Lesson 6: How to Calculate Kinetic Energy

Size: px
Start display at page:

Download "Lesson 6: How to Calculate Kinetic Energy"

Transcription

1 KREUTTER:WORK AND ENERGY 1 Lesson 6: How to Calculate Kinetic Energy 6.1 Hypothesize (Derive a Mathematical Model) In a car crash testing facility, engineers evaluate the reaction of a car to a front impact. To create such an impact, a rod pushes a block of mass m on wheels over a distance d. This causes the block to accelerate from an initial to a final velocity. To measure the smashing potential of this block, let s determine the change in the block s kinetic energy after the rod pushes it a distance d. The initial and final states of the process are pictured to the right. vi d vf a) The block is your system; the rod is an external object. Draw a force diagram for the block. Use it to find an expression for the force that the rod exerts on the block in terms of its mass m and acceleration a. b) Use a kinematics equation to convert the acceleration a in the equation from part (a) into an expression involving the block s initial and final speeds v i and v f. Substitute this into the expression for force from part (a). c) Substitute the expression for force from part (b) into the expression for work when the force is parallel to the displacement, W = Fd, and then simplify. d) Using the given work-energy bar chart, develop a mathematical representation of this process in terms of work, initial kinetic energy, and final kinetic energy. Make sure to check the consistency of the graph with your system. Compare this expression to the one from part (c). + 0 before the block after the block is is lifted lifted K i + U g,i + U s,i + W = K f + U g,f + U s,f + U int - e) What characteristics of an object do you expect kinetic energy to depend on? Its mass? Velocity? Acceleration? Height?

2 f) By comparing your answers from parts (c) and (d), do you see a term that could represent kinetic energy and that depends on the characteristics that you think kinetic energy should depend on? g) Show that the units of this quantity are equal to the units for energy, joules. This change in kinetic energy of the block system is caused by the work done by the piston on the block. From that relationship, we find the accepted value for the kinetic energy of a system at a given moment is equal to 6.2 Test a Hypothesis 2 2 K 1 mv. Use a Hot Wheels car and launcher. Design an experiment to test the mathematical model you developed for kinetic energy (see the guidance below). Then design a second experiment that uses kinematics instead of work-energy. You should evaluate the consistency between the two methods. Include all of the elements below in a short lab report (one per group). Everyone s handwriting must be represented (i.e., each person in the group is responsible for at least one section). a) State clearly the hypothesis that you will test in the experiment. b) Play with launcher and the car and decide what features of their behavior you can explain using the concepts of kinetic energy. c) Think of experiments that you can perform whose outcomes you can predict using the ideas of kinetic and energy conservation. What other ideas/concepts can you use? Draw a picture. Decide what quantities you will measure and what quantities you will calculate. Decide what objects are in your system and whether any external objects do work on it. d) Make a prediction of the outcome of the experiment based on the idea being tested (the hypothesis). e) What are the additional assumptions that you are making? If these assumptions are not valid, how will they affect your result? f) Perform the experiment as many times as you think is necessary, collect the data, and calculate the result. How close is it to your prediction? g) What is another experiment that you can perform that does not use the ideas of energy to determine the same quantity? Perform it and analyze the results. Are the results of two experiments close within experimental uncertainty? (This is the second experiment that uses kinematics). h) What is your judgment about the hypothesis that you were testing?

3 KREUTTER:WORK AND ENERGY Regular Problem Kelly drives a truck which has twice as much mass as Heather s car. Kelly also drives twice as fast as Heather. Which statement is true about Kelly and her truck s kinetic energy (K) compared to that of Heather and her car? i. The truck has 4 times the K of the car. ii. All that can be said is that the truck has more K. iii. iv. The truck has twice the K of the car. The truck has 8 times the K of the car. Now that you have derived and tested mathematical expressions for both gravitational potential energy and kinetic energy, you can start solving problems. Below is the problem solving strategy that you might want to follow to learn how solve those problems as a physicist. Problem-Solving Strategy: Work-Energy Problems Sketch and Translate: Read the problem 3 times and visualize the situation/process. Sketch the physical process described in the problem. Include an initial state and a final state and a reference frame. Put all givens on the sketch. Make sure they are in consistent units. Decide on your system. Objects such as Earth, springs, and surfaces of interacting objects are usually included in the system. Objects that belong to the system do no work on each other but do possess different types of energy. External objects can do work on the system objects, thus causing the system s energy to change. Simplify and represent using the work-energy bar chart: Decide what internal or external interactions you can ignore. Construct a work-energy bar chart. Use the bars to represent the initial energies in the system, the work done on the system by any external objects, and the final energies in the system. Consider whether the following change: A system object s elevation above Earth (gravitational potential energy); A system object s speed (kinetic energy); An elastic system object (like a spring) stretches or compresses (elastic potential energy); The surface temperature of system objects increase as they rub against each other while one moves relative to the other (internal thermal energy change); A system object s shape changes during a collision (internal potential energy). Represent Mathematically: Apply the generalized work-energy principle; Convert the bars in the bar chart into a mathematical description of the process (one term for each bar in the bar chart). Solve and Evaluate: Use the mathematical description of the process to determine the unknown. Evaluate the results (units, magnitude, and limiting cases) to make sure they make intuitive sense.

4 6.4 If you drop a 0.3 kg baseball from a window 20 m above the ground, how fast will the ball be moving the instant before it hits the ground? Use the problem solving strategy. 6.5 If a stretched slingshot has 100 J of elastic potential energy, how fast will a 0.5 kg softball be moving right after the launcher fires it? Using energy representations, how high will the softball go? Use the problem solving strategy. 6.6 Reason Think back to the Newton s Cradle. Use your knowledge of energy to explain the simulation of this device: Specify the system, its initial and final states, and any assumptions you made.

5 KREUTTER:WORK AND ENERGY A crane lifts a 50-kg crate so that the crate s speed increases from 0 m/s to 5.0 m/s over a vertical distance of 10.0 m. Draw a bar chart representing this process. What is the force that the crane exerts on the crate? Use the problem solving strategy. Specify the system, its initial and final states, and any assumptions you made. Explain how these assumptions affect your answer. 6.8 A man throws a 0.4-kg softball upward at an initial speed of 10 m/s. How fast will it be traveling when it passes 1/3 of its maximum elevation? Use the problem solving strategy. 6.9 Two identical water balloon slingshots are stretched the same distance so that they both have the same elastic potential energy. The mass of one water balloon is 2/3 of the mass of the other water balloon. a) Which water balloon leaves the slingshot traveling at a faster speed? b) How much faster is this water balloon traveling?

6 6.10 Equation Jeopardy Write a problem and draw an energy bar chart that would require the mathematical equation below to solve it. Reflect: What did you learn about kinetic energy? How did you learn it? If you were to ask two questions about kinetic energy to find out if a person understands this concept, what would those questions be?

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Energy Whiteboard Problems

Energy Whiteboard Problems Energy Whiteboard Problems 1. (a) Consider an object that is thrown vertically up into the air. Draw a graph of gravitational force vs. height for that object. (b) Based on your experience with the formula

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Conceptual Physics Final Exam Review

Conceptual Physics Final Exam Review Useful Information Work and Energy W = F x W = work [J] F = force [N] x = displacement [m] U g = mgh U g = gravitational potential energy [J] m = mass [kg] h = height [m] g = 10 m/s 2 DC Circuits I =!!

More information

Chapter 8. Conservation of Energy

Chapter 8. Conservation of Energy Chapter 8 Conservation of Energy Energy Review Kinetic Energy Associated with movement of members of a system Potential Energy Determined by the configuration of the system Gravitational and Elastic Potential

More information

Physics 11 Chapter 10: Energy and Work

Physics 11 Chapter 10: Energy and Work Physics 11 Chapter 10: Energy and Work It is good to have an end to journey toward; but it is the journey that matters, in the end. Ursula K. Le Guin Nobody made a greater mistake than he who did nothing

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST

AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST AP PHYSICS 1 UNIT 4 / FINAL 1 PRACTICE TEST NAME FREE RESPONSE PROBLEMS Put all answers on this test. Show your work for partial credit. Circle or box your answers. Include the correct units and the correct

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

Changes in Motion. Section 1. Force. Objectives. Forces can cause accelerations.

Changes in Motion. Section 1. Force. Objectives. Forces can cause accelerations. Section 1 Objectives Describe how force affects the motion of an object. Interpret and construct free-body diagrams. force an action exerted on an object that may change the object s state of rest or motion

More information

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object.

Force. The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Force The cause of an acceleration or change in an object s motion. Any kind of a push or pull on an object. Forces do not always give rise to motion. Forces can be equal and opposite. Force is a vector

More information

July 19 - Work and Energy 1. Name Date Partners

July 19 - Work and Energy 1. Name Date Partners July 19 - Work and Energy 1 Name Date Partners WORK AND ENERGY Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

Virbations and Waves

Virbations and Waves Virbations and Waves 1.1 Observe and find a pattern Try the following simple experiments and describe common patterns concerning the behavior of the block. (a) Fill in the table that follows. Experiment

More information

Regents Physics. Physics Midterm Review - Multiple Choice Problems

Regents Physics. Physics Midterm Review - Multiple Choice Problems Name Physics Midterm Review - Multiple Choice Problems Regents Physics 1. A car traveling on a straight road at 15.0 meters per second accelerates uniformly to a speed of 21.0 meters per second in 12.0

More information

Physics Test 9: Work and Energy page 1

Physics Test 9: Work and Energy page 1 Name Physics Test 9: Work and Energy page 1 Multiple Choice Read each question and choose the best answer by putting the corresponding letter in the blank to the left. 1. Which of the following is a unit

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

Lesson 12: Position of an Accelerating Object as a Function of Time

Lesson 12: Position of an Accelerating Object as a Function of Time Lesson 12: Position of an Accelerating Object as a Function of Time 12.1 Hypothesize (Derive a Mathematical Model) Recall the initial position and clock reading data from the previous lab. When considering

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

The work-energy theorem

The work-energy theorem The work-energy theorem Objectives Investigate quantities using the work-energy theorem in various situations. Calculate quantities using the work-energy theorem in various situations. Design and implement

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Lesson 11: Newton s Third Law: Quantitative

Lesson 11: Newton s Third Law: Quantitative 11.1 Observe and Find a Pattern Lesson 11: Newton s Third Law: Quantitative The goal of this experiment is to determine a mathematical relationship between the force that object A exerts on object B and

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Units of Chapter 6 Work Done by a Constant Force Work Done by a Varying Force Kinetic Energy, and the Work-Energy Principle Potential Energy Conservative and Nonconservative Forces

More information

Choose the best answer for each of Questions 1-14 below. Mark your answer on your scantron form using a #2 pencil.

Choose the best answer for each of Questions 1-14 below. Mark your answer on your scantron form using a #2 pencil. Name: Section #: PART I: MULTIPLE CHOICE QUESTIONS (5 pts each) Choose the best answer for each of Questions 1-14 below. Mark your answer on your scantron form using a # pencil. 1. Young s modulus describes

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Momentum, Impulse, Work, Energy, Power, and Conservation Laws

Momentum, Impulse, Work, Energy, Power, and Conservation Laws Momentum, Impulse, Work, Energy, Power, and Conservation Laws 1. Cart A has a mass of 2 kilograms and a speed of 3 meters per second. Cart B has a mass of 3 kilograms and a speed of 2 meters per second.

More information

Section 2: Friction, Gravity, and Elastic Forces

Section 2: Friction, Gravity, and Elastic Forces Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect

More information

Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion

Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion Kinematics and Projectile Motion Problem Solving Steps 1. Read and Re-Read the whole problem carefully before trying to

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 89 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William Blake

More information

AP Physics 2 Summer Assignment (2014)

AP Physics 2 Summer Assignment (2014) Name: Date: AP Physics 2 Summer Assignment (2014) Instructions: 1. Read and study Chapter 16 Electric Charge and Electric Field. 2. Answer the questions below. Some questions may require you to use your

More information

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s?

23. A snowmobile pulls a trailer with a force of 450 N while moving at a constant velocity of 15 m/s. How much work is done by the snowmobile in 28 s? Physics 04 Unit Review (June 013) 1. Which represents the rate of work done? (A) efficiency (B) force (C) power (D) work. In which situation is work done on a box? (A) The box is at rest on a table. (B)

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Work and Energy. Work

Work and Energy. Work Work and Energy Objectives: Students will define work. Students will define and give examples of different forms of energy. Students will describe and give examples of kinetic energy and potential energy.

More information

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE

CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE CHAPTER 6: IN AN ISOLATED SYSTEM, ENERGY IS TRANSFERRED FROM ONE OBJECT TO ANOTHER WHENEVER WORK IS DONE 6.1 Work and Energy In science, work is done when a force acts over a displacement; energy is transferred.

More information

Applying Newton s Second Law

Applying Newton s Second Law Applying Newton s Second Law Problem-Solving Strategy for Dynamics Problems Sketch and Translate: Sketch the situation described in the problem; include all known information. Choose a system object and

More information

What is Energy? Which has more energy? Who has more energy? 1/24/2017

What is Energy? Which has more energy? Who has more energy? 1/24/2017 What is Energy? Energy is a measure of an object s ability to cause a change in itself and/or its surroundings Read pages 61-7 Which has more energy? Who has more energy? Mississippi River Cargo Barge

More information

AP Physics 1 Work Energy and Power Practice Test Name

AP Physics 1 Work Energy and Power Practice Test Name AP Physics 1 Work Energy and Power Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two objects, one of mass m and the other

More information

2. What would happen to his acceleration if his speed were half? Energy The ability to do work

2. What would happen to his acceleration if his speed were half? Energy The ability to do work 1. A 40 kilogram boy is traveling around a carousel with radius 0.5 meters at a constant speed of 1.7 meters per second. Calculate his centripetal acceleration. 2. What would happen to his acceleration

More information

Ballistic Pendulum. Caution

Ballistic Pendulum. Caution Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the ball,

More information

VERTICAL PROJECTILE MOTION (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples

VERTICAL PROJECTILE MOTION (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples VERTICAL PROJECTILE MOTION (LIVE) 08 APRIL 2015 Section A: Summary Notes and Examples Equations of Motion When an object is thrown, projected or shot upwards or downwards, it is said to be a projectile.

More information

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6

Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 ame: Exam 2--PHYS 101--F11--Chapters 4, 5, & 6 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Consider this figure. What is the normal force acting on

More information

Energy and Energy Transformations

Energy and Energy Transformations CHAPTER 2 Energy and Energy Transformations Forms of Energy What do you think? Read the three statements below and decide whether you agree or disagree with them. Place an A in the Before column if you

More information

Momentum ~ Learning Guide Name:

Momentum ~ Learning Guide Name: Momentum ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the assignment

More information

Episode 212: Newton s third law of motion

Episode 212: Newton s third law of motion Episode 212: Newton s third law of motion Newton s third law of motion causes problems to physicists at many levels and it is worthwhile spending a little time developing a clear approach to the concept

More information

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time

Clicker Question: Momentum. If the earth collided with a meteor that slowed it down in its orbit, what would happen: continued from last time Momentum continued from last time If the earth collided with a meteor that slowed it down in its orbit, what would happen: A: It would maintain the same distance from the sun. B: It would fall closer in

More information

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy

Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Lecture 7 Chapter 7 Work Energy Potential Energy Kinetic Energy Energy -- The money of physics Demo: Elastic Collisions Objects of equal mass exchange momentum in elastic collisions. 1 Demo: Blaster Balls

More information

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train.

Figure 1. The distance the train travels between A and B is not the same as the displacement of the train. VELOCITY Q1. A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale

A) more mass and more inertia C) the same as the magnitude of the rock's weight C) a man standing still on a bathroom scale 1. A 15-kilogram cart is at rest on a horizontal surface. A 5-kilogram box is placed in the cart. Compared to the mass and inertia of the cart, the cart-box system has A) more mass and more inertia B)

More information

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy

WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work Work Energy Thm. Kinetic Energy Power Potential Energy Conservation of Energy WORK & ENERGY Work: Transfer of energy through motion Energy: Ability to cause Change Kinetic Energy: Energy

More information

Chapter 7 Work and Energy

Chapter 7 Work and Energy 8/04/0 Lecture PowerPoints 009 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Lecture PowerPoints. Chapter 7 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli

Lecture PowerPoints. Chapter 7 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli Lecture PowerPoints Chapter 7 Physics for Scientists and Engineers, with Modern Physics, 4 th Edition Giancoli 2009 Pearson Education, Inc. This work is protected by United States copyright laws and is

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Impulse and momentum 09-2 1 Current assignments Reading: Chapter 10 in textbook Prelecture due next Tuesday HW#8 due this Friday at 5 pm. 09-2 2 9-2.1 A crash

More information

Engage 1. When you exert a force on a balloon, what does the balloon exert on you?

Engage 1. When you exert a force on a balloon, what does the balloon exert on you? Unit 1: Phenomenon The Physics of Skydiving Lesson 3c Newton s Third Law of Motion California Standard Addressed PH1. Newton s laws predict the motion of most objects. As a basis for understanding this

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

What is Work? W = Fd. Whenever you apply a force to an object and the object moves in the direction of the force, work is done.

What is Work? W = Fd. Whenever you apply a force to an object and the object moves in the direction of the force, work is done. Year 10 Physics What is Work? Whenever you apply a force to an object and the object moves in the direction of the force, work is done. If force is measured in newtons (N) and distance moved in metres,

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Old Exam. Question Chapter 7 072

Old Exam. Question Chapter 7 072 Old Exam. Question Chapter 7 072 Q1.Fig 1 shows a simple pendulum, consisting of a ball of mass M = 0.50 kg, attached to one end of a massless string of length L = 1.5 m. The other end is fixed. If the

More information

Work and Energy. Work and Energy

Work and Energy. Work and Energy 1. Work as Energy Transfer Work done by a constant force (scalar product) Work done by a varying force (scalar product & integrals). Kinetic Energy Work-Energy Theorem Work by a Baseball Pitcher A baseball

More information

Engage 1. When you exert a force on a balloon, what does the balloon exert on you?

Engage 1. When you exert a force on a balloon, what does the balloon exert on you? Unit 1 Forces and Motion Lesson 2.c Newton s Third Law of Motion Student Performance Outcomes Students know that when one object exerts a force on a second object, the second object always exerts a force

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS

CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1 Name Period CHAPTER 7 NEWTON'S THIRD LAW OF MOTION MOMENTUM & CONSERVATION OF MOMENTUM ACTIVITY LESSON DESCRIPTION POINTS 1. NT NOTES PACKET SCORE /30 /62 Previous Unit Review Worksheet /32 2. WS MOMENTUM

More information

SPRING 2005 Midterm Exam #1, Part A

SPRING 2005 Midterm Exam #1, Part A Physics 151 SPRING 2005 Midterm Exam #1, Part A Roster No.: Score: 17 pts. possible Exam time limit: 50 minutes. You may use a calculator and both sides of ONE sheet of notes, handwritten only. Closed

More information

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically

Chapter 2. Preview. Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Preview Objectives One Dimensional Motion Displacement Average Velocity Velocity and Speed Interpreting Velocity Graphically Section 1 Displacement and Velocity Objectives

More information

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph.

Kinematics. v (m/s) ii. Plot the velocity as a function of time on the following graph. Kinematics 1993B1 (modified) A student stands in an elevator and records his acceleration as a function of time. The data are shown in the graph above. At time t = 0, the elevator is at displacement x

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Exercise 6: The conservation of energy and momentum

Exercise 6: The conservation of energy and momentum Physics 221 Name: Exercise 6: The conservation of energy and momentum Part 1: The projectile launcher s spring constant Objective: Through the use of the principle of conservation of energy (first law

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

WORK, POWER, & ENERGY

WORK, POWER, & ENERGY WORK, POWER, & ENERGY In physics, work is done when a force acting on an object causes it to move a distance. There are several good examples of work which can be observed everyday - a person pushing a

More information

Energy Storage and Transfer Model: Review Sheet

Energy Storage and Transfer Model: Review Sheet Name Energy Storage and Transfer Model: Review Sheet Date Pd 1. A softball (m = 180 g) traveling at 22.3 m/s moves a fielder's glove backward 25 cm when the ball is caught. a. Construct an energy bar graph

More information

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 5 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 5 Lecture RANDALL D. KNIGHT Chapter 5 Force and Motion IN THIS CHAPTER, you will learn about the connection between force and motion.

More information

PHYSICAL SCIENCES: PAPER I

PHYSICAL SCIENCES: PAPER I NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2017 PHYSICAL SCIENCES: PAPER I Time: 3 hours 200 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 15 pages, an

More information

PHYSICS MIDTERM REVIEW PACKET

PHYSICS MIDTERM REVIEW PACKET PHYSICS MIDTERM REVIEW PACKET PERIOD: TIME: DATE: ROOM: YOU NEED TO BRING: 1. #2 PENCIL W/ ERASER. 2. CALCULATOR (YOUR OWN). YOU WILL NOT BE ALLOWED TO SHARE OR BORROW!!! YOU WILL BE GIVEN: 1. FORMULA

More information

WORK PHYSICS EXPERIMENT ONE EXPERIMENT TWO EXPERIMENT ONE PERIODS 2 & 6 UNIT 8 WORK ENERGY. MR. LARGO MR. Hill

WORK PHYSICS EXPERIMENT ONE EXPERIMENT TWO EXPERIMENT ONE PERIODS 2 & 6 UNIT 8 WORK ENERGY. MR. LARGO MR. Hill PHYSICS PERIODS & 6 UNIT 8 WORK ENERGY WORK MR. LARGO MR. Hill EXPERIMENT ONE You hold a heavy block just above a piece of chalk and then release the block. Outcome: Chalk breaks just a little bit or not

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Unit 7, 8, 9 Physics Review

Unit 7, 8, 9 Physics Review Unit 7, 8, 9 Physics Review 1. A 2 kg mass is held 4 m above the ground. What is the approximate potential energy due to gravity of the mass with respect to the ground? a. 20 J. b. 40 J. c. 60 J. d. 80

More information

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved

WEP-Energy. 2. If the speed of a car is doubled, the kinetic energy of the car is 1. quadrupled 2. quartered 3. doubled 4. halved 1. A 1-kilogram rock is dropped from a cliff 90 meters high. After falling 20 meters, the kinetic energy of the rock is approximately 1. 20 J 2. 200 J 3. 700 J 4. 900 J 2. If the speed of a car is doubled,

More information

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER

AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER MIDTERM REVIEW AP Physics 1 McNutt Name: Date: Period: AP Physics 1: MIDTERM REVIEW OVER UNITS 2-4: KINEMATICS, DYNAMICS, FORCE & MOTION, WORK & POWER 1.) A car starts from rest and uniformly accelerates

More information

Potential and Kinetic Energy

Potential and Kinetic Energy Potential and Kinetic Energy 1 of 31 Boardworks Ltd 2016 Potential and Kinetic Energy 2 of 31 Boardworks Ltd 2016 What is a system? 3 of 31 Boardworks Ltd 2016 A system is an object or a group of objects.

More information

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318

Lecture III. Introduction to Mechanics, Heat, and Sound /FIC 318 Introduction to Mechanics, Heat, and Sound /FIC 318 Lecture III Motion in two dimensions projectile motion The Laws of Motion Forces, Newton s first law Inertia, Newton s second law Newton s third law

More information

Chapter 7: Potential energy and energy conservation

Chapter 7: Potential energy and energy conservation Chapter 7: Potential energy and energy conservation Two types of Potential energy gravitational and elastic potential energy Conservation of total mechanical energy When What: Kinetic energy+potential

More information

1. What three dimensions are used to derive most measurements in physics?

1. What three dimensions are used to derive most measurements in physics? Physics Semester 1 Exam Review Unit 1: Measurement What is the SI unit for length, mass, and time? When are zeros significant figures? When are zeros not significant figures? When are calculations rounded-off

More information

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d

Work. Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d ENERGY CHAPTER 11 Work Work is the measure of energy transferred. Energy: the capacity to do work. W = F X d Units = Joules Work and energy transferred are equivalent in ideal systems. Two Types of Energy

More information

a) An object decreasing speed then increasing speed in the opposite direction.

a) An object decreasing speed then increasing speed in the opposite direction. Putting it all Together 10.1 Practice Use the kinematics equations to solve the following problems: a) You throw a marble up at the speed of 10 m/s. What is its maximum height? b) You drop a marble from

More information

Physics 115 Mock Midterm Sunday, October 14, 2018 * 1 pm Room 241 Arts Building *

Physics 115 Mock Midterm Sunday, October 14, 2018 * 1 pm Room 241 Arts Building * Physics 115 Mock Midterm Sunday, October 14, 2018 * 1 pm Room 241 Arts Building * Note: This mock test consists of questions covered in Physics 115. This test is not comprehensive. The problems on this

More information

4.1 - Acceleration. What is acceleration?

4.1 - Acceleration. What is acceleration? 4.1 - Acceleration How do we describe speeding up or slowing down? What is the difference between slowing down gradually and hitting a brick wall? Both these questions have answers that involve acceleration.

More information

Review Chapter 1 and 2 [184 marks]

Review Chapter 1 and 2 [184 marks] Review Chapter 1 and 2 [184 marks] This question is in two parts. Part 1 is about momentum. Part 2 is about electric point charges. Part 1 Momentum 1a. State the law of conservation of linear momentum.

More information

s_3x03 Page 1 Physics Samples

s_3x03 Page 1 Physics Samples Physics Samples KE, PE, Springs 1. A 1.0-kilogram rubber ball traveling east at 4.0 meters per second hits a wall and bounces back toward the west at 2.0 meters per second. Compared to the kinetic energy

More information

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e).

AP Physics Momentum Practice Test. Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b)2.25e7 (c)3 (d)1.5e7 17.(a)9 (b)2 (c)1.5 (d) (e). AP Physics Momentum Practice Test Answers: A,E,E,A,E,B,D,C,B,A,B,E,D,C 16.(a)5450,5650 (b).5e7 (c)3 (d)1.5e7 17.(a)9 (b) (c)1.5 (d)-4.75 (e).65 For multiple choice ( points) write the CAPITAL letter of

More information

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 6 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

LAB 6: WORK AND ENERGY

LAB 6: WORK AND ENERGY 93 Name Date Partners LAB 6: WORK AND ENERGY OBJECTIVES OVERVIEW Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information

C) D) 2. The diagram below shows a worker using a rope to pull a cart.

C) D) 2. The diagram below shows a worker using a rope to pull a cart. 1. Which graph best represents the relationship between the acceleration of an object falling freely near the surface of Earth and the time that it falls? 2. The diagram below shows a worker using a rope

More information