Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs

Size: px
Start display at page:

Download "Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs"

Transcription

1 Parity Nonconservation in Atoms: The Weak Charge and Anapole Moment of 133 Cs Walter Johnson University of Notre Dame 1) Weak charge Q W of 133 Cs provides a test of the Standard Electroweak Model. 2) First (only) observation of an anapole moment κ a was in 133 Cs. 3) Q exp W and κexp a require accurate calculations together with error estimates! Collaborators: J. Sapirstein, S. Blundell, and M. S. Safronova Coupled-Cluster Symposium July

2 Atomic Parity Nonconservation e q e q γ Z e q e q A consequence of Z exchange is violation of Laporte s rule: Radiative (E 1 ) transitions take place only between states of opposite parity. Coupled-Cluster Symposium July

3 Laporte: Otto Laporte ( ) discovered the law of parity conservation in physics. He divided states of the iron spectrum into two classes, even and odd, and found that no radiative transitions occurred between like states. 1 1 O. Laporte, Z. Physik (1924). Coupled-Cluster Symposium July

4 Z Exchange in the Standard Model 2 H PV = G 2 [ēγ µ γ 5 e where = t, b, s, c ( ) c 1u ūγ µ u + c 1d dγµ d + + ēγ µ e ( )] c 2u ūγ µ γ 5 u + c 2d dγµ γ 5 d + c 1u = sin2 θ W c 2u = 1 2 (1 4 sin 2 θ W ) c 1d = sin2 θ W c 2d = 1 2 (1 4 sin 2 θ W ) 2 W. J. Marciano in Precision Tests of the Standard Electroweak Model, Ed. P. Langacker, (World Scientific, Singapore, 1995), p Coupled-Cluster Symposium July

5 Electron Axial-Vector Nucleon Vector Contribution of coherent vector nucleon current: H (1) = G 2 2 γ 5 Q W ρ(r) where ρ(r) is a nuclear density ( neutron density) and Q W = 2[(2Z + N)c 1u + (Z + 2N)c 1d ] = N + Z (1 4 sin 2 θ W ) N Coupled-Cluster Symposium July

6 Electron Vector Nucleon Axial-Vector Contribution of vector axial-vector nucleon current: H (2) = G 2 α [c 2p φ p σφ p + c2n φ n σφ n ] where designates nuclear matrix elements. c 2p 1.25 c 2u = c 2n 1.25 c 2d = Coupled-Cluster Symposium July

7 A) Nucleon Axial-Vector Contribution H (2) = G 2 κ 2 α I ρ(r) κ 2 from Extreme Shell Model and from Nuclear Calculations. 3 Element A State κ 2 [Sh. Mod.] κ 2 [3] K 39 1d 3/2 (p) Cs 133 1g 7/2 (p) Ba 135 2d 3/2 (n) Tl 205 3s 1/2 (p) Fr 209 1h 9/2 (p) W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, Phys. Rev. Lett. 86, 5247 (2001). Coupled-Cluster Symposium July

8 B) Nuclear Anapole Moment Contribution PNC in nucleus nuclear anapole: H (a) = e α A G 2 κ a α I ρ(r) Theoretical estimates 4 for 133 Cs gave κ a = Experiment: 5 κ a = 0.09(2) κ a 5κ 2 4 V. V. Flambaum, I. B. Khriplovich, O. P. Sushkov Phys. Letts. B (1984). 5 V. V. Flambaum and D. W. Murray, Phys. Rev. C56, 1641 (1997); W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001) Coupled-Cluster Symposium July

9 C) Hyperfine Interference Contrubution Interference between the hyperfine interaction H hf and H (1) gives another nuclear spin-dependent correction of the form H (hf) = G 2 κ hf α I ρ(r) 133 Cs: κ hf = Tl: κ hf = κ hf 1 2 κ 2 Coupled-Cluster Symposium July

10 Summary of Phenomenology H (1) = G 2 2 γ 5 Q W ρ(r) H (2) G 2 κ α I ρ(r) where κ = κ 2 + κ a + κ hf. 1. Measure Q W as a test of Standard Model 2. Measure κ as a test of weak nuclear forces! Coupled-Cluster Symposium July

11 Optical Rotation Experiments Aim is to measure E PNC = f z i Q W : FIGURE 2. A medium possessing circular birefringence causes rotation of the plane of light polarization. The plane of polarization of a linearly polarized laser beam passing through a medium with n + n is rotated. The rotation angle φ R φ = Im (E PNC ) /M 1. On resonance (ω = ω 0 ), this leads to optical rotation ϕ with a dispersively-shaped magnetic field dependence given by ϕ ω 0` Coupled-Cluster = Symposium 2c Re[n +(ω 0 ) July n (ω )] 11 ß ` 2g F µ B B z =γ 0 2`0 1 +(2g F µ B B z =γ 0 ) 2 ; (3) where ` is the path length through the sample, c is the speed of light in vacuum, and

12 Optical Rotation Experiments R φ = Im (E PNC ) /M 1 Measured values of R φ Element Transition Group 10 8 R φ 205 Tl 205 Tl 208 Pb 208 Pb 209 Bi 2 P 1/2 2 P 3/2 Oxford (95) (45) 2 P 1/2 2 P 3/2 Seattle (95) (20) 3 P 0 3 P 1 Oxford (94) -9.80(33) 3 P 0 3 P 1 Seattle (95) -9.86(12) 4 S 3/2 2 D 3/2 Oxford (91) (20) Coupled-Cluster Symposium July

13 Stark-Interference Experiment Boulder PNC apparatus: A beam of cesium atoms is optically pumped by diode laser beams, then passes through a region of perpendicular electric and magnetic fields where a green laser excites the transition from the 6S to the 7S state. The excitations are detected by observing the florescence (induced by another laser beam) with a photo-diode. Coupled-Cluster Symposium July

14 Stark-Interference Experiments Evolving values of R = Im (E PNC ) /β (mv/cm) for 133 Cs Transition Group R 4 3 R 3 4 6s 1/2 7s 1/2 Paris (1984) -1.5(2) -1.5(2) 6s 1/2 7s 1/2 Boulder (1988) -1.64(5) -1.51(5) 6s 1/2 7s 1/2 Boulder (1997) (8) (8) The vector current contribution from the last row is [ Im E exp V R V = ± (6s 7s) 1011] = ± (0.0031) exp ± (0.0021) th Coupled-Cluster Symposium July

15 Other Experiments Element Transition Group Fr 7S 1/2 8S 1/2 Stoney Brook Fr 7S 1/2 [F = 4] 7S 1/2 [F = 5] Maryland, TRIUMF Yb (6s 2 ) 1 S 0 (6s5d) 3 D 1 Berkeley Yb (6s6p) 3 P 0 (6s6p) 3 P 1 Berkeley Ba + 6S 1/2 5D 3/2 Seattle Dy (4f 10 5d6s)[10] (4f 9 5d 2 6s)[10] Berkeley Sm (4f 6 6s 2 ) 7 F J (4f 6 6s 2 ) 5 D J Oxford Coupled-Cluster Symposium July

16 Calculations of the 6s 7s Amplitude in Cs Units: i( Q W /N) ea 0 SD(T) (4) CI+MBPT PTSCI (5) PNC-CI SDCC S. A. Blundell et al., Phys. Rev. D45, 1602 (1992). 7 M. G. Kozlov, S. G. Porsev, and I. I. Tupitsyn, PRL 86, 3260 (2001). 8 V. A. Dzuba, V. V. Flambaum, and J. S. M. Ginges, Phys. Rev. D 66, (2002). 9 V. M. Shabaev et al., Phys. Rev. A 72 (2005) 10 B. P. Das et al., THEOCHEM 768, 141 (2006) Coupled-Cluster Symposium July

17 Example of a PNC Calculation E PNC = n 7s D np np H (1) 6s E 6s E np + n 7s H (1) np np D 6s E 7s E np Weak RPA gives E PNC accurate to about 3%. follows: Therefore, we organize calculation as n = 6 9 valence states: evaluate matrix elements using SD wave functions (98%) n = 1 5 core states and n > 10: evaluate using weak RPA amplitudes (2%) Coupled-Cluster Symposium July

18 Contributions to PNC Amplitude Contributions to E PNC in units iea 0 Q W /N. n 7s D np np H (1) 6s E 6s E np Contrib n 7s H (1) np np D 6s E 7s E np Contrib n = (4) RPA part (1) Total (4) Coupled-Cluster Symposium July

19 Brueckner-Goldstone Diagrams for the SDCC Equations m a = m a m b n + a a r b n + m c b n + exchange terms m a n b m a n b = a + m r n s b m + a c b d n m a n b + c + a m r n b + m a c n r b + exchange terms Coupled-Cluster Symposium July

20 Data Analysis [ ] E exp PNC = QW Eth PNC N + κ ɛ F F E exp 34 E exp 43 β (a 3 0 ) (80) /β (mv/cm) (80) /β (mv/cm) (77) 34 (10 11 ) (49) 43 (10 11 ) (47) V (10 11 ) (37) PNC (10 11 ) (45) Q exp W (46) κ exp 0.117(16) E exp E exp E exp E th Coupled-Cluster Symposium July

21 Analysis of 6s 7s Amplitude in 133 Cs Combining the calculations and the measurements Q exp W (133 Cs) = 71.91(46) 72.73(46) differs with the standard model value Q SM W (133 Cs) = 73.09(3) by 2.5 σ. 0.8 σ Additional Corrections: Breit Interaction -0.6% Vacuum Polarization +0.4% αz Vertex Corrections -0.7% Nuclear Skin Effect -0.2% Coupled-Cluster Symposium July

22 Analysis of 6s 7s Amplitude in 133 Cs Combining the calculations and the measurements Q exp W (133 Cs) = 71.91(46) 72.73(46) differs with the standard model value Q SM W (133 Cs) = 73.09(3) by 2.5 σ. 0.8 σ. Additional Corrections: Breit Interaction -0.6% Vacuum Polarization +0.4% αz Vertex Corrections -0.7% Nuclear Skin Effect -0.2% Coupled-Cluster Symposium July

23 the data currently favor T<0, thus strengthening the exclusion limits. A more detailed analysis is required if the extra neutrino (or the extra down-type quark) is close to its direct mass limit [208]. This can drive S to small or even negative values but at the expense of too-large contributions to T. These results are in agreement with a fit to the number of light neutrinos, N ν =2.986 ± (which favors a larger value for α s (M Z )= ± mainly from R l and τ τ ). However, the S parameter fits are valid even for a very heavy fourth family neutrino. Constraints on New Physics Γ Z, σ had, R l, R q asymmetries M W ν scattering Q W E 158 T all: M H = 117 GeV all: M H = 340 GeV all: M H = 1000 GeV S Figure 10.4: 1 σ constraints (39.35 %) on S and T from various inputs combined with M Z. S and T represent the contributions of new physics only. (Uncertainties from m t are included in the errors.) The contours assume M H = 117 GeV except for the central and upper 90% CL contours allowed by all data, which are for M H = 340 GeV and 1000 GeV, respectively. Data sets not involving M W are insensitive to U. Due to higher order effects, however, U = 0 has to be assumed in all Coupled-Cluster Symposium July

24 Anapole Moment of 133 Cs Group κ κ 2 κ hf κ a Safronova and Johnson 0.117(16) (16) Haxton et al (16) (16) Flambaum and Murray 0.112(16) (16) 7 Bouchiat and Piketty from Haxton et al. 2 from Flambaum and Murray 3 from Bouchiat and Piketty 4 The spin-dependent matrix elements from Kraftmakher are used. 5 Shell-model value with sin 2 θw = This value was obtained by scaling the analytical result from Flambaum and Khriplovich (κhf = ) by a factor Contains a 1.6% correction for finite nuclear size; the raw value is 0.094(16). Coupled-Cluster Symposium July

25 Constraints on Nuclear Weak Coupling Constants (h 0 ρ +0.7h 0 ω) F 133 Cs pp 0 18 F pα f π 0.12h 1 ρ 0.18h 1 ω 11 B. Desplanques, J. F. Donoghue, and B. Holstein, Ann. Phys. (NY) (1980); W. C. Haxton and C. E. Wieman, Ann. Rev. Nucl. Part. Sci. 51, 261 (2001) Coupled-Cluster Symposium July

26 Conclusions Measurements of the weak charge in heavy atoms provide important tests of the validity of the electroweak standard model and provide limits on possible extensions. Measurements of the nuclear anapole moment provide constraints on nucleon-nucleon weak coupling constants that are inconsistent with PNC experiments in light nuclei. New measurements badly needed! Measurements of PNC in atoms depend on precise atomic manybody calculations to provide useful new information concerning weak interaction physics. Error estimates on calculations of PNC amplitudes are mandatory! Coupled-Cluster Symposium July

Parity Nonconservation in Cesium: Is the Standard Model in Trouble?

Parity Nonconservation in Cesium: Is the Standard Model in Trouble? Parity Nonconservation in Cesium: Is the Standard Model in Trouble? Walter Johnson Department of Physics Notre Dame University http://www.nd.edu/ johnson May 10, 2001 Abstract This is a brief review of

More information

CURRENT STATUS AND FUTURE PROSPECTS

CURRENT STATUS AND FUTURE PROSPECTS AMO seminar - Berkeley March 18, 2008 ATOMIC PNC THEORY: CURRENT STATUS AND FUTURE PROSPECTS MARIANNA SAFRONOVA OUTLINE Motivation & Summary of experiment Nuclear spin-independent PNC & weak charge How

More information

current status And future prospects

current status And future prospects September 20, 2007 Rare Isotopes & Fundamental symmetries workshop Atomic pnc theory: current status And future prospects marianna safronova outline Motivation & Summary of experiment Nuclear spin-independent

More information

ATOMIC PARITY VIOLATION

ATOMIC PARITY VIOLATION ATOMIC PARITY VIOLATION OUTLINE Overview of the Atomic Parity Violation Theory: How to calculate APV amplitude? Analysis of Cs experiment and implications for search for physics beyond the Standard Model

More information

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia

ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS. Budker Institute of Nuclear Physics, Novosibirsk, Russia ON THE THEORY OF NUCLEAR ANAPOLE MOMENTS V.F. Dmitriev 1, and I.B. Khriplovich 2 Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia Abstract We discuss the present state of the theory of nuclear

More information

Prospects for Atomic Parity Violation Experiments

Prospects for Atomic Parity Violation Experiments Prospects for Atomic Parity Violation Experiments Konstantin Tsigutkin and Dima Budker http://socrates.berkeley.edu/~budker socrates.berkeley.edu/~budker/ Outline A brief story of parity violation in atoms

More information

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland

Proposed experiment for the anapole measurement in francium. Luis A. Orozco Joint Quantum Institute University of Maryland Proposed experiment for the anapole measurement in francium Luis A. Orozco Joint Quantum Institute University of Maryland FrPNC collaboration: S. Aubin, J. A. Behr, V. Flambaum, E. Gomez, G. Gwinner, K.

More information

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment IL NUOVO CIMENTO Vol.?, N.?? Atomic Parity Non-Conservation in Francium: The FrPNC Experiment at TRIUMF S. Aubin( 1 ), E. Gomez( 2 ), J. A. Behr( 3 ), M. R. Pearson( 3 ), D. Sheng( 4 ), J. Zhang( 4 ),

More information

Atomic Parity Violation in Ytterbium

Atomic Parity Violation in Ytterbium Atomic Parity Violation in Ytterbium K. Tsigutkin, D. Dounas-Frazer, A. Family, and D. Budker http://budker.berkeley.edu Atomic PV: important landmarks! 1959 Ya. B. Zel dovich: APV (Neutr. Current) Opt.

More information

Atomic Parity Violation

Atomic Parity Violation Atomic Parity Violation Junghyun Lee APV proposes new physics beyond the standard model of elementary particles. APV is usually measured through the weak nuclear charge Q w, quantifying the strength of

More information

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction

Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Nuclear Anapole Moments and the Parity-nonconserving Nuclear Interaction Cheng-Pang Liu TRIUMF Research Facility, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 Abstract. The anapole moment is a parity-odd

More information

Status of Atomic PNC: Experiment/Theory

Status of Atomic PNC: Experiment/Theory Status of Atomic PNC: Experiment/Theory W. R. Johnson University of Notre Dame Abstract Atomic PNC measurements and calculations are reviewed with emphasis on the 6s 7s transition in cesium and the corresponding

More information

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS

ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS University of Virginia Colloquium ATOMIC CALCULATIONS FOR TESTS OF FUNDAMENTAL PHYSICS MARIANNA SAFRONOVA November 11, 2011 OUTLINE Atomic physics tests of fundamental physics Parity violation Search for

More information

Tests of fundamental symmetries with atoms and molecules

Tests of fundamental symmetries with atoms and molecules Tests of fundamental symmetries with atoms and molecules 1 Listening to an atom q Coulomb forces + Quantum Electro-Dynamics => a relatively simple interpretation q Unprecedented control over internal and

More information

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia

I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia HISTORY AND PERSPECTIVES OF P AND T VIOLATION IN ATOMS I.B. Khriplovich Budker Institute of Nuclear Physics, Novosibirsk, Russia I. HISTORY Historically, good reasons to start just with /P, /T effects.

More information

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD

Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Nuclear structure and the anapole moment in francium; experiments and proposals. Luis A. Orozco UMD Work done in collaboration with Prof. Gene Sprouse from SUNYSB And Prof. David DeMille from Yale University.

More information

Atomic-Physics Tests of QED & the Standard Model

Atomic-Physics Tests of QED & the Standard Model Atomic-Physics Tests of QED & the Standard Model W.R. Johnson Notre Dame University http://www.nd.edu/ johnson Abstract A brief review of tests of strong-field QED in many-electron atoms and of atomic

More information

Hadronic Weak Interactions

Hadronic Weak Interactions 1 / 44 Hadronic Weak Interactions Matthias R. Schindler Fundamental Neutron Physics Summer School 2015 Some slides courtesy of N. Fomin 2 / 44 Weak interactions - One of fundamental interactions - Component

More information

Hadronic Parity Violation

Hadronic Parity Violation Hadronic Parity Violation Barry R. Holstein UMass May 9, 007 INT Talk Analogy TV Detective Show 10 Min. Problem: (Body!) 35 Min. Clues (including red herrings) 5 Min. Solution (Culprit brought to justice)

More information

Parity non-conservation in thallium

Parity non-conservation in thallium Parity non-conservation in thallium M. G. Kozlov and S. G. Porsev Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia W. R. Johnson Department of Physics, Notre Dame University, Notre Dame,

More information

High-precision calculation of the parity-nonconserving amplitude in francium

High-precision calculation of the parity-nonconserving amplitude in francium High-precision calculation of the parity-nonconserving amplitude in francium M. S. Safronova and W. R. Johnson Department of Physics, Notre Dame University, Notre Dame, Indiana 46556 Received 6 December

More information

Hadronic parity-violation in pionless effective field theory

Hadronic parity-violation in pionless effective field theory Hadronic parity-violation in pionless effective field theory Matthias R. Schindler Ohio University PAVI9 June 25, 29 In collaboration with D. R. Phillips and R. P. Springer Introduction Effective Field

More information

Triple excitations in the coupled-cluster method. Application to atomic properties.

Triple excitations in the coupled-cluster method. Application to atomic properties. Triple excitations in the coupled-cluster method. Application to atomic properties. Sergey G. Porsev 1 and Andrei Derevianko 2 1 Petersburg Nuclear Physics Institute Gatchina, Russia 2 University of Nevada

More information

arxiv: v2 [physics.atom-ph] 1 Apr 2013

arxiv: v2 [physics.atom-ph] 1 Apr 2013 Calculation of parity non-conserving optical rotation in iodine at 1315 nm G. E. Katsoprinakis, L. Bougas and T. P. Rakitzis Institute of Electronic Structure and Lasers, Foundation for Research and Technology-Hellas,

More information

Parity Violation in Diatomic Molecules

Parity Violation in Diatomic Molecules Parity Violation in Diatomic Molecules Jeff Ammon, E. Altuntas, S.B. Cahn, R. Paolino*, D. DeMille Physics Department, Yale University *Physics Department, US Coast Guard Academy DeMille Group Funding:

More information

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS

INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS DAMOP 2010 May 29, 2010 DEVELOPMENT OF A CONFIGURATION-INTERACTION INTERACTION PLUS ALL-ORDER METHOD FOR ATOMIC CALCULATIONS MARIANNA SAFRONOVA MIKHAIL KOZLOV PNPI, RUSSIA DANSHA JIANG UNIVERSITY OF DELAWARE

More information

Physics 129, Fall 2010; Prof. D. Budker

Physics 129, Fall 2010; Prof. D. Budker Physics 129, Fall 2010; Prof. D. Budker Intrinsic parity of particles A brief history of parity: Concept found (no parity in everyday life): O. Laporte, 1924 Concept understood: Wigner, 1927 Concept becomes

More information

Fundamental Symmetries in Laser Trapped Francium

Fundamental Symmetries in Laser Trapped Francium CAADA S ATIOAL LABORATORY FOR PARTICLE AD UCLEAR PHYSICS Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the ational Research Council Canada Fundamental

More information

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco

What we know about Francium. University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco What we know about Francium University of Science and Technology of China Hefei, China July 2018 Luis A. Orozco www.jqi.umd.edu The slides are available at: http://www.physics.umd.edu/rgroups/amo/orozco/results/2018/results18.htm

More information

Isotopic variation of parity violation in atomic ytterbium

Isotopic variation of parity violation in atomic ytterbium Isotopic variation of parity violation in atomic ytterbium D. Antypas 1,*, A. Fabricant 2, J.E. Stalnaker 3, K. Tsigutkin 4,. Flambaum 2,5 and D. Budker 1,2,6 1 Helmholtz-Institut Mainz, Mainz 55128, Germany

More information

List of Publications (Peer-Reviewed Journals)

List of Publications (Peer-Reviewed Journals) List of Publications (Peer-Reviewed Journals) 1. Blackbody radiation shift in a 43 Ca+ ion optical frequency standard, Bindiya Arora, M.S. Safronova, and Charles W. Clark, submitted to Phys. Rev. Lett.

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

Atomic Clocks and the Search for Variation of Fundamental Constants

Atomic Clocks and the Search for Variation of Fundamental Constants January 22, 2015 Atomic Clocks and the Search for Variation of Fundamental Constants MARIANNA SAFRONOVA University of Maryland Outline Blackbody radiation shifts in atomic clocks: Al +, Yb, Sr Theoretical

More information

Neutron stars at JLAB and the Pb Radius Experiment

Neutron stars at JLAB and the Pb Radius Experiment Neutron stars at JLAB and the Pb Radius Experiment PREX uses parity violating electron scattering to accurately measure the neutron radius of 208 Pb. 208 Pb This has many implications for nuclear structure,

More information

Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium.

Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium. Effects of Neutron Spatial Distributions on Atomic Parity Nonconservation in Cesium. S. J. Pollock and M. C. Welliver Dep t of Physics, University of Colorado, Boulder CO 80309 (July 12, 1999) We have

More information

arxiv: v1 [physics.atom-ph] 26 Jan 2012

arxiv: v1 [physics.atom-ph] 26 Jan 2012 Electric dipole moment enhancement factor of thallium S. G. Porsev 1,2, M. S. Safronova 1, and M. G. Kozlov 2 1 Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

More information

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF

The FrPNC Experiment, weak interaction studies in Francium at TRIUMF The FrPNC Experiment, weak interaction studies in Francium at TRIUMF E Gomez 1, S Aubin 2, R Collister 3, J A Behr 4, G Gwinner 3, L A Orozco 5, M R Pearson 4, M Tandecki 3, D Sheng 5, J Zhang 5 1 Institute

More information

Status of the Search for an EDM of 225 Ra

Status of the Search for an EDM of 225 Ra Status of the Search for an EDM of 225 Ra I. Ahmad, K. Bailey, J. Guest, R. J. Holt, Z.-T. Lu, T. O Connor, D. H. Potterveld, N. D. Scielzo Roy Holt Lepton Moments 2006 Cape Cod Outline Why is an EDM interesting?

More information

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar

University of Groningen. Radium Ion Spectroscopy Giri, Gouri Shankar University of Groningen Radium Ion Spectroscopy Giri, Gouri Shankar IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document

More information

Breit interaction in heavy atoms

Breit interaction in heavy atoms LETTER TO THE EDITOR Breit interaction in heavy atoms M G Kozlov, SGPorsev, and I I Tupitsyn Petersburg Nuclear Physics Institute, 188350, Gatchina, Russia E-mail: mgk@mf1309.spb.edu St. Petersburg State

More information

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U.

Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) Based on talks at: W&M, Rockefeller, BNL and U. Precision sin 2 θ W (Q 2 ) & Electroweak Physics at The EIC (Electron-Ion Collider) William J. Marciano (October 26, 2010) Based on talks at: W&M, Rockefeller, BNL and U. Washington Outline 1. General

More information

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion

Towards a Precise Measurement of Atomic Parity Violation in a Single Ra + Ion Towards a Precise Measurement of Atomic Parity Violation in a Single + Ion TRIµP Program Trapped dioactive Isotopes: µ-laboratories for fundamental Physics Kernfysisch Versneller Instituut (KVI) University

More information

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions

Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced. by the nuclear Schiff moment and limits on time-reversal. violating interactions Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions V.A. Dzuba, V.V. Flambaum, and J.S.M. Ginges School of Physics,

More information

Introduction. The FrPNC Collaboration. Scientific goals and their merit

Introduction. The FrPNC Collaboration. Scientific goals and their merit Project Summary Laser trapping and cooling facility for weak interaction experiments with francium isotopes at TRIUMF Applicant: University of Maryland Project Participants: Seth Aubin, Co-Principal Investigator,

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL

Paul Huffman! Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Investigating Hadronic Parity Violation Using the γd np Reaction at the Proposed HIGS2 facility at TUNL Paul Huffman! North Carolina State University Triangle Universities Nuclear Laboratory!!!! M.W. Ahmed!

More information

Efficient inter-trap transfer of cold francium atoms

Efficient inter-trap transfer of cold francium atoms Hyperfine Interact (2016) 237:150 DOI 10.1007/s10751-016-1347-9 Efficient inter-trap transfer of cold francium atoms J. Zhang 1 R. Collister 2 K. Shiells 2 M. Tandecki 3 S. Aubin 4 J. A. Behr 3 E. Gomez

More information

Precision calculations of atoms with few valence electrons

Precision calculations of atoms with few valence electrons Precision calculations of atoms with few valence electrons arxiv:physics/0306061v1 [physics.atom-ph] 7 Jun 2003 M.G.Kozlov Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia E-mail:mgk@MF1309.spb.edu

More information

Collaborator ==============================

Collaborator ============================== RI Collaborator ============================== 20 CKM : 100 GeV (Plank scale): 10 19 GeV EDM + + + - - - Time: t -t Spin: s -s EDM: d d + + + - - - d 0 T-violation CP-violation CPT theorem Standard Model

More information

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics Lecture 7 Experimental Nuclear Physics PHYS 741 Text heeger@wisc.edu References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics 98 Scattering Topics

More information

Atomic Calculations for Future Technology and Study of Fundamental Problems

Atomic Calculations for Future Technology and Study of Fundamental Problems Atomic Calculations for Future Technology and Study of Fundamental Problems M. S. Safronova Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA Abstract. Selected modern

More information

Parity-Violating Asymmetry for 208 Pb

Parity-Violating Asymmetry for 208 Pb Parity-Violating Asymmetry for 208 Pb Matteo Vorabbi Dipartimento di Fisica - Università di Pavia INFN - Sezione di Pavia Rome - 2015 January 15 Matteo Vorabbi (Università di Pavia) Parity-Violating Asymmetry

More information

Global properties of atomic nuclei

Global properties of atomic nuclei Global properties of atomic nuclei How to probe nuclear size? Electron Sca5ering from nuclei For low energies and under condi0ons where the electron does not penetrate the nucleus, the electron sca5ering

More information

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d

Search for a Permanent Electric Dipole Moment in Ra EDM Spin EDM Spin EDM. Spin. Pseudo-scalar. s d Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin Pseudo-scalar s d C. S. Wu 1912-1997 Parity (space reversal) x, y, z -x, -y, -z z y Parity z x x y Pseudo-scalar

More information

arxiv:nucl-th/ v1 31 Dec 2001

arxiv:nucl-th/ v1 31 Dec 2001 Anomalous anapole moment of an exotic nucleus M.S. Hussein 1, A.F.R. de Toledo Piza 1, O.K. Vorov 1, and A.K. Kerman 2 1 Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP, Brasil 2 Center for

More information

Strange Electromagnetic and Axial Nucleon Form Factors

Strange Electromagnetic and Axial Nucleon Form Factors Strange Electromagnetic and Axial Nucleon Form Factors A combined analysis of HAPPEx, G 0, and BNL E734 data Stephen Pate, Glen MacLachlan, David McKee, Vassili Papavassiliou New Mexico State University

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das

Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theory of Electric Dipole Moments of Atoms and Molecules Bhanu Pratap Das Theoretical Physics and Astrophysics Group Indian Institute of Astrophysics Bangalore Collaborators: H. S. Nataraj, B. K. Sahoo,

More information

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics

EDM. Spin. ν e. β - Li + Supported by DOE, Office of Nuclear Physics T + - + - He Ra EDM Spin EDM Spin β - θ ν e He Kr 6 He 6 Li + Supported by DOE, Office of Nuclear Physics Search for a Permanent Electric Dipole Moment in Ra-225 + T + P - - - + EDM Spin EDM Spin EDM Spin

More information

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues An Experiments Krishna Kumar Stony Brook University The Electroweak Box Workshop at

More information

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein

MSSM Radiative Corrections. to Neutrino-nucleon Deep-inelastic Scattering. Oliver Brein MSSM Radiative Corrections to Neutrino-nucleon Deep-inelastic Scattering Oliver Brein Institute of Particle Physics Phenomenology, University of Durham in collaboration with olfgang Hollik and Benjamin

More information

Two photon exchange: theoretical issues

Two photon exchange: theoretical issues Two photon exchange: theoretical issues Peter Blunden University of Manitoba International Workshop on Positrons at JLAB March 25-27, 2009 Proton G E /G M Ratio Rosenbluth (Longitudinal-Transverse) Separation

More information

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH

BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH IEEE-IFCS IFCS 2010, Newport Beach, CA June 2, 2010 BLACKBODY RADIATION SHIFTS AND MAGIC WAVELENGTHS FOR ATOMIC CLOCK RESEARCH Marianna Safronova 1, M.G. Kozlov 1,2 Dansha Jiang 1, and U.I. Safronova 3

More information

Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium

Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium Determination of the static polarizability of the 8s 2 S 1/2 state of atomic cesium Mevan Gunawardena School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 4797, USA

More information

Electric Dipole Moments I. M.J. Ramsey-Musolf

Electric Dipole Moments I. M.J. Ramsey-Musolf Electric Dipole Moments I M.J. Ramsey-Musolf Wisconsin-Madison NPAC Theoretical Nuclear, Particle, Astrophysics & Cosmology http://www.physics.wisc.edu/groups/particle-theory/ TUM Excellence Cluster, May

More information

Fundamental interactions experiments with polarized trapped nuclei

Fundamental interactions experiments with polarized trapped nuclei Fundamental interactions experiments with polarized trapped nuclei β + DESIR meeting Leuven, 26-28 May 2010 ν e Nathal Severijns Kath. University Leuven, Belgium 5/31/2010 N. Severijns, DESIR Workshop

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Aspects of The Standard Model and Beyond

Aspects of The Standard Model and Beyond Aspects of The Standard Model and Beyond Hadronic Physics Town Meeting at DNP2012 October 25, 2012 Mark Pitt Virginia Tech Parity violating electron scattering at JLab Proton s weak charge: Qweak Electron

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Theoretical study of lifetimes and polarizabilities in Ba +

Theoretical study of lifetimes and polarizabilities in Ba + PHYSICAL REVIEW A 78, 012508 2008 Theoretical study of lifetimes and polarizabilities in Ba + E. Iskrenova-Tchoukova and M. S. Safronova Department of Physics and Astronomy, University of Delaware, Newark,

More information

Opportunities with collinear laser spectroscopy at DESIR:

Opportunities with collinear laser spectroscopy at DESIR: Opportunities with collinear laser spectroscopy at DESIR: the LUMIERE facility GOALS of LUMIERE experiments: Gerda Neyens, K.U. Leuven, Belgium (1) measure ground state properties of exotic isotopes: (see

More information

Manifestations of Low-Mass Dark Bosons

Manifestations of Low-Mass Dark Bosons Manifestations of Low-Mass Dark Bosons Yevgeny Stadnik Humboldt Fellow Johannes Gutenberg University, Mainz, Germany Collaborators (Theory): Victor Flambaum (UNSW) Collaborators (Experiment): CASPEr collaboration

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

Physics of Radioactive Beams 1 Chapter 9 Tests of Fundamental Interactions

Physics of Radioactive Beams 1 Chapter 9 Tests of Fundamental Interactions Physics of Radioactive Beams 1 Chapter 9 Tests of Fundamental Interactions Carlos A. Bertulani, Texas A&M University-Commerce, TX 75429, USA 1 These notes consist of a series of lectures presented by the

More information

Atomic structure and dynamics

Atomic structure and dynamics Atomic structure and dynamics -- need and requirements for accurate atomic calculations Analysis and interpretation of optical and x-ray spectra (astro physics) Isotope shifts and hyperfine structures

More information

Asymmetry dependence of Gogny-based optical potential

Asymmetry dependence of Gogny-based optical potential Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32 Microscopic ingredients

More information

arxiv: v2 [nucl-th] 11 Jun 2018

arxiv: v2 [nucl-th] 11 Jun 2018 Nuclear spin dependence of time reversal invariance violating effects in neutron scattering Vladimir Gudkov Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 908,

More information

Time Reversal and the electron electric dipole moment. Ben Sauer

Time Reversal and the electron electric dipole moment. Ben Sauer Time Reversal and the electron electric dipole moment Ben Sauer Mysteries of physics Mysteries of physics Baryon asymmetry Why is there more matter than antimatter in the observable universe? Breaking

More information

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997

arxiv:physics/ v1 [physics.atom-ph] 10 Jul 1997 Enhancement of the electric dipole moment of the electron in BaF molecule. arxiv:physics/9707011v1 [physics.atom-ph] 10 Jul 1997 M. G. Kozlov, A. V. Titov, N. S. Mosyagin, and P. V. Souchko Petersburg

More information

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe A. Yoshimi RIKEN K. Asahi, S. Emori, M. Tsukui, RIKEN, Tokyo Institute of Technology Nuclear

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Brian Tiburzi 22 August 2012 RIKEN BNL Research Center

Brian Tiburzi 22 August 2012 RIKEN BNL Research Center Anatomy of Hadronic Parity Violation on the Lattice Brian Tiburzi 22 August 2012 RIKEN BNL Research Center The Anatomy of Hadronic Parity Violation Parity Violation, Nuclear Parity Violation, Hadronic

More information

arxiv: v1 [physics.atom-ph] 1 Aug 2018

arxiv: v1 [physics.atom-ph] 1 Aug 2018 APS/13-QED Gain measurement scheme for precise determination of atomic parity violation through two-pathway coherent control J. Choi 1,3, R. T. Sutherland a, George Toh 1,3, A. Damitz and D. S. Elliott

More information

Experimental Atomic Physics Research in the Budker Group

Experimental Atomic Physics Research in the Budker Group Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation Postulate/Spin-Statistics Connection Temporal

More information

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) T Symmetry EDM s Octupole Deformation Other Nuclei Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments) J. Engel University of North Carolina June 16, 2005 T

More information

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering Journal of the Korean Physical Society, Vol. 66, No. 12, June 2015, pp. 1936 1941 Brief Reports Density Dependence of Parity Violation in Electron Quasi-elastic Scattering K. S. Kim School of Liberal Arts

More information

Many-body and model-potential calculations of low-energy photoionization parameters for francium

Many-body and model-potential calculations of low-energy photoionization parameters for francium Many-body and model-potential calculations of low-energy photoionization parameters for francium A. Derevianko and W. R. Johnson Department of Physics, Notre Dame University, Notre Dame, Indiana 46556

More information

arxiv: v1 [hep-ph] 29 Jun 2016

arxiv: v1 [hep-ph] 29 Jun 2016 arxiv:1606.0968v1 [hep-ph] 9 Jun 016 R Bucoveanu PRISMA Cluster of Excellence, Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz, Germany E-mail: rabucove@uni-mainz.de M Gorchtein PRISMA

More information

Calculations of γz corrections

Calculations of γz corrections Calculations of γz corrections Carl E. Carlson William and Mary γz box(ing) workshop, Dec. 16-17, 2013, JLab Our relevant papers Contributions from γz box diagrams to parity violating elastic ep scattering,

More information

Variation of Fundamental Constants

Variation of Fundamental Constants Variation of Fundamental Constants V.V. Flambaum School of Physics, UNSW, Sydney, Australia Co-authors: Atomic calculations V.Dzuba, M.Kozlov, E.Angstmann,J.Berengut,M.Marchenko,Cheng Chin,S.Karshenboim,A.Nevsky

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL Carlotta Giusti and Andrea Meucci Università and INFN, Pavia Neutrino-Nucleus

More information

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB Precision tests of the Standard Model with trapped atoms 1 st lecture Luis A. Orozco SUNYSB The Standard Model (brief review) Symmetries Conserved quantities Gauge Symmetries (local and continuous) Particles

More information

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst Electroweak Physics Krishna S. Kumar University of Massachusetts, Amherst Acknowledgements: M. Grunewald, C. Horowitz, W. Marciano, C. Quigg, M. Ramsey-Musolf, www.particleadventure.org Electroweak Physics

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics 1. Incompressibility and Giant Resonances (ISGMR, ISGDR) 2. Charge exchange reactions 3. Photon Beams for (g,g

More information