ECE 3060 VLSI and Advanced Digital Design

Size: px
Start display at page:

Download "ECE 3060 VLSI and Advanced Digital Design"

Transcription

1 ECE 3060 VLSI and Advanced Digital Design Lecture 12 Computer-Aided Heuristic Two-level Logic Minimization

2 Computer-Aided Heuristic Twolevel Logic Minimization Heuristic logic minimization Principles Operators on logic covers Espresso Disclaimer: lecture notes based on originals by Giovanni De Micheli

3 Heuristic minimization Provide irredundant covers with reasonably small cardinality Fast and applicable to many functions Avoid bottlenecks of exact minimization Prime generation and storage Covering

4 Heuristic minimization principles Local minimum cover: given initial cover make it prime make it irredundant Iterative improvement: improve on cardinality by modifying the implicants

5 Heuristic minimization operators Expand: make implicants prime remove covered implicants Reduce: reduce size of each implicant while preserving cover Reshape modify implicant pairs: enlarge one implicant enabling the reduction of another Irredundant: make cover irredundant

6 Example on-set : prime implicants : α 0** β *0* γ 01** δ 10** ε 1* ζ *

7 α β γ ε ζ

8 Example Expansion Expand 0000 to α = 0**0 drop 0100, 0010, 0110 from the cover Expand 1000 to β = *0*0 drop 1010 from the cover Expand 0101 to γ = 01** drop 0111 from the cover Expand 1001 to δ = 10** drop 1011 from the cover Expand 1101 to ε = 1*01 Cover is {α,β,γ,δ,ε}

9

10 Example reduction Reduce 0**0 to nothing Reduce β = *0*0 to β = 00*0 Reduce ε = 1*01 to ε = 1101 Cover is {β,γ,δ,ε}

11

12 Example reshape Reshape {β,δ} to {β,δ} where δ = 10*1 Cover is {β,γ, δ,ε}

13

14 Example second expansion Expand δ = 10*1 to δ = 10** Expand ε = 1101 to ζ = *101

15

16 Summary of Example Expansion: Cover: {α,β,γ,δ,ε} prime, redundant, minimal w.r.to single cube containment Reduction: α eliminated β = *0*0 reduced to β = 00*0 ε = 1*01 reduced to ε = 1101 Cover: {β,γ,δ,ε} Reshape: {β,δ} reshaped to {β,δ} where δ = 10*1 Second expansion: Cover: {β,γ,δ,ζ} prime, irredundant (= minimal)

17 For each implicant Expand naive implementation for each non-* literal (care literal) 8raise it to * (don t care) if possible remove all covered implicants Problems: check validity of expansion: 2 ways 8non intersection of expanded implicant with OFF-set requires complementation of ON-set 8expanded implicant covered by union of ON-set and DC-set can be reduced to recursive tautology check order of expansions

18 Heuristics First expand cubes which are unlikely to be covered by other cubes Selection: choose implicants with least number of literals in common with other implicants Example: f = a b c d + ab cd + a b c d choose ab cd Choose expansions to cover the largest number of minterms possible (=> prime implicant)

19 Reduce Example Expanded cover: 8α **1 8β 00* Select α: cannot be reduced and still cover the ON-set Select β: reduced to 8β 001 Reduced cover: 8α **1 8β 001

20 Irredundant Cover Relatively essential set E r implicants covering some minterms of the function not covered by other implicants Totally redundant set R t implicants covered by the relatively essentials Partially redundant set R p remaining implicants

21 Irredundant cover goal and example Goal: find a subset of R p that, together with E r, covers the function Example: 8α 00* 8β *01 8γ 1*1 8δ 11* 8ε *10 E r = {α, ε} R t = {} R p = {β, γ, δ}

22 Example: continued Covering relations: β is covered by {α, γ} γ is covered by {β, δ} δ is covered by {γ, ε} Minimum cover: γ U E r

23 Espresso Algorithm Compute the complement Extract essentials Iterate: expand, irredundant, reduce Cost functions: cover cardinality Ø 1 weighed sum of cube and literal count Ø 2

24 Espresso(F,D) { R = complement(f U D); F = expand(f, R); F = irredundant(f, D); E = essentials(f, D); F = F - E; D = D U E; repeat { Ø 2 = cost(f); repeat { Ø 1 = F ; F = reduce(f, D); F = expand(f, R); F = irredundant(f, D); } until ( F z Ø 1 ); F = last_gasp(f, D, R); } until cost(f) z Ø 2 ; F = F U E; D = D - E; F = make_sparse(f, D, R); } Espresso algorithm

25 Summary heuristic minimization Heuristic minimization is iterative Few operators applied to covers Underlying mechanism cube operation recursive paradigm Efficient algorithms Preview: next lecture covers efficient boolean representations for computer manipulation

(a)

(a) HEURISTIC TWO-LEVEL LOGIC OPTIMIZATION cflgiovanni De Micheli Stanford University Outline ffl Heuristic logic minimization. ffl Principles. ffl Operators on logic covers. ffl Espresso. Heuristic minimization

More information

L6: Two-level minimization. Reading material

L6: Two-level minimization. Reading material L6: Two-level minimization Reading material de Micheli pp. 269-343 p. 2 - Advanced Logic Design L6 - Elena Dubrova Formulation of the two-level minimization problem input: a Boolean function f(x,x 2,...,x

More information

Logic Minimization. Two-Level. University of California. Prof. Srinivas Devadas. Prof. Richard Newton Prof. Sanjit Seshia. Prof.

Logic Minimization. Two-Level. University of California. Prof. Srinivas Devadas. Prof. Richard Newton Prof. Sanjit Seshia. Prof. Two-Level Logic Minimization Prof. Srinivas Devadas MIT Prof. Kurt Keutzer Prof. Richard Newton Prof. Sanjit Seshia University of California Berkeley, CA 1 Topics Motivation Boolean functions & notation

More information

Heuristic Minimization of Two Level Circuits

Heuristic Minimization of Two Level Circuits Heuristic Minimization of Two Level Circuits Sungho Kang Yonsei University Outline Local Search Checking for Equivalence and Tautology Choosing the Right Direction Identifying Essential Implicants 2 Local

More information

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES

L4: Karnaugh diagrams, two-, and multi-level minimization. Elena Dubrova KTH / ICT / ES L4: Karnaugh diagrams, two-, and multi-level minimization Elena Dubrova KTH / ICT / ES dubrova@kth.se Combinatorial system a(t) not(a(t)) A combinatorial system has no memory - its output depends therefore

More information

Exact and heuristic minimization of Boolean functions

Exact and heuristic minimization of Boolean functions Eact and heuristic minimization of Boolean functions Quine a McCluskey Method a) Generation of all prime implicants b) Selection of a minimum subset of prime implicants, which will represent the original

More information

Logic Synthesis. Basic Definitions. k-cubes

Logic Synthesis. Basic Definitions. k-cubes Logic Synthesis Minimization of Boolean logic Technology-independent mapping Objective: minimize # of implicants, # of literals, etc. Not directly related to precise technology (# transistors), but correlated

More information

PLA Minimization for Low Power VLSI Designs

PLA Minimization for Low Power VLSI Designs PLA Minimization for Low Power VLSI Designs Sasan Iman, Massoud Pedram Department of Electrical Engineering - Systems University of Southern California Chi-ying Tsui Department of Electrical and Electronics

More information

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University

Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Lecture 6: Gate Level Minimization Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Aby K George, ECE Department, Wayne State University Contents The Map method Two variable

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundamental Algorithms for System Modeling, Analysis, and Optimization Edward A. Lee, Jaijeet Roychowdhury, Sanjit A. Seshia UC Berkeley EECS 244 Fall 2016 Lecturer: Yu-Yun Dai Copyright 2010-date, E.

More information

Chapter 4 Optimized Implementation of Logic Functions

Chapter 4 Optimized Implementation of Logic Functions Chapter 4 Optimized Implementation of Logic Functions Logic Minimization Karnaugh Maps Systematic Approach for Logic Minimization Minimization of Incompletely Specified Functions Tabular Method for Minimization

More information

CS/EE 181a 2008/09 Lecture 4

CS/EE 181a 2008/09 Lecture 4 CS/EE 181a 28/9 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

Karnaugh Maps Objectives

Karnaugh Maps Objectives Karnaugh Maps Objectives For Karnaugh Maps of up to 5 variables Plot a function from algebraic, minterm or maxterm form Obtain minimum Sum of Products and Product of Sums Understand the relationship between

More information

CS/EE 181a 2010/11 Lecture 4

CS/EE 181a 2010/11 Lecture 4 CS/EE 181a 21/11 Lecture 4 General topic of today s lecture: Logic Optimization Karnaugh maps. Quine-McCluskey tabulation method (not in detail). Non series-parallel networks (some care is required). Reference

More information

CHAPTER 5 KARNAUGH MAPS

CHAPTER 5 KARNAUGH MAPS CHAPTER 5 1/36 KARNAUGH MAPS This chapter in the book includes: Objectives Study Guide 5.1 Minimum Forms of Switching Functions 5.2 Two- and Three-Variable Karnaugh Maps 5.3 Four-Variable Karnaugh Maps

More information

Configurational Analysis beyond the Quine-McCluskeyMilan, algorithm 8 February / 29

Configurational Analysis beyond the Quine-McCluskeyMilan, algorithm 8 February / 29 Configurational Analysis beyond the Quine-McCluskey algorithm Adrian Dușa University of Bucharest Milan, 8 February 2018 Configurational Analysis beyond the Quine-McCluskeyMilan, algorithm 8 February 2018

More information

Two-level logic minimization: an overview

Two-level logic minimization: an overview Two-level logic minimization: an overview Olivier Coudert DEC, Paris Research Laboratory, 85 Avenue Victor Hugo, 92500 Rueil Malmaison, France INTEGRATION, the VLSI journal, 17-2, pp. 97 140, October 1994.

More information

Digital Circuit And Logic Design I. Lecture 4

Digital Circuit And Logic Design I. Lecture 4 Digital Circuit And Logic Design I Lecture 4 Outline Combinational Logic Design Principles (2) 1. Combinational-circuit minimization 2. Karnaugh maps 3. Quine-McCluskey procedure Panupong Sornkhom, 2005/2

More information

CSE 140: Components and Design Techniques for Digital Systems

CSE 140: Components and Design Techniques for Digital Systems Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean Algebra

More information

14:332:231 DIGITAL LOGIC DESIGN

14:332:231 DIGITAL LOGIC DESIGN :: DIGITAL LOGIC DESIGN Ivan Marsic, Rutgers University Electrical & Computer Engineering Fall Lecture #: Combinational Circuit Synthesis II hat if we have input variables? V = V = of Example with variables

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Storage Project3 Digital Logic - Storage: Recap - Review: cache hit rate - Project3 - Digital Logic: - truth table => SOP - simplification: Boolean

More information

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011

Advanced Digital Design with the Verilog HDL, Second Edition Michael D. Ciletti Prentice Hall, Pearson Education, 2011 Problem 2-1 Recall that a minterm is a cube in which every variable appears. A Boolean expression in SOP form is canonical if every cube in the expression has a unique representation in which all of the

More information

UNIT 5 KARNAUGH MAPS Spring 2011

UNIT 5 KARNAUGH MAPS Spring 2011 UNIT 5 KRNUGH MPS Spring 2 Karnaugh Maps 2 Contents Minimum forms of switching functions Two- and three-variable Four-variable Determination of minimum expressions using essential prime implicants Five-variable

More information

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps

Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps EE210: Switching Systems Lecture 6: Manipulation of Algebraic Functions, Boolean Algebra, Karnaugh Maps Prof. YingLi Tian Feb. 21/26, 2019 Department of Electrical Engineering The City College of New York

More information

Unit 2 Session - 6 Combinational Logic Circuits

Unit 2 Session - 6 Combinational Logic Circuits Objectives Unit 2 Session - 6 Combinational Logic Circuits Draw 3- variable and 4- variable Karnaugh maps and use them to simplify Boolean expressions Understand don t Care Conditions Use the Product-of-Sums

More information

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals The Karnaugh Map COE 202 Digital Logic Design Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals Presentation Outline Boolean Function Minimization The Karnaugh Map (K-Map) Two, Three,

More information

Unit 6. Quine-McClusky Method. Unit 6 1

Unit 6. Quine-McClusky Method. Unit 6 1 Unit 6 Quine-McClusky Method Unit 6 1 Outline Determination of prime implicants The prime implicant chart Petrick s method Simplification of incompletely specified functions Unit 6 2 Overview (1/2) A systematic

More information

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1

Ch 2. Combinational Logic. II - Combinational Logic Contemporary Logic Design 1 Ch 2. Combinational Logic II - Combinational Logic Contemporary Logic Design 1 Combinational logic Define The kind of digital system whose output behavior depends only on the current inputs memoryless:

More information

Optimizations and Tradeoffs. Combinational Logic Optimization

Optimizations and Tradeoffs. Combinational Logic Optimization Optimizations and Tradeoffs Combinational Logic Optimization Optimization & Tradeoffs Up to this point, we haven t really considered how to optimize our designs. Optimization is the process of transforming

More information

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms

Review. EECS Components and Design Techniques for Digital Systems. Lec 06 Minimizing Boolean Logic 9/ Review: Canonical Forms Review EECS 150 - Components and Design Techniques for Digital Systems Lec 06 Minimizing Boolean Logic 9/16-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley

More information

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions

Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions EE210: Switching Systems Lecture 5: NAND, NOR and XOR Gates, Simplification of Algebraic Expressions Prof. YingLi Tian Feb. 15, 2018 Department of Electrical Engineering The City College of New York The

More information

This form sometimes used in logic circuit, example:

This form sometimes used in logic circuit, example: Objectives: 1. Deriving of logical expression form truth tables. 2. Logical expression simplification methods: a. Algebraic manipulation. b. Karnaugh map (k-map). 1. Deriving of logical expression from

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 24 Two-Level Logic Minimization (/2) Reading: Logic Synthesis in a Nutshell

More information

Logical Design of Digital Systems

Logical Design of Digital Systems Lecture 4 Table of Content 1. Combinational circuit design 2. Elementary combinatorial circuits for data transmission 3. Memory structures 4. Programmable logic devices 5. Algorithmic minimization approaches

More information

Quality of Minimal Sets of Prime Implicants of Boolean Functions

Quality of Minimal Sets of Prime Implicants of Boolean Functions INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2017, VOL. 63, NO. 2, PP. 165-169 Manuscript received October 9, 2016; revised April, 2017. DOI: 10.1515/eletel-2017-0022 Quality of Minimal Sets of

More information

Motivation. CS/EE 3700 : Fundamentals of Digital System Design

Motivation. CS/EE 3700 : Fundamentals of Digital System Design Motivation CS/EE 37 : Funamentals o Digital System Design Chris J. Myers Lecture 4: Logic Optimization Chapter 4 Algebraic manipulation is not systematic. This chapter presents methos that can be automate

More information

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid

for Digital Systems Simplification of logic functions Tajana Simunic Rosing Sources: TSR, Katz, Boriello & Vahid SE140: omponents and Design Techniques for Digital Systems Simplification of logic functions Tajana Simunic Rosing 1 What we covered thus far: Number representations Where we are now inary, Octal, Hex,

More information

WEEK 3.1 MORE ON KARNAUGH MAPS

WEEK 3.1 MORE ON KARNAUGH MAPS WEEK 3. MORE ON KARNAUGH MAPS Don t Cares Sometimes, we might have inputs and it doesn t matter what the output is; i.e., we don t care what the output is. These situations are called don t cares. Rather

More information

Lecture 4: Four Input K-Maps

Lecture 4: Four Input K-Maps Lecture 4: Four Input K-Maps CSE 4: Components and Design Techniques for Digital Systems Fall 24 CK Cheng Dept. of Computer Science and Engineering University of California, San Diego Outlines Boolean

More information

Gate-Level Minimization

Gate-Level Minimization Gate-Level Minimization Dr. Bassem A. Abdullah Computer and Systems Department Lectures Prepared by Dr.Mona Safar, Edited and Lectured by Dr.Bassem A. Abdullah Outline 1. The Map Method 2. Four-variable

More information

Multilevel Logic Synthesis Algebraic Methods

Multilevel Logic Synthesis Algebraic Methods Multilevel Logic Synthesis Algebraic Methods Logic Circuits Design Seminars WS2010/2011, Lecture 6 Ing. Petr Fišer, Ph.D. Department of Digital Design Faculty of Information Technology Czech Technical

More information

CS137: Electronic Design Automation. Today. Input Encoding. Output Encoding. State Encoding. Finite-State Machine. Encoding

CS137: Electronic Design Automation. Today. Input Encoding. Output Encoding. State Encoding. Finite-State Machine. Encoding CS137: Electronic Design Automation Today Day 7: October 12, 2005 Sequential Optimization (FSM Encoding) Encoding Input Output State Encoding exact two-level 1 2 Input Encoding Output Encoding Pick codes

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Goal: To obtain the simplest implementation for a given function Optimization is a more formal

More information

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata

Simplification of Boolean Functions. Dept. of CSE, IEM, Kolkata Simplification of Boolean Functions Dept. of CSE, IEM, Kolkata 1 Simplification of Boolean Functions: An implementation of a Boolean Function requires the use of logic gates. A smaller number of gates,

More information

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches

Synthesis of 2-level Logic Exact and Heuristic Methods. Two Approaches Synthesis of 2-level Logic Exact and Heuristic Methods Lecture 7: Branch & Bound Exact Two Approaches Find all primes Find a complete sum Find a minimum cover (covering problem) Heuristic Take an initial

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev E&CE 223 Digital Circuits & Systems Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean Algebra & Logic Gates Major topics Boolean algebra NAND & NOR gates Boolean

More information

ENG2410 Digital Design Combinational Logic Circuits

ENG2410 Digital Design Combinational Logic Circuits ENG240 Digital Design Combinational Logic Circuits Fall 207 S. Areibi School of Engineering University of Guelph Binary variables Binary Logic Can be 0 or (T or F, low or high) Variables named with single

More information

Midterm1 Review. Jan 24 Armita

Midterm1 Review. Jan 24 Armita Midterm1 Review Jan 24 Armita Outline Boolean Algebra Axioms closure, Identity elements, complements, commutativity, distributivity theorems Associativity, Duality, De Morgan, Consensus theorem Shannon

More information

CHAPTER 6. Copyright Cengage Learning. All rights reserved.

CHAPTER 6. Copyright Cengage Learning. All rights reserved. CHAPTER 6 SET THEORY Copyright Cengage Learning. All rights reserved. SECTION 6.4 Boolean Algebras, Russell s Paradox, and the Halting Problem Copyright Cengage Learning. All rights reserved. Boolean Algebras,

More information

Review for Test 1 : Ch1 5

Review for Test 1 : Ch1 5 Review for Test 1 : Ch1 5 October 5, 2006 Typeset by FoilTEX Positional Numbers 527.46 10 = (5 10 2 )+(2 10 1 )+(7 10 0 )+(4 10 1 )+(6 10 2 ) 527.46 8 = (5 8 2 ) + (2 8 1 ) + (7 8 0 ) + (4 8 1 ) + (6 8

More information

Lecture 5. Karnaugh-Map

Lecture 5. Karnaugh-Map Lecture 5 - Lecture 5 Karnaugh-Map Lecture 5-2 Karnaugh-Map Set Logic Venn Diagram K-map Lecture 5-3 K-Map for 2 Variables Lecture 5-4 K-Map for 3 Variables C C C Lecture 5-5 Logic Expression, Truth Table,

More information

Multi-Level Logic Optimization. Technology Independent. Thanks to R. Rudell, S. Malik, R. Rutenbar. University of California, Berkeley, CA

Multi-Level Logic Optimization. Technology Independent. Thanks to R. Rudell, S. Malik, R. Rutenbar. University of California, Berkeley, CA Technology Independent Multi-Level Logic Optimization Prof. Kurt Keutzer Prof. Sanjit Seshia EECS University of California, Berkeley, CA Thanks to R. Rudell, S. Malik, R. Rutenbar 1 Logic Optimization

More information

Karnaugh Maps (K-Maps)

Karnaugh Maps (K-Maps) Karnaugh Maps (K-Maps) Boolean expressions can be minimized by combining terms P + P = P K-maps minimize equations graphically Put terms to combine close to one another B C C B B C BC BC BC BC BC BC BC

More information

Possible logic functions of two variables

Possible logic functions of two variables ombinational logic asic logic oolean algebra, proofs by re-writing, proofs by perfect induction logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,..., minimal set Logic realization

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Digital Circuit And Logic Design I. Lecture 3

Digital Circuit And Logic Design I. Lecture 3 Digital Circuit And Logic Design I Lecture 3 Outline Combinational Logic Design Principles (). Introduction 2. Switching algebra 3. Combinational-circuit analysis 4. Combinational-circuit synthesis Panupong

More information

Logic Design I (17.341) Fall Lecture Outline

Logic Design I (17.341) Fall Lecture Outline Logic Design I (17.341) Fall 2011 Lecture Outline Class # 06 October 24, 2011 Dohn Bowden 1 Today s Lecture Administrative Main Logic Topic Homework 2 Course Admin 3 Administrative Admin for tonight Syllabus

More information

Minimization techniques

Minimization techniques Pune Vidyarthi Griha s COLLEGE OF ENGINEERING, NSIK - 4 Minimization techniques By Prof. nand N. Gharu ssistant Professor Computer Department Combinational Logic Circuits Introduction Standard representation

More information

A New Viewpoint on Two-Level Logic Minimization

A New Viewpoint on Two-Level Logic Minimization A New Viewpoint on Two-Level Logic Minimization Olivier Coudert Jean Christophe Madre Henri Fraisse Bull Corporate Research Center Rue Jean Jaurès 78340 Les Clayes-sous-bois, FRANCE Abstract This paper

More information

ELEC Digital Logic Circuits Fall 2014 Logic Minimization (Chapter 3)

ELEC Digital Logic Circuits Fall 2014 Logic Minimization (Chapter 3) ELE 2200-002 Digital Logic ircuits Fall 204 Logic Minimization (hapter 3) Vishwani D. grawal James J. Danaher Professor Department of Electrical and omputer Engineering uburn University, uburn, L 36849

More information

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits

Computer Organization I. Lecture 13: Design of Combinational Logic Circuits Computer Organization I Lecture 13: Design of Combinational Logic Circuits Overview The optimization of multiple-level circuits Mapping Technology Verification Objectives To know how to optimize the multiple-level

More information

CHAPTER III BOOLEAN ALGEBRA

CHAPTER III BOOLEAN ALGEBRA CHAPTER III- CHAPTER III CHAPTER III R.M. Dansereau; v.. CHAPTER III-2 BOOLEAN VALUES INTRODUCTION BOOLEAN VALUES Boolean algebra is a form of algebra that deals with single digit binary values and variables.

More information

Alebraic division: { Let f dividend = ac + ad + bc + bd + e and f divisor = a + b { Then f quotient = c + d f remainder = e { Because (a + b) (c + d)

Alebraic division: { Let f dividend = ac + ad + bc + bd + e and f divisor = a + b { Then f quotient = c + d f remainder = e { Because (a + b) (c + d) ALGEBRAIC METHODS Outline cgiovanni De Micheli Stanford University Alebraic model. Division and substitution. Kernel theory. { Kernel and cube extraction. Decomposition. Boolean alebra: { Complement. Alebraic

More information

Anand Raghunathan MSEE 348

Anand Raghunathan MSEE 348 ECE 595Z: Digital VLSI Design Automation, Spring 2012 2012 Anand Raghunathan 1 ECE 595Z Digital Systems Design Automation Module 2 (Lectures 3-5) : Advanced Boolean Algebra Lecture 5 Anand Raghunathan

More information

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2.

Review CHAPTER. 2.1 Definitions in Chapter Sample Exam Questions. 2.1 Set; Element; Member; Universal Set Partition. 2. CHAPTER 2 Review 2.1 Definitions in Chapter 2 2.1 Set; Element; Member; Universal Set 2.2 Subset 2.3 Proper Subset 2.4 The Empty Set, 2.5 Set Equality 2.6 Cardinality; Infinite Set 2.7 Complement 2.8 Intersection

More information

Olivier Coudert Jean Christophe Madre Henri Fraisse. Bull Corporate Research Center. Rue Jean Jaures Les Clayes-sous-bois, FRANCE

Olivier Coudert Jean Christophe Madre Henri Fraisse. Bull Corporate Research Center. Rue Jean Jaures Les Clayes-sous-bois, FRANCE A New Viewpoint on Two-Level Logic Minimization Olivier Coudert Jean Christophe Madre Henri Fraisse Bull Corporate Research Center Rue Jean Jaures 78340 Les Clayes-sous-bois, FRANCE Abstract This paper

More information

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates

E&CE 223 Digital Circuits & Systems. Lecture Transparencies (Boolean Algebra & Logic Gates) M. Sachdev. Section 2: Boolean Algebra & Logic Gates Digital Circuits & Systems Lecture Transparencies (Boolean lgebra & Logic Gates) M. Sachdev 4 of 92 Section 2: Boolean lgebra & Logic Gates Major topics Boolean algebra NND & NOR gates Boolean algebra

More information

ELC224C. Karnaugh Maps

ELC224C. Karnaugh Maps KARNAUGH MAPS Function Simplification Algebraic Simplification Half Adder Introduction to K-maps How to use K-maps Converting to Minterms Form Prime Implicants and Essential Prime Implicants Example on

More information

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 2

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY ECE-2700: Digital Logic Design Winter Notes - Unit 2 ECE-7: Digital Logic Design Winter 8 Notes - Unit OPTIMIZED IMPLEMENTATION OF LOGIC FUNCTIONS BASIC TECHNIQUES: We can alas minimie logic unctions using the Boolean theorems. Hoever, more poerul methods

More information

ECE473 Lecture 15: Propositional Logic

ECE473 Lecture 15: Propositional Logic ECE473 Lecture 15: Propositional Logic Jeffrey Mark Siskind School of Electrical and Computer Engineering Spring 2018 Siskind (Purdue ECE) ECE473 Lecture 15: Propositional Logic Spring 2018 1 / 23 What

More information

Combinational Logic. Review of Combinational Logic 1

Combinational Logic. Review of Combinational Logic 1 Combinational Logic! Switches -> Boolean algebra! Representation of Boolean functions! Logic circuit elements - logic gates! Regular logic structures! Timing behavior of combinational logic! HDLs and combinational

More information

Inadmissible Class of Boolean Functions under Stuck-at Faults

Inadmissible Class of Boolean Functions under Stuck-at Faults Inadmissible Class of Boolean Functions under Stuck-at Faults Debesh K. Das 1, Debabani Chowdhury 1, Bhargab B. Bhattacharya 2, Tsutomu Sasao 3 1 Computer Sc. & Engg. Dept., Jadavpur University, Kolkata

More information

UNIT 4 MINTERM AND MAXTERM EXPANSIONS

UNIT 4 MINTERM AND MAXTERM EXPANSIONS UNIT 4 MINTERM AND MAXTERM EXPANSIONS Spring 2 Minterm and Maxterm Expansions 2 Contents Conversion of English sentences to Boolean equations Combinational logic design using a truth table Minterm and

More information

Irredundant Sum-of-Products Expressions - J. T. Butler

Irredundant Sum-of-Products Expressions - J. T. Butler On the minimization of SOP s for Bi-Decomposable Functions T. Sasao* & J. T. Butler *Kyushu Institute of Technology, Iizuka, JAPAN Naval Postgraduate School Monterey, CA -5 U.S.A. Outline Introduction

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 1 Gate Circuits and Boolean Equations Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. Overview Part 1 Gate

More information

Combinational Logic (mostly review!)

Combinational Logic (mostly review!) ombinational Logic (mostly review!)! Logic functions, truth tables, and switches " NOT, N, OR, NN, NOR, OR,... " Minimal set! xioms and theorems of oolean algebra " Proofs by re-writing " Proofs by perfect

More information

Boolean Algebra. Sungho Kang. Yonsei University

Boolean Algebra. Sungho Kang. Yonsei University Boolean Algebra Sungho Kang Yonsei University Outline Set, Relations, and Functions Partial Orders Boolean Functions Don t Care Conditions Incomplete Specifications 2 Set Notation $09,3/#0,9 438 v V Element

More information

Minimization of Boolean Expressions Using Matrix Algebra

Minimization of Boolean Expressions Using Matrix Algebra Minimization of Boolean Expressions Using Matrix Algebra Holger Schwender Collaborative Research Center SFB 475 University of Dortmund holger.schwender@udo.edu Abstract The more variables a logic expression

More information

On the Minimization of SOPs for Bi-Decomposable Functions

On the Minimization of SOPs for Bi-Decomposable Functions On the Minimization of SOPs for Bi-Decomposable Functions Tsutomu Sasao Jon T. Butler Center for Microelectronic Systems Department of Electrical and Department of Computer Science and Electronics and

More information

Week-I. Combinational Logic & Circuits

Week-I. Combinational Logic & Circuits Week-I Combinational Logic & Circuits Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other logic operators IC families and

More information

Boolean cubes EECS150. Mapping truth tables onto cubes. Simplification. The Uniting Theorem. Three variable example

Boolean cubes EECS150. Mapping truth tables onto cubes. Simplification. The Uniting Theorem. Three variable example EES5 Section 5 Simplification and State Minimization Fall 2 -cube X oolean cubes Visual technique for indentifying when the uniting theorem can be applied n input variables = n-dimensional "cube" Y 2-cube

More information

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra.

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra. Section 2.2 Set Operations Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. The operators in set theory are defined in terms of the corresponding

More information

Digital Logic Design ENEE x. Lecture 12

Digital Logic Design ENEE x. Lecture 12 Digital Logic Design ENEE 244-010x Lecture 12 Announcements HW5 due today HW6 up on course webpage, due at the beginning of class on Wednesday, 10/28. Agenda Last time: Quine-McClusky (4.8) Petrick s Method

More information

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.)

DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.) DIGITAL CIRCUIT LOGIC BOOLEAN ALGEBRA (CONT.) 1 Learning Objectives 1. Apply the laws and theorems of Boolean algebra to to the manipulation of algebraic expressions to simplifying an expression, finding

More information

DIGITAL ELECTRONICS & it0203 Semester 3

DIGITAL ELECTRONICS & it0203 Semester 3 DIGITAL ELECTRONICS & it0203 Semester 3 P.Rajasekar & C.M.T.Karthigeyan Asst.Professor SRM University, Kattankulathur School of Computing, Department of IT 8/22/2011 1 Disclaimer The contents of the slides

More information

Lecture 4: More Boolean Algebra

Lecture 4: More Boolean Algebra Lecture 4: More Boolean Algebra Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University ENGIN2

More information

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents

Principles of Computer Architecture. Appendix B: Reduction of Digital Logic. Chapter Contents B-1 Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix B: Reduction of Digital Logic B-2 Chapter Contents B.1 Reduction of Combinational Logic and Sequential Logic B.2 Reduction

More information

ESE535: Electronic Design Automation. Today. Problem. EDA Use PLA. Programmable Array Logic (PLAs) Two-Level Logic Optimization

ESE535: Electronic Design Automation. Today. Problem. EDA Use PLA. Programmable Array Logic (PLAs) Two-Level Logic Optimization ESE535: Electronic Design Automation Today Day 4: February 25, 2009 Two-Level Logic-Synthesis Two-Level Logic Optimization Problem Definitions Basic Algorithm: Quine-McClusky Improvements 1 2 Problem EDA

More information

Chapter 2 Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits Logic and Computer Design Fundamentals Chapter 2 Combinational Logic Circuits Part 2 Circuit Optimization Charles Kime & Thomas Kaminski 2004 Pearson Education, Inc. Terms of Use (Hyperlinks are active

More information

ELEC Digital Logic Circuits Fall 2015 Logic Minimization (Chapter 3)

ELEC Digital Logic Circuits Fall 2015 Logic Minimization (Chapter 3) ELE 2200-002 igital Logic ircuits Fall 205 Logic Minimization (hapter 3) Vishwani. grawal James J. anaher Professor epartment of Electrical and omputer Engineering uburn University, uburn, L 36849 http://www.eng.auburn.edu/~vagrawal

More information

DO NOT COPY DO NOT COPY

DO NOT COPY DO NOT COPY Drill Problems 3 benches. Another practical book is VHDL for Programmable Logic, by Kevin Skahill of Cypress Semiconductor (Addison-esley, 1996). All of the ABEL and VHDL examples in this chapter and throughout

More information

CMSC 313 Preview Slides

CMSC 313 Preview Slides CMSC 33 Preview Slies These are raft slies. The actual slies presente in lecture may be ifferent ue to last minute changes, scheule slippage,... UMBC, CMSC33, Richar Chang CMSC 33 Lecture

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logic Synthesis and Verification Boolean Algebra Jie-Hong Roland Jiang 江介宏 Department of Electrical Engineering National Taiwan University Fall 2014 1 2 Boolean Algebra Reading F. M. Brown. Boolean Reasoning:

More information

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions.

Combinational logic. Possible logic functions of two variables. Minimal set of functions. Cost of different logic functions. Combinational logic Possible logic functions of two variables Logic functions, truth tables, and switches NOT, ND, OR, NND, NOR, OR,... Minimal set xioms and theorems of oolean algebra Proofs by re-writing

More information

Combinational Logic Design Principles

Combinational Logic Design Principles Combinational Logic Design Principles Switching algebra Doru Todinca Department of Computers Politehnica University of Timisoara Outline Introduction Switching algebra Axioms of switching algebra Theorems

More information

Quiz 2 Solutions Room 10 Evans Hall, 2:10pm Tuesday April 2 (Open Katz only, Calculators OK, 1hr 20mins)

Quiz 2 Solutions Room 10 Evans Hall, 2:10pm Tuesday April 2 (Open Katz only, Calculators OK, 1hr 20mins) UNIVERSITY OF CALIFORNIA AT BERKELEY ERKELEY DAVIS IRVINE LOS ANGELES RIVERSIDE SAN DIEGO SAN FRANCISCO SANTA BARBARA SANTA CRUZ Department of Electrical Engineering and Computer Sciences Quiz 2 Solutions

More information

Combinatorial Logic Design Principles

Combinatorial Logic Design Principles Combinatorial Logic Design Principles ECGR2181 Chapter 4 Notes Logic System Design I 4-1 Boolean algebra a.k.a. switching algebra deals with boolean values -- 0, 1 Positive-logic convention analog voltages

More information

Large-Scale SOP Minimization Using Decomposition and Functional Properties

Large-Scale SOP Minimization Using Decomposition and Functional Properties 10.2 Large-Scale SOP Minimization Using Decomposition and Functional Properties Alan Mishchenko Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA

More information

A Fast Method to Derive Minimum SOPs for Decomposable Functions

A Fast Method to Derive Minimum SOPs for Decomposable Functions A Fast Method to Derive Minimum SOPs for Decomposable Functions Tsutomu Sasao Center for Microelectronic Systems and Department of Computer Science and Electronics Kyushu Institute of Technology Iizuka,

More information

Sri vidya college of engineering and technology

Sri vidya college of engineering and technology Unit I FINITE AUTOMATA 1. Define hypothesis. The formal proof can be using deductive proof and inductive proof. The deductive proof consists of sequence of statements given with logical reasoning in order

More information