Prospects for Atomic Parity Violation Experiments

Size: px
Start display at page:

Download "Prospects for Atomic Parity Violation Experiments"

Transcription

1 Prospects for Atomic Parity Violation Experiments Konstantin Tsigutkin and Dima Budker socrates.berkeley.edu/~budker/

2 Outline A brief story of parity violation in atoms Mechanisms of APV Summary of measurements of atomic parity violation Prospects for new experiments on APV Berkeley experiment with Yb isotopes: present status and perspectives

3 Atomic PNC: important landmarks 1959 Ya. B. Zel dovich: PNC (Neutr. Current) Opt. Rotation in atoms 1974 M.-A. & C. Bouchiat Z 3 enhancement PNC observable in heavy atoms Novosibirsk, Berkeley discovery of PNC in OR(Bi) and Stark-interf.(Tl) 1995 Boulder, Oxford, Seattle, Paris PNC measured to 1-2% in Cs, Tl, Bi, Pb Prof. Ya. B. Zel dovich 1997 Boulder 0.35% measurement, discovery of anapole moment

4 Sources of parity violation in atoms Z 0 -exchange between e and nucleus P-violating, T-conserving product of axial and vector currents ˆ G h= C e e N N + C e e N N 2 1N γμγ5 γμ 2N γμ γμγ 5 N Z 0 e C 1n, C is by a factor of 10 larger than 1p 2N leading to a dominance of the time-like nuclear spin-independent interaction (A e,v N ) C A contribution to APV due to Z 0 exchange between electrons is suppressed by a factor ~1000 for heavy atoms.

5 Nuclear Spin-Independent (NSI) electron-nucleon nucleon interaction NSI Hamiltonian in non-relativistic limit assuming equal proton and neutron densities ρ(r) in the nucleus: ˆ G h () W = QWγ 5ρ r 2 2 The nuclear weak charge Q W to lowest order in the electroweak interaction is 2 Q = N + Z(1 4sin θ ) N W The nuclear weak charge is protected from strong-interaction effects by conservation of the nuclear vector current. Thus, APV measurements allows for extracting weak couplings of the quarks and for searching for a new physics beyond SM NSI interaction gives the largest PNC effect compared to other mechanisms NSI interaction is scalar mixes only electron states of same angular momentum j W

6 NSI interaction and particle physics implications APV utilizes low-energy system and gives an access to the weak mixing angle, Sin 2 (θ W ), at low-momentum transfer. J.L. Rosner, PRD 1999 V.A. Dzuba, V.V. Flambaum, and O.P. Sushkov, PRA 1997 J. Erler and P. Langacker, Ph.Lett. B 1999 APV experiments are sensitive to new tree-level physics at energies that cannot be currently achieved in colliders. Limits of the mass and mixing angle for Z in E 6 models. The shaded area is excluded by the measurements of APV and from collider experiments Yb APV Collider Exps Qweak: 2.3 TeV Cs APV

7 NSI interaction and particle physics implications (continued) Standard Model extensions, Oblique radiative corrections, Higgs sector. Precision measurements of electroweak quantities constrain linear combinations of S isospin conserving, and T isospin breaking parameters. Constraints of S and T from Γ(Z 0 ) and from value of Sin 2 (θ W ) as determined from forward-backward scattering asymmetries APV experiments are not providing complimentary information to the high-energy experiments M.J. Ramsey-Musolf, PRC 1999 Thus, the impact of the NSI APV is expected in constraining new treelevel physics rather than oblique radiative corrections

8 Isotope ratios and neutron distribution The atomic theory errors can be excluded by taking ratios of APV measurements along an isotopic chain. While the atomic structure cancels in the isotope ratios, there is an enhanced sensitivity to the neutron distribution ρ n (r). nuc A = δ ( Q + Q ) PNC W W Q N q Z q nuc 2 W = ( n 1) + (1 4sin θw)( p 1) q = ρ () r f()d r r, q = ρ () r f()d r r 3 3 n n p p R is sensitive, in particular, to the difference in the neutron distributions. This could be used to determine nuclear structure and test nuclear models complementing parity violating electron scattering measurements f(r) is the variation of the electron wave functions inside the nucleus normalized to f(0)=1. APNC ( N') QW ( N') R 1 +Δ APNC ( N) QW ( N) Δq q q n n n [ q ] n

9 ~Z 3 scaling of APV effects Considering the electron wave functions in nonrelativistic limit and pointlike nucleus the NSI Hamiltonian becomes: Since it is a local and a scalar operator it mixes only s and p 1/2 states. ˆ G hw = σ p (r) + (r) σ p 4 2m e ( 3 3 δ δ ) 2 p1/2 hˆw s Z Q W Z due to scaling of the probability of the valence electron to be at the nucleus Z from the operator p, which near the nucleus (unscreened by electrons) Z. Q W N~Z. Strong enhancement of the APV effects in heavy atoms

10 Sources of NSD interaction Anapole moment ˆ G κ r hnsd = γ 0 γi ρ () r 2 I Weak neutral current Hyperfine correction to the weak neutral current K κ = κ A I + 1 I + 1/ K = ( 1) + κ + κ 2 l 2 ( I Q w ; + 1/ 2) κ κ A / 2 K = C I + 1 A 2α 2/3 μ g α α ; A = N + Z; κ A -Anapole moment κ 2 -Neutral currents κ QW -Radiative corrections

11 Anapole moment In the nonrelativistic approximation PNC interaction of the valence nucleon with the nuclear core has the form: n(r) is core density and g α is dimensionless effective weak coupling constant for valence nucleon. ˆ Gg ( ) h ~ σp A n( r r α ) 2 2 m As a result, the spin σ acquires projection on the momentum p and forms spin helix Spin helix leads to the toroidal current. This current is proportional to the magnetic moment of the nucleon and to the cross section of the core. p Khriplovich & Flambaum 3 2/3 κa A μ α g α neutron: μ n =-1.2; g n =-1 proton: μ p =3.8; g p =5 Anapole moment is bigger for nuclei with unpaired proton

12 Nuclear physics implication: weak meson coupling constants There are 7 independent weak couplings for π-, ρ-, and ω-mesons known as DDH constants. Proton and neutron couplings, g α, can be expressed in terms of 2 combinations of these constants: g g p n = f 19.5h 4 0 π = f 18.9h 4 0 π f f 0.12h 0.18h π π ρ ω h h + 0.7h ρ ω h 0 At present the values of the coupling constants are far from being reliably established. The projected measurement of the anapole moment in 173 Yb should provide an important constraint. Ask E158 SLAC group for an update after Jan. 2007

13 Signature of the weak interaction in atoms h NSI mixes s 1/2 and p 1/2 states of valence electron A PV of dipole-forbidden transition. If A PC is also induced, the amplitudes interfere PC PV PC PC PV PV R A + A A + 2 A A + o( A ) A PC Interference A PC A PC interference E-field Stark-effect E1 PC-amplitude E E1-PNC interference term is odd in E MUST: Reversing E-field changes transition rate Determine A PC with high precision Transition rate A PV A Limit A Stark PC

14 Results of APV measurements Atom Transition Group Year Measurement -Im(A PV /M1) (10-8 ) 209 Bi 4 S 3/2-2 D 3/2 Oxford (20) 2% 208 Pb 3 P 0-3 P 1 Seattle (12) 1.2% 205 Tl 133 Cs 6P 1/2 1/2-6P 3/2 6S 1/2 1/2-7S 1/2 Anapole moment: Unpaired proton 133 Cs Oxford (33) 3% 3/2 Oxford (45) 3% Seattle (17) 1.2% -Im(A PV /β) (mv/cm) 1/2 Boulder (34) 2% Boulder (6) 0.35% Paris (40) 2% Cs I=7/2 205 Tl I=1/2 κ A (6.2) -22(30) * Measurements of APV with precision better than 5%

15 Ongoing experiments on APV Group Atom/Ion Goal Advantages Status Berkeley Yb isotopic chain Nuclear structure, anapole moment A PNC PNC is a factor of 100 bigger than that of Cs. Seven isotopes. Ongoing measurements Seattle Single trapped Ba + (Ra + ) Q W, anapole moment Precise theory, A PNC is a factor of 20 bigger than that of Cs. Nine stable isotopes, ΔN=8 Preliminary exps. on RF spectroscopy of trapped ions Stony Brook, Legnaro,, Yale, TRIUMF (Vancouver) Cold Fr Anapole moment Precise theory, bigger effect than that of Cs, trapped atoms Preliminary exps. on trapping of Fr Yale Diatomic molecules Anapole moment, C 2 A PNC is enhanced due to proximity of the opposite parity levels. Level crossing. Development of theory and exp. techniques

16 Atomic structure of Yb Proposed by D. DeMille, PRL 1995 By observing the 6s 21 S 0 6s6p 3 P nm decay the pumping rate of the 6s 21 S 0 6s5d 3 D nm transition is determined. In addition, the population of 6s6p 3 P 0 metastable level is probed by pumping the 6s6p 3 P 0-6s7s 3 S nm transition.

17 Yb isotopes and abundances Seven stable isotopes, two have non-zero spin C.J. Bowers et al, PRA 1999

18 Rotational invariant and geometry of Rotational invariant to which the PV-Stark interference term is proportional is chosen so that E is along the excitation light axis. This suppresses the interference between M1 and Stark amplitudes emphasizing the PV-Stark contribution. the Yb experiment ρ ρ ρ ρ ρ ( ε B) ( ε ( E B ) r r = i ( ) j m m m j m r A = iξ ( 1) ε j, m,1, m m j, m ; q = m m q q A Stark β ( 1) E ε,,1,, -q q q PNC -q Reversals: B even E odd θ θ±π/2 odd β = 2.24(25) 10-8 e a 0 /(V/cm) Stark transition polarizability (Measured by J.Stalnaker at al, PRA 2006) ξ = 1.08(24) 10-9 (Q W /104) e a 0 /(V/cm) Nuclear spin-independent PV amplitude (Calculations by Porsev et al, JETP Lett 1995; B. Das, PRA 1997 )

19 PV effect on line shapes: even isotopes r E = (E,0,0) r ε = (0,sinθ,cosθ) R = E sin θ + 2E sin θcosθ β βξ 2 2 ± 1 β E 2 R = cos θ E βξ sinθcosθ Yb PV-Stark interference terms Rate modulation under the E-field reversal yields: RE+ RE 2ξ = R + R β E E+ E

20 PV effect on line shapes: odd isotopes r E = (E,0,0) r ε = (0,sinθ,cosθ) β E 6 β E center FF 2 2 R = (4sin θ + cos θ) + E βff ξ sin θcosθ 2 2 side FF 2 R = cos θ E βff ξ sin θcosθ r r ξ = ξ + I J ξ ξ NSD ea 0 for odd Yb isotopes ξ=10-9 ea 0 ξ` must be measured with 0.1% accuracy NSD

21 Experimental setup Light collection efficiency: Interaction region: ~0.2% (556 nm) Detection region: ~25% Yb density in the beam ~10 10 cm -3 Reversible E-field up to 15 kv/cm, spatial homogeneity 99% Reversible B-field up to 100 G, homogeneity 99%

22 Optical system and control electronics Light powers: Ar + : 15W Ti:Sapp (816 nm): 1W Doubler (408 nm): 50 mw PBC: Confocal design, 25 cm; Finesse ~4000 (upgrading to 40000) Locking: Pound-Drever-Hall technique

23 Doppler width and spectral resolution Intensity [V] MHz 173 Yb (5/2-3/2) 176 Yb 17 MHz Frequency shift [MHz] Application of the atomic beam collimator allows to reduce the Doppler broadening by a factor of 10. Spectral lines of closely neighboring isotopes can be clearly resolved. Scanning over 408 nm line, observing 556 nm fluorescence at the interaction region.

24 Line shapes under the B-fieldB 174 Yb Under application of B-field line profiles demonstrate predicted shapes Signal averaged over 100 scans Scan rate = 1 Hz Ready to collect data with E-field reversals

25 Systematic effects E ρ = ρ ( E, de, de y z ) E-field inhomogeneity B = ( dbx, dby, B0 ) B-field inhomogeneity ρ ε = ( 0, e idc (sin θ + dθ cosθ),cosθ dθ sin θ) dk ρ Residual light propagation in the PBC ( ( ) ( ) ) β ξ -q Distortion of linear polarization of the light M1~300ξ r r r r r Σ = i + M dk + i F m m m F m q q A ( 1) E ε 1 ε ε,,1,, -q -q Terms having same dependence on the leading E-field reversal and same polarization angle dependence as the Stark-PNC interference term must be limited dbx de y β B β dc de z << ξ << ξ Required: Non-reversing db x, de z << 1%

26 Summary The program of measurements needed to understand the system is complete It is now possible to proceed with confidence towards a first measurement of APV in Yb The challenge will then be to refine the system to achieve the fractional precision needed to observe NSD effects

27 Timeline Berkeley experiment: ½ yr A PV enhancement, A PV :10% 1 yr Q W in single Yb isotope, A PV :1% 1½ yr Q W in chain of Yb isotopes, A PV :0.1% 2 yr Anapole moment ElectroWeak Workshop

Atomic Parity Violation in Ytterbium

Atomic Parity Violation in Ytterbium Atomic Parity Violation in Ytterbium K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker http://budker.berkeley.edu Atomic PV: important landmarks! 1959 Ya. B. Zel dovich: APV (Neutr. Current) Opt.

More information

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Walter Johnson University of Notre Dame 1) Weak charge Q W of 133 Cs provides a test of the Standard Electroweak Model. 2)

More information

Physics 129, Fall 2010; Prof. D. Budker

Physics 129, Fall 2010; Prof. D. Budker Physics 129, Fall 2010; Prof. D. Budker Intrinsic parity of particles A brief history of parity: Concept found (no parity in everyday life): O. Laporte, 1924 Concept understood: Wigner, 1927 Concept becomes

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia HISTORY AND PERSPECTIVES OF P AND T VIOLATION IN ATOMS I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia I. HISTORY Historically, good reasons to start just with /P, /T effects.

More information

Parity Violation in Diatomic Molecules

Parity Violation in Diatomic Molecules Parity Violation in Diatomic Molecules Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy DeMille Group Funding:

More information

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Cheng-Pang Liu TRIUMF Research Facility, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 Abstract. The anapole moment is a parity-odd

More information

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Work done in collaboration with Prof. Gene Sprouse from SUNYSB And Prof. David DeMille from Yale University.

More information

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS V.F. Dmitriev 1, and I.B. Khriplovich 2 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia Abstract We discuss the present state of the theory of nuclear

More information

Atomic Parity Violation

Atomic Parity Violation Atomic Parity Violation Junghyun Lee APV proposes new physics beyond the standard model of elementary particles. APV is usually measured through the weak nuclear charge Q w, quantifying the strength of

More information

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland Proposed experiment for the anapole measurement in francium Luis A. Orozco Joint Quantum Institute University of Maryland FrPNC collaboration: S. Aubin, J. A. Behr, V. Flambaum, E. Gomez, G. Gwinner, K.

More information

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment IL NUOVO CIMENTO Vol.?, N.?? Atomic Parity Non-Conservation in Francium: The FrPNC Experiment at TRIUMF S. Aubin( 1 ), E. Gomez( 2 ), J. A. Behr( 3 ), M. R. Pearson( 3 ), D. Sheng( 4 ), J. Zhang( 4 ),

More information

Parity Nonconservation in Cesium: Is the Standard Model in Trouble?

Parity Nonconservation in Cesium: Is the Standard Model in Trouble? Parity Nonconservation in Cesium: Is the Standard Model in Trouble? Walter Johnson Department of Physics Notre Dame University http://www.nd.edu/ johnson May 10, 2001 Abstract This is a brief review of

More information

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar University of Groningen Radium Ion Spectroscopy Giri, Gouri Shankar IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document

More information

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco What we know about Francium University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco www.jqi.umd.edu The slides are available at: http://www.physics.umd.edu/rgroups/amo/orozco/results/2018/results18.htm

More information

Tests of fundamental symmetries with atoms and molecules

Tests of fundamental symmetries with atoms and molecules Tests of fundamental symmetries with atoms and molecules 1 Listening to an atom q Coulomb forces + Quantum Electro-Dynamics => a relatively simple interpretation q Unprecedented control over internal and

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

Neutron stars at JLAB and the Pb Radius Experiment

Neutron stars at JLAB and the Pb Radius Experiment Neutron stars at JLAB and the Pb Radius Experiment PREX uses parity violating electron scattering to accurately measure the neutron radius of 208 Pb. 208 Pb This has many implications for nuclear structure,

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

Fundamental Symmetries in Laser Trapped Francium

Fundamental Symmetries in Laser Trapped Francium CAADA S ATIOAL LABORATORY FOR PARTICLE AD UCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the ational Research Council Canada Fundamental

More information

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Isotopic variation of parity violation in atomic ytterbium

Isotopic variation of parity violation in atomic ytterbium Isotopic variation of parity violation in atomic ytterbium D. Antypas 1,*, A. Fabricant 2, J.E. Stalnaker 3, K. Tsigutkin 4,. Flambaum 2,5 and D. Budker 1,2,6 1 Helmholtz-Institut Mainz, Mainz 55128, Germany

More information

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin Pseudo-scalar s d C. S. Wu 1912-1997 Parity (space reversal) x, y, z -x, -y, -z z y Parity z x x y Pseudo-scalar

More information

current status And future prospects

current status And future prospects September 20, 2007 Rare Isotopes & Fundamental symmetries workshop Atomic pnc theory: current status And future prospects marianna safronova outline Motivation & Summary of experiment Nuclear spin-independent

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

CURRENT STATUS AND FUTURE PROSPECTS

CURRENT STATUS AND FUTURE PROSPECTS AMO seminar - Berkeley March 18, 2008 ATOMIC PNC THEORY: CURRENT STATUS AND FUTURE PROSPECTS MARIANNA SAFRONOVA OUTLINE Motivation & Summary of experiment Nuclear spin-independent PNC & weak charge How

More information

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theoretical Physics and Astrophysics Group Indian Institute of Astrophysics Bangalore Collaborators: H. S. Nataraj, B. K. Sahoo,

More information

Status of Atomic PNC: Experiment/Theory

Status of Atomic PNC: Experiment/Theory Status of Atomic PNC: Experiment/Theory W. R. Johnson University of Notre Dame Abstract Atomic PNC measurements and calculations are reviewed with emphasis on the 6s 7s transition in cesium and the corresponding

More information

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS University of Virginia Colloquium ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS MARIANNA SAFRONOVA November 11, 2011 OUTLINE Atomic physics tests of fundamental physics Parity violation Search for

More information

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion Towards a Precise Measurement of Atomic Parity Violation in a Single + Ion TRIµP Program Trapped dioactive Isotopes: µ-laboratories for fundamental Physics Kernfysisch Versneller Instituut (KVI) University

More information

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics T + - + - He Ra EDM Spin EDM Spin β - θ ν e He Kr 6 He 6 Li + Supported by DOE, Office of Nuclear Physics Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin

More information

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues An Experiments Krishna Kumar Stony Brook University The Electroweak Box Workshop at

More information

Nuclear Schiff moment

Nuclear Schiff moment Nuclear Schiff moment V.F. Dmitriev, Budker Institute of Nuclear Physics, Novosibirsk, Russia R.A. Sen'kov, I.B. Khriplovich, V.V. Flambaum Schiff theorem The energy of a neutral atom with a point like

More information

Introduction. The FrPNC Collaboration. Scientific goals and their merit

Introduction. The FrPNC Collaboration. Scientific goals and their merit Project Summary Laser trapping and cooling facility for weak interaction experiments with francium isotopes at TRIUMF Applicant: University of Maryland Project Participants: Seth Aubin, Co-Principal Investigator,

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF The FrPNC Experiment, weak interaction studies in Francium at TRIUMF E Gomez 1, S Aubin 2, R Collister 3, J A Behr 4, G Gwinner 3, L A Orozco 5, M R Pearson 4, M Tandecki 3, D Sheng 5, J Zhang 5 1 Institute

More information

D Göttingen, Germany. Abstract

D Göttingen, Germany. Abstract Electric polarizabilities of proton and neutron and the relativistic center-of-mass coordinate R.N. Lee a, A.I. Milstein a, M. Schumacher b a Budker Institute of Nuclear Physics, 60090 Novosibirsk, Russia

More information

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das

Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects. Bhanu Pratap Das Parity and Time Reversal Violations in Atoms: Present Status and Future Prospects Bhanu Pratap Das Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore 560 034, India Outline

More information

EDM Measurements using Polar Molecules

EDM Measurements using Polar Molecules EDM Measurements using Polar Molecules B. E. Sauer Imperial College London J. J. Hudson, M. R. Tarbutt, Paul Condylis, E. A. Hinds Support from: EPSRC, PPARC, the EU Two motivations to measure EDMs EDM

More information

Atomic-Physics Tests of QED & the Standard Model

Atomic-Physics Tests of QED & the Standard Model Atomic-Physics Tests of QED & the Standard Model W.R. Johnson Notre Dame University http://www.nd.edu/ johnson Abstract A brief review of tests of strong-field QED in many-electron atoms and of atomic

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS DAMOP 2010 May 29, 2010 DEVELOPMENT OF A CONFIGURATION-INTERACTION INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS MARIANNA SAFRONOVA MIKHAIL KOZLOV PNPI, RUSSIA DANSHA JIANG UNIVERSITY OF DELAWARE

More information

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab) Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering

More information

The Search for the Electron Electric Dipole Moment at JILA

The Search for the Electron Electric Dipole Moment at JILA The Search for the Electron Electric Dipole Moment at JILA Laura Sinclair Aaron Leanhardt, Huanqian Loh, Russell Stutz, Eric Cornell Theory Support: Edmund Meyer and John Bohn June 11, 2008 Funding: NSF

More information

Hadronic Parity Violation

Hadronic Parity Violation Hadronic Parity Violation Barry R. Holstein UMass May 9, 007 INT Talk Analogy TV Detective Show 10 Min. Problem: (Body!) 35 Min. Clues (including red herrings) 5 Min. Solution (Culprit brought to justice)

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics Lecture 7 Experimental Nuclear Physics PHYS 741 Text heeger@wisc.edu References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics 98 Scattering Topics

More information

arxiv: v2 [physics.atom-ph] 1 Apr 2013

arxiv: v2 [physics.atom-ph] 1 Apr 2013 Calculation of parity non-conserving optical rotation in iodine at 1315 nm G. E. Katsoprinakis, L. Bougas and T. P. Rakitzis Institute of Electronic Structure and Lasers, Foundation for Research and Technology-Hellas,

More information

CP-violating magnetic moments of atoms and molecules. $$$ National Science Foundation $$$ NIST Precision Measurement Grant

CP-violating magnetic moments of atoms and molecules. $$$ National Science Foundation $$$ NIST Precision Measurement Grant -violating magnetic moments of atoms and molecules $$$ National Science Foundation $$$ NIST Precision Measurement Grant EDM/V workshop @ INT/U.Washington, Seattle, Mar 22, 2007 1 Collaborators Boris Ravaine

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

Electron EDM Searches

Electron EDM Searches Electron EDM Searches Paul Hamilton Yale University INT Workshop Seattle, October 2008 Outline Theoretical Motivation General detection method Past and current eedm searches Molecular eedm searches and

More information

arxiv: v2 [nucl-th] 11 Jun 2018

arxiv: v2 [nucl-th] 11 Jun 2018 Nuclear spin dependence of time reversal invariance violating effects in neutron scattering Vladimir Gudkov Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 908,

More information

Fundamental interactions experiments with polarized trapped nuclei

Fundamental interactions experiments with polarized trapped nuclei Fundamental interactions experiments with polarized trapped nuclei β + DESIR meeting Leuven, 26-28 May 2010 ν e Nathal Severijns Kath. University Leuven, Belgium 5/31/2010 N. Severijns, DESIR Workshop

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Calculations of γz corrections

Calculations of γz corrections Calculations of γz corrections Carl E. Carlson William and Mary γz box(ing) workshop, Dec. 16-17, 2013, JLab Our relevant papers Contributions from γz box diagrams to parity violating elastic ep scattering,

More information

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U. Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) William J. Marciano (October 26, 2010) Based on talks at: W&M, Rockefeller, BNL and U. Washington Outline 1. General

More information

Contents. Preface to the First Edition Preface to the Second Edition

Contents. Preface to the First Edition Preface to the Second Edition Contents Preface to the First Edition Preface to the Second Edition Notes xiii xv xvii 1 Basic Concepts 1 1.1 History 1 1.1.1 The Origins of Nuclear Physics 1 1.1.2 The Emergence of Particle Physics: the

More information

Search for a Permanent Electric Dipole Moment of 199 Hg

Search for a Permanent Electric Dipole Moment of 199 Hg Search for a Permanent Electric Dipole Moment of 199 Hg NIST, Boulder: University of Washington: Princeton University: W. Clark Griffith M. David Swallows David Meyer Blayne Heckel E. Norval Fortson Michael

More information

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Paul Huffman! North Carolina State University Triangle Universities Nuclear Laboratory!!!! M.W. Ahmed!

More information

Manifestations of Low-Mass Dark Bosons

Manifestations of Low-Mass Dark Bosons Manifestations of Low-Mass Dark Bosons Yevgeny Stadnik Humboldt Fellow Johannes Gutenberg University, Mainz, Germany Collaborators (Theory): Victor Flambaum (UNSW) Collaborators (Experiment): CASPEr collaboration

More information

QCD and low x physics

QCD and low x physics The e Project QCD and low x physics for the LHeC Study Group http://cern.ch/lhec 23rd July 2011 Machine Physics Status, Grenoble, France 2 3 What is the proton? electron electron Time 4 An incomplete history

More information

E05-009:HAPPEx-III Status Report. Dustin McNulty UMass December 5, 2008

E05-009:HAPPEx-III Status Report. Dustin McNulty UMass December 5, 2008 E05-009:HAPPEx-III Status Report Dustin McNulty UMass mcnulty@jlab.org December 5, 2008 E05-009:HAPPEx-III Status Report Outline Quick Review: Parity Violation and Strange FFs Worldwide Experimental Programs

More information

High-precision calculation of the parity-nonconserving amplitude in francium

High-precision calculation of the parity-nonconserving amplitude in francium High-precision calculation of the parity-nonconserving amplitude in francium M. S. Safronova and W. R. Johnson Department of Physics, Notre Dame University, Notre Dame, Indiana 46556 Received 6 December

More information

Efficient inter-trap transfer of cold francium atoms

Efficient inter-trap transfer of cold francium atoms Hyperfine Interact (2016) 237:150 DOI 10.1007/s10751-016-1347-9 Efficient inter-trap transfer of cold francium atoms J. Zhang 1 R. Collister 2 K. Shiells 2 M. Tandecki 3 S. Aubin 4 J. A. Behr 3 E. Gomez

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

EDMs at Dimension Six

EDMs at Dimension Six EDMs at Dimension Six M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ EDMs 13, FNAL, February 2013

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

P.M. King Ohio University for the MOLLER Collaboration

P.M. King Ohio University for the MOLLER Collaboration Parity violating electron scattering at JLab: the MOLLER experiment P.M. King Ohio University for the MOLLER Collaboration SESAPS, 10 November 2016; University of Virginia, Charlottesville, VA The Standard

More information

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum ECT* Trento The Lead Radius Precision measurements of nuclear ground state properties for nuclear structure studies Klaus Blaum 04.08.2009 Outline Introduction, history and methods Principle of laser spectroscopy

More information

Symmetry Tests in Nuclear Physics

Symmetry Tests in Nuclear Physics Symmetry Tests in Nuclear Physics Krishna Kumar University of Massachusetts Editorial Board: Parity Violation: K. K, D. Mack, M. Ramsey-Musolf, P. Reimer, P. Souder Low Energy QCD: B. Bernstein, A. Gasparian,

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

Electric dipole moments: theory and experiment

Electric dipole moments: theory and experiment Electric dipole moments: theory and experiment EA Hinds Blois June 2002 Two motivations to measure EDMs EDM violates T symmetry Deeply connected to CP violation and the matter-antimatter asymmetry of the

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 5 - Quantum Statistics & Kinematics Nuclear Reaction Types Nuclear reactions are often written as: a+x Y+b for accelerated projectile a colliding

More information

Sidney B. Cahn Yale University

Sidney B. Cahn Yale University Sidney B. Cahn Yale University Первое сообщение о прогрессе в фтористый барий в Ельском опыте Второе будет о возможных систематических действиях в ловушках с использованием низкотемпературного масла (фомблин)

More information

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri

Closed-shell Atomic Electric Dipole Moments. K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri Closed-shell Atomic Electric Dipole Moments K. V. P. Latha Angom Dilip Kumar Singh B. P. Das Rajat Chaudhuri An observation of EDM of a non-degenerate physical system is a direct unambiguous evidence of

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

Triple excitations in the coupled-cluster method. Application to atomic properties.

Triple excitations in the coupled-cluster method. Application to atomic properties. Triple excitations in the coupled-cluster method. Application to atomic properties. Sergey G. Porsev 1 and Andrei Derevianko 2 1 Petersburg Nuclear Physics Institute Gatchina, Russia 2 University of Nevada

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

Qweak Transverse Asymmetry Measurements

Qweak Transverse Asymmetry Measurements Qweak Transverse Asymmetry Measurements Buddhini Waidyawansa For the Qweak Collaboration Hall C Collaboration Meeting 02-21-2014 Outline Physics of transverse asymmetries Qweak transverse data set Analysis

More information

Measurement Using Polarized e + /e Beams

Measurement Using Polarized e + /e Beams C 3q Measurement Using Polarized e + /e Beams Xiaochao Zheng Univ. of Virginia March 7, 009 Introduction Standard Model of Electroweak Interaction Neutral Weak Coupling Constants Test of the Standard Model

More information

2007 Section A of examination problems on Nuclei and Particles

2007 Section A of examination problems on Nuclei and Particles 2007 Section A of examination problems on Nuclei and Particles 1 Section A 2 PHYS3002W1 A1. A fossil containing 1 gramme of carbon has a radioactivity of 0.03 disintegrations per second. A living organism

More information

Experimental Atomic Physics Research in the Budker Group

Experimental Atomic Physics Research in the Budker Group Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation Postulate/Spin-Statistics Connection Temporal

More information

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB Precision tests of the Standard Model with trapped atoms 1 st lecture Luis A. Orozco SUNYSB The Standard Model (brief review) Symmetries Conserved quantities Gauge Symmetries (local and continuous) Particles

More information

Nuclear Structure for the Crust of Neutron Stars

Nuclear Structure for the Crust of Neutron Stars Nuclear Structure for the Crust of Neutron Stars Peter Gögelein with Prof. H. Müther Institut for Theoretical Physics University of Tübingen, Germany September 11th, 2007 Outline Neutron Stars Pasta in

More information

Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab

Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab Recent results and future direction of the parity-violating electron scattering program in Hall A at Jefferson Lab, University of Virginia For the HAPPEX, PREX, PVDIS, MOLLER and SOLID Collaborations SPIN,

More information

Aspects of The Standard Model and Beyond

Aspects of The Standard Model and Beyond Aspects of The Standard Model and Beyond Hadronic Physics Town Meeting at DNP2012 October 25, 2012 Mark Pitt Virginia Tech Parity violating electron scattering at JLab Proton s weak charge: Qweak Electron

More information

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS

ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS ELECTRIC DIPOLE MOMENT OF THE ELECTRON AND ITS COSMOLOGICAL IMPLICATIONS H S NATARAJ Under the Supervision of Prof. B P DAS Non-Accelerator Particle Physics Group Indian Institute of Astrophysics Bangalore

More information

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge Measure: Parity-violating asymmetry in e + p elastic scattering at Q 2 ~ 0.03 GeV 2 to ~4% relative

More information

Electroweak Physics: Lecture V

Electroweak Physics: Lecture V Electroweak Physics Lecture V: Survey of Low Energy Electroweak Physics (other than neutral current interactions) Acknowledgements: Slides from D. DeMille, G. Gratta, D. Hertzog, B. Kayser, D. Kawall,

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

Atomic Parity Violation and Related Physics in Ytterbium. Dimitri Robert Dounas-Frazer

Atomic Parity Violation and Related Physics in Ytterbium. Dimitri Robert Dounas-Frazer Atomic Parity Violation and Related Physics in Ytterbium by Dimitri Robert Dounas-Frazer A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Physics

More information

Time Reversal and the electron electric dipole moment. Ben Sauer

Time Reversal and the electron electric dipole moment. Ben Sauer Time Reversal and the electron electric dipole moment Ben Sauer Mysteries of physics Mysteries of physics Baryon asymmetry Why is there more matter than antimatter in the observable universe? Breaking

More information

Weak interactions and vector bosons

Weak interactions and vector bosons Weak interactions and vector bosons What do we know now about weak interactions? Theory of weak interactions Fermi's theory of weak interactions V-A theory Current - current theory, current algebra W and

More information

Production and Searches for Cascade Baryons with CLAS

Production and Searches for Cascade Baryons with CLAS Production and Searches for Cascade Baryons with CLAS Photoproduction Cross sections Ground State Ξ (1320) Excited State Ξ 0 (1530) Search for Cascade Pentaquarks Elton S. Smith CLAS Collaboration Jefferson

More information