daa series labeled as where =,,3, T (he final period) Some examples are he dail closing price of he S&500,

More information

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H.

ACE 564 Spring Lecture 7. Extensions of The Multiple Regression Model: Dummy Independent Variables. by Professor Scott H. ACE 564 Spring 2006 Lecure 7 Exensions of The Muliple Regression Model: Dumm Independen Variables b Professor Sco H. Irwin Readings: Griffihs, Hill and Judge. "Dumm Variables and Varing Coefficien Models

More information

Wednesday, November 7 Handout: Heteroskedasticity

Wednesday, November 7 Handout: Heteroskedasticity Amhers College Deparmen of Economics Economics 360 Fall 202 Wednesday, November 7 Handou: Heeroskedasiciy Preview Review o Regression Model o Sandard Ordinary Leas Squares (OLS) Premises o Esimaion Procedures

More information

Forecasting optimally

Forecasting optimally I) ile: Forecas Evaluaion II) Conens: Evaluaing forecass, properies of opimal forecass, esing properies of opimal forecass, saisical comparison of forecas accuracy III) Documenaion: - Diebold, Francis

More information

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance

Lecture 5. Time series: ECM. Bernardina Algieri Department Economics, Statistics and Finance Lecure 5 Time series: ECM Bernardina Algieri Deparmen Economics, Saisics and Finance Conens Time Series Modelling Coinegraion Error Correcion Model Two Seps, Engle-Granger procedure Error Correcion Model

More information

Estimation Uncertainty

Estimation Uncertainty Esimaion Uncerainy The sample mean is an esimae of β = E(y +h ) The esimaion error is = + = T h y T b ( ) = = + = + = = = T T h T h e T y T y T b β β β Esimaion Variance Under classical condiions, where

More information

Miscellanea Miscellanea

Miscellanea Miscellanea Miscellanea Miscellanea Miscellanea Miscellanea Miscellanea CENRAL EUROPEAN REVIEW OF ECONOMICS & FINANCE Vol., No. (4) pp. -6 bigniew Śleszński USING BORDERED MARICES FOR DURBIN WASON D SAISIC EVALUAION

More information

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions

1. Diagnostic (Misspeci cation) Tests: Testing the Assumptions Business School, Brunel Universiy MSc. EC5501/5509 Modelling Financial Decisions and Markes/Inroducion o Quaniaive Mehods Prof. Menelaos Karanasos (Room SS269, el. 01895265284) Lecure Noes 6 1. Diagnosic

More information

Solutions: Wednesday, November 14

Solutions: Wednesday, November 14 Amhers College Deparmen of Economics Economics 360 Fall 2012 Soluions: Wednesday, November 14 Judicial Daa: Cross secion daa of judicial and economic saisics for he fify saes in 2000. JudExp CrimesAll

More information

Linear Gaussian State Space Models

Linear Gaussian State Space Models Linear Gaussian Sae Space Models Srucural Time Series Models Level and Trend Models Basic Srucural Model (BSM Dynamic Linear Models Sae Space Model Represenaion Level, Trend, and Seasonal Models Time Varying

More information

Dynamic Models, Autocorrelation and Forecasting

Dynamic Models, Autocorrelation and Forecasting ECON 4551 Economerics II Memorial Universiy of Newfoundland Dynamic Models, Auocorrelaion and Forecasing Adaped from Vera Tabakova s noes 9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing

More information

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1

Chapter 5. Heterocedastic Models. Introduction to time series (2008) 1 Chaper 5 Heerocedasic Models Inroducion o ime series (2008) 1 Chaper 5. Conens. 5.1. The ARCH model. 5.2. The GARCH model. 5.3. The exponenial GARCH model. 5.4. The CHARMA model. 5.5. Random coefficien

More information

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H.

ACE 562 Fall Lecture 5: The Simple Linear Regression Model: Sampling Properties of the Least Squares Estimators. by Professor Scott H. ACE 56 Fall 005 Lecure 5: he Simple Linear Regression Model: Sampling Properies of he Leas Squares Esimaors by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Inference in he Simple

More information

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1

Nonstationarity-Integrated Models. Time Series Analysis Dr. Sevtap Kestel 1 Nonsaionariy-Inegraed Models Time Series Analysis Dr. Sevap Kesel 1 Diagnosic Checking Residual Analysis: Whie noise. P-P or Q-Q plos of he residuals follow a normal disribuion, he series is called a Gaussian

More information

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum.

(10) (a) Derive and plot the spectrum of y. Discuss how the seasonality in the process is evident in spectrum. January 01 Final Exam Quesions: Mark W. Wason (Poins/Minues are given in Parenheses) (15) 1. Suppose ha y follows he saionary AR(1) process y = y 1 +, where = 0.5 and ~ iid(0,1). Le x = (y + y 1 )/. (11)

More information

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING

ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Inernaional Journal of Social Science and Economic Research Volume:02 Issue:0 ESTIMATION OF DYNAMIC PANEL DATA MODELS WHEN REGRESSION COEFFICIENTS AND INDIVIDUAL EFFECTS ARE TIME-VARYING Chung-ki Min Professor

More information

The General Linear Test in the Ridge Regression

The General Linear Test in the Ridge Regression ommunicaions for Saisical Applicaions Mehods 2014, Vol. 21, No. 4, 297 307 DOI: hp://dx.doi.org/10.5351/sam.2014.21.4.297 Prin ISSN 2287-7843 / Online ISSN 2383-4757 The General Linear Tes in he Ridge

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

References are appeared in the last slide. Last update: (1393/08/19)

References are appeared in the last slide. Last update: (1393/08/19) SYSEM IDEIFICAIO Ali Karimpour Associae Professor Ferdowsi Universi of Mashhad References are appeared in he las slide. Las updae: 0..204 393/08/9 Lecure 5 lecure 5 Parameer Esimaion Mehods opics o be

More information

GDP Advance Estimate, 2016Q4

GDP Advance Estimate, 2016Q4 GDP Advance Esimae, 26Q4 Friday, Jan 27 Real gross domesic produc (GDP) increased a an annual rae of.9 percen in he fourh quarer of 26. The deceleraion in real GDP in he fourh quarer refleced a downurn

More information

The Simple Regression Model. Part II. The Simple Regression Model

The Simple Regression Model. Part II. The Simple Regression Model Part II The Simple Regression Model As of Sep 22, 2015 Definition 1 The Simple Regression Model Definition Estimation of the model, OLS OLS Statistics Algebraic properties Goodness-of-Fit, the R-square

More information

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD

PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD PENALIZED LEAST SQUARES AND PENALIZED LIKELIHOOD HAN XIAO 1. Penalized Leas Squares Lasso solves he following opimizaion problem, ˆβ lasso = arg max β R p+1 1 N y i β 0 N x ij β j β j (1.1) for some 0.

More information

The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive Models

The Effect of Nonzero Autocorrelation Coefficients on the Distributions of Durbin-Watson Test Estimator: Three Autoregressive Models EJ Exper Journal of Economi c s ( 4 ), 85-9 9 4 Th e Au h or. Publi sh ed by Sp rin In v esify. ISS N 3 5 9-7 7 4 Econ omics.e xp erjou rn a ls.com The Effec of Nonzero Auocorrelaion Coefficiens on he

More information

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles Diebold, Chaper 7 Francis X. Diebold, Elemens of Forecasing, 4h Ediion (Mason, Ohio: Cengage Learning, 006). Chaper 7. Characerizing Cycles Afer compleing his reading you should be able o: Define covariance

More information

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates)

ECON 482 / WH Hong Time Series Data Analysis 1. The Nature of Time Series Data. Example of time series data (inflation and unemployment rates) ECON 48 / WH Hong Time Series Daa Analysis. The Naure of Time Series Daa Example of ime series daa (inflaion and unemploymen raes) ECON 48 / WH Hong Time Series Daa Analysis The naure of ime series daa

More information

Recent Developments in the Unit Root Problem for Moving Averages

Recent Developments in the Unit Root Problem for Moving Averages Recen Developmens in he Uni Roo Problem for Moving Averages Richard A. Davis Colorado Sae Universiy Mei-Ching Chen Chaoyang Insiue of echnology homas Miosch Universiy of Groningen Non-inverible MA() Model

More information

USP. Surplus-Production Models

USP. Surplus-Production Models USP Surplus-Producion Models 2 Overview Purpose of slides: Inroducion o he producion model Overview of differen mehods of fiing Go over some criique of he mehod Source: Haddon 2001, Chaper 10 Hilborn and

More information

How to Deal with Structural Breaks in Practical Cointegration Analysis

How to Deal with Structural Breaks in Practical Cointegration Analysis How o Deal wih Srucural Breaks in Pracical Coinegraion Analysis Roselyne Joyeux * School of Economic and Financial Sudies Macquarie Universiy December 00 ABSTRACT In his noe we consider he reamen of srucural

More information

Model Specification and Data Problems. Part VIII

Model Specification and Data Problems. Part VIII Part VIII Model Specification and Data Problems As of Oct 24, 2017 1 Model Specification and Data Problems RESET test Non-nested alternatives Outliers A functional form misspecification generally means

More information

Lecture 33: November 29

Lecture 33: November 29 36-705: Inermediae Saisics Fall 2017 Lecurer: Siva Balakrishnan Lecure 33: November 29 Today we will coninue discussing he boosrap, and hen ry o undersand why i works in a simple case. In he las lecure

More information

DEPARTMENT OF STATISTICS

DEPARTMENT OF STATISTICS A Tes for Mulivariae ARCH Effecs R. Sco Hacker and Abdulnasser Haemi-J 004: DEPARTMENT OF STATISTICS S-0 07 LUND SWEDEN A Tes for Mulivariae ARCH Effecs R. Sco Hacker Jönköping Inernaional Business School

More information

Additional material for Chapter 7 Regression diagnostic IV: model specification errors

Additional material for Chapter 7 Regression diagnostic IV: model specification errors Table 7.14 OLS resuls of he regression of PCE on income. Dependen Variable: PCE Mehod: Leas Squares Dae: 07/31/10 Time: 10:00 Sample: 1960 2009 Included observaions: 50 Variable Coefficien Sd. Error -Saisic

More information

Arima Fit to Nigerian Unemployment Data

Arima Fit to Nigerian Unemployment Data 2012, TexRoad Publicaion ISSN 2090-4304 Journal of Basic and Applied Scienific Research www.exroad.com Arima Fi o Nigerian Unemploymen Daa Ee Harrison ETUK 1, Barholomew UCHENDU 2, Uyodhu VICTOR-EDEMA

More information

Maximum Likelihood Parameter Estimation in State-Space Models

Maximum Likelihood Parameter Estimation in State-Space Models Maximum Likelihood Parameer Esimaion in Sae-Space Models Arnaud Douce Deparmen of Saisics, Oxford Universiy Universiy College London 4 h Ocober 212 A. Douce (UCL Maserclass Oc. 212 4 h Ocober 212 1 / 32

More information

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form

The Simple Linear Regression Model: Reporting the Results and Choosing the Functional Form Chaper 6 The Simple Linear Regression Model: Reporing he Resuls and Choosing he Funcional Form To complee he analysis of he simple linear regression model, in his chaper we will consider how o measure

More information

Chickens vs. Eggs: Replicating Thurman and Fisher (1988) by Arianto A. Patunru Department of Economics, University of Indonesia 2004

Chickens vs. Eggs: Replicating Thurman and Fisher (1988) by Arianto A. Patunru Department of Economics, University of Indonesia 2004 Chicens vs. Eggs: Relicaing Thurman and Fisher (988) by Ariano A. Paunru Dearmen of Economics, Universiy of Indonesia 2004. Inroducion This exercise lays ou he rocedure for esing Granger Causaliy as discussed

More information

Stability. Coefficients may change over time. Evolution of the economy Policy changes

Stability. Coefficients may change over time. Evolution of the economy Policy changes Sabiliy Coefficiens may change over ime Evoluion of he economy Policy changes Time Varying Parameers y = α + x β + Coefficiens depend on he ime period If he coefficiens vary randomly and are unpredicable,

More information

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model:

Dynamic Econometric Models: Y t = + 0 X t + 1 X t X t k X t-k + e t. A. Autoregressive Model: Dynamic Economeric Models: A. Auoregressive Model: Y = + 0 X 1 Y -1 + 2 Y -2 + k Y -k + e (Wih lagged dependen variable(s) on he RHS) B. Disribued-lag Model: Y = + 0 X + 1 X -1 + 2 X -2 + + k X -k + e

More information

A note on spurious regressions between stationary series

A note on spurious regressions between stationary series A noe on spurious regressions beween saionary series Auhor Su, Jen-Je Published 008 Journal Tile Applied Economics Leers DOI hps://doi.org/10.1080/13504850601018106 Copyrigh Saemen 008 Rouledge. This is

More information

Comparing Means: t-tests for One Sample & Two Related Samples

Comparing Means: t-tests for One Sample & Two Related Samples Comparing Means: -Tess for One Sample & Two Relaed Samples Using he z-tes: Assumpions -Tess for One Sample & Two Relaed Samples The z-es (of a sample mean agains a populaion mean) is based on he assumpion

More information

Math 10B: Mock Mid II. April 13, 2016

Math 10B: Mock Mid II. April 13, 2016 Name: Soluions Mah 10B: Mock Mid II April 13, 016 1. ( poins) Sae, wih jusificaion, wheher he following saemens are rue or false. (a) If a 3 3 marix A saisfies A 3 A = 0, hen i canno be inverible. True.

More information

Autocorrelation and the AR(1) Process

Autocorrelation and the AR(1) Process Jeeshim and KUCC65 (7/18/006) Auocorrelaion and he AR(1) Process: 1 Auocorrelaion and he AR(1) Process Hun Myoung Park This documen discusses auocorrelaion (or serial correlaion) in linear regression models

More information

Derived Short-Run and Long-Run Softwood Lumber Demand and Supply

Derived Short-Run and Long-Run Softwood Lumber Demand and Supply Derived Shor-Run and Long-Run Sofwood Lumber Demand and Supply Nianfu Song and Sun Joseph Chang School of Renewable Naural Resources Louisiana Sae Universiy Ouline Shor-run run and long-run implied by

More information

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests

Hypothesis Testing in the Classical Normal Linear Regression Model. 1. Components of Hypothesis Tests ECONOMICS 35* -- NOTE 8 M.G. Abbo ECON 35* -- NOTE 8 Hypohesis Tesing in he Classical Normal Linear Regression Model. Componens of Hypohesis Tess. A esable hypohesis, which consiss of wo pars: Par : a

More information

Heteroscedasticity 1

Heteroscedasticity 1 Heteroscedasticity 1 Pierre Nguimkeu BUEC 333 Summer 2011 1 Based on P. Lavergne, Lectures notes Outline Pure Versus Impure Heteroscedasticity Consequences and Detection Remedies Pure Heteroscedasticity

More information

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H.

ACE 562 Fall Lecture 8: The Simple Linear Regression Model: R 2, Reporting the Results and Prediction. by Professor Scott H. ACE 56 Fall 5 Lecure 8: The Simple Linear Regression Model: R, Reporing he Resuls and Predicion by Professor Sco H. Irwin Required Readings: Griffihs, Hill and Judge. "Explaining Variaion in he Dependen

More information

A Point Optimal Test for the Null of Near Integration. A. Aznar and M. I. Ayuda 1. University of Zaragoza

A Point Optimal Test for the Null of Near Integration. A. Aznar and M. I. Ayuda 1. University of Zaragoza A Poin Opimal es for he Null of Near Inegraion A. Aznar and M. I. Ayuda Universiy of Zaragoza he objecive of his paper is o derive a poin opimal es for he null hypohesis of near inegraion (PONI-es). We

More information

Empirical Process Theory

Empirical Process Theory Empirical Process heory 4.384 ime Series Analysis, Fall 27 Reciaion by Paul Schrimpf Supplemenary o lecures given by Anna Mikusheva Ocober 7, 28 Reciaion 7 Empirical Process heory Le x be a real-valued

More information

Solution of Assignment #2

Solution of Assignment #2 Soluion of Assignmen #2 Insrucor: A. Simchi Quesion #1: a r 1 c i 7, and λ n c i n i 7 38.7.189 An approximae 95% confidence inerval for λ is given by ˆλ ± 1.96 ˆλ r.189 ± 1.96.189 7.47.315 Noe ha he above

More information

Lecture 6 - Testing Restrictions on the Disturbance Process (References Sections 2.7 and 2.10, Hayashi)

Lecture 6 - Testing Restrictions on the Disturbance Process (References Sections 2.7 and 2.10, Hayashi) Lecure 6 - esing Resricions on he Disurbance Process (References Secions 2.7 an 2.0, Hayashi) We have eveloe sufficien coniions for he consisency an asymoic normaliy of he OLS esimaor ha allow for coniionally

More information

J. Martin van Zyl Department of Mathematical Statistics and Actuarial Science, University of the Free State, PO Box 339, Bloemfontein, South Africa

J. Martin van Zyl Department of Mathematical Statistics and Actuarial Science, University of the Free State, PO Box 339, Bloemfontein, South Africa A weighed leas squares procedure o approximae leas absolue deviaion esimaion in ime series wih specific reference o infinie variance uni roo problems J. Marin van Zyl Deparmen of Mahemaical Saisics and

More information

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017 Two Popular Bayesian Esimaors: Paricle and Kalman Filers McGill COMP 765 Sep 14 h, 2017 1 1 1, dx x Bel x u x P x z P Recall: Bayes Filers,,,,,,, 1 1 1 1 u z u x P u z u x z P Bayes z = observaion u =

More information

Chapter 16. Regression with Time Series Data

Chapter 16. Regression with Time Series Data Chaper 16 Regression wih Time Series Daa The analysis of ime series daa is of vial ineres o many groups, such as macroeconomiss sudying he behavior of naional and inernaional economies, finance economiss

More information

DEPARTMENT OF ECONOMICS

DEPARTMENT OF ECONOMICS ISSN 0819-6 ISBN 0 730 609 9 THE UNIVERSITY OF MELBOURNE DEPARTMENT OF ECONOMICS RESEARCH PAPER NUMBER 95 NOVEMBER 005 INTERACTIONS IN REGRESSIONS by Joe Hirschberg & Jenny Lye Deparmen of Economics The

More information

Section 4 NABE ASTEF 232

Section 4 NABE ASTEF 232 Secion 4 NABE ASTEF 3 APPLIED ECONOMETRICS: TIME-SERIES ANALYSIS 33 Inroducion and Review The Naure of Economic Modeling Judgemen calls unavoidable Economerics an ar Componens of Applied Economerics Specificaion

More information

Estimation Of Spatial Dynamic Nonparametric Durbin Models With Fixed Effects

Estimation Of Spatial Dynamic Nonparametric Durbin Models With Fixed Effects Eurasia Journal of Mahemaics, Science & Technology Educaion, 06, (4), 807-89 Esimaion Of Spaial Dynamic Nonparameric Durbin Models Wih Fixed Effecs Minghui Qian,,Ridong Hu & Jianwei Chen,3 Huaqiao Universiy,

More information

Lie Derivatives operator vector field flow push back Lie derivative of

Lie Derivatives operator vector field flow push back Lie derivative of Lie Derivaives The Lie derivaive is a mehod of compuing he direcional derivaive of a vecor field wih respec o anoher vecor field We already know how o make sense of a direcional derivaive of real valued

More information

Granger Causality Among Pre-Crisis East Asian Exchange Rates. (Running Title: Granger Causality Among Pre-Crisis East Asian Exchange Rates)

Granger Causality Among Pre-Crisis East Asian Exchange Rates. (Running Title: Granger Causality Among Pre-Crisis East Asian Exchange Rates) Granger Causaliy Among PreCrisis Eas Asian Exchange Raes (Running Tile: Granger Causaliy Among PreCrisis Eas Asian Exchange Raes) Joseph D. ALBA and Donghyun PARK *, School of Humaniies and Social Sciences

More information

STAD57 Time Series Analysis. Lecture 14

STAD57 Time Series Analysis. Lecture 14 STAD57 Time Series Analysis Lecure 14 1 Maximum Likelihood AR(p) Esimaion Insead of Yule-Walker (MM) for AR(p) model, can use Maximum Likelihood (ML) esimaion Likelihood is join densiy of daa {x 1,,x n

More information

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION

MATH 128A, SUMMER 2009, FINAL EXAM SOLUTION MATH 28A, SUMME 2009, FINAL EXAM SOLUTION BENJAMIN JOHNSON () (8 poins) [Lagrange Inerpolaion] (a) (4 poins) Le f be a funcion defined a some real numbers x 0,..., x n. Give a defining equaion for he Lagrange

More information

Has the Business Cycle Changed? Evidence and Explanations. Appendix

Has the Business Cycle Changed? Evidence and Explanations. Appendix Has he Business Ccle Changed? Evidence and Explanaions Appendix Augus 2003 James H. Sock Deparmen of Economics, Harvard Universi and he Naional Bureau of Economic Research and Mark W. Wason* Woodrow Wilson

More information

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems

Recursive Least-Squares Fixed-Interval Smoother Using Covariance Information based on Innovation Approach in Linear Continuous Stochastic Systems 8 Froniers in Signal Processing, Vol. 1, No. 1, July 217 hps://dx.doi.org/1.2266/fsp.217.112 Recursive Leas-Squares Fixed-Inerval Smooher Using Covariance Informaion based on Innovaion Approach in Linear

More information

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting

Chapter 15. Time Series: Descriptive Analyses, Models, and Forecasting Chaper 15 Time Series: Descripive Analyses, Models, and Forecasing Descripive Analysis: Index Numbers Index Number a number ha measures he change in a variable over ime relaive o he value of he variable

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Heteroskedasticity Autocorrelation Robust Inference in Time. Series Regressions with Missing Data

Heteroskedasticity Autocorrelation Robust Inference in Time. Series Regressions with Missing Data Heeroskedasiciy Auocorrelaion Robus Inference in ime Series Regressions wih Missing Daa Seung-Hwa Rho imohy J. Vogelsang Louisiana Sae Universiy Michigan Sae Universiy Absrac In his paper we invesigae

More information

Solutions to Exercises in Chapter 12

Solutions to Exercises in Chapter 12 Chaper in Chaper. (a) The leas-squares esimaed equaion is given by (b)!i = 6. + 0.770 Y 0.8 R R = 0.86 (.5) (0.07) (0.6) Boh b and b 3 have he expeced signs; income is expeced o have a posiive effec on

More information

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS NA568 Mobile Roboics: Mehods & Algorihms Today s Topic Quick review on (Linear) Kalman Filer Kalman Filering for Non-Linear Sysems Exended Kalman Filer (EKF)

More information

COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS. By Gumgum Darmawan, Nur Iriawan, Suhartono

COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS. By Gumgum Darmawan, Nur Iriawan, Suhartono COMPARISON OF THE DIFFERENCING PARAMETER ESTIMATION FROM ARFIMA MODEL BY SPECTRAL REGRESSION METHODS By Gumgum Darmawan, Nur Iriawan, Suharono INTRODUCTION (1) TIME SERIES MODELS BASED ON VALUE OF DIFFERENCING

More information