Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Size: px
Start display at page:

Download "Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)"

Transcription

1 Electron Beam Polarimetry: Status and Prospects DIS 2005, Madison, April 2005 E. Chudakov (JLab) Motivation: what accuracy is required for various experiments Methods in use: Optical methods Mott scattering Moller scattering Compton scattering Most accurate polarimeters and ways to improve Conclusion DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 1

2 Demand for Electron Beam Polarimetry and Accuracy Required Double Spin Experiments e N e X DIS - PDF, GDH e N e N elastic: formafactors e N e N elastic: formafactors e e + X SM Single Spin Experiments Neutral currents - parity violation (PV) e N e X DIS - SM tests e p e p formfactors, SM e A e A nuclear physics e e + X SM Charged currents e p νx - SM A obs P beam P target A reaction Typically σ(p) P Required: > σ(p) target P beam σ(p) P beam < 2 3% A obs P beam A reaction Required: σ(p) P beam < 1% DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 2

3 Challenges to Polarimetry at JLab Parity violating electron scattering experiments: Progress in reducing the systematic errors Beam polarization: becomes the dominant error! JLab planned experiments, beam current µA: Syst. err Polar. Stat. Energy Comments Experiment without pol error error GeV 208 P b n-skin 0.5% 1.0% 3.0% 0.85 soon ep sin 2 θ W 2.4% <1.4% 2.8% 1.16 soon DIS sin 2 θ W 0.3% <1.0% 0.8% 10.0 after 12 GeV upgrade A 1%, polarimetry accuracy is needed A 0.5% accuracy would be even better... DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 3

4 Important Features of Beam Polarimetry Energy range E beam = GeV, in future ILC E beam > 250 GeV Low energy range E beam = MeV needed to test the injectors Current range E beam = 0.01 µa 2 A, various duty cycles Systematic error Statistical error for a period of a possible polarization change Invasive or not Does polarimetry use the same beam (energy, current, location) as the experiment? DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 4

5 Methods Used for Absolute Electron Polarimetry Spin-dependent processes with a known analyzing power. Atomic Absorption e 50 kev decelerated to 13 ev e (13eV ) + Ar Ar + e, Ar Ar + (hν) σ Atomic levels: (3p 5 4p) 3 D 3 (3p 6 4s) 3 P nm fluorescence Potential σ syst 1%. Under development (Mainz) - only relative so far. Currently - invasive, diff. beam Spin-Orbital Interaction Mott scattering, MeV: e + Z e + Z σ syst 3%, 1% (?) invasive, diff. beam Spin-Spin Interaction Møller scattering: e + e e + e at >0.1 GeV, σ syst 3-4%, 0.5% Mostly invasive, diff. beam Compton scattering: e + (hν) σ e + γ at >0.5 GeV 1-2%, 0.5%. non-invasive, same beam DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 5

6 Mott Polarimetry MeV: e + Au e + Au Analyzing power - Sherman functions 1-3%: Nucleus thickness: phase shifts of scat. amplitudes Spin rotation functions Electron screening, rad. corrections Multiple and plural scattering No energy loss should be allowed Single arm - background Extrapolation to zero target thickness e < 5 µa - extrapolation needed JLab: σ(p)/p = 1%(Sherman) 0.5%(other) (unpublished) σ(extrapol) DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 6

7 Compton Polarimetry e + (hν) σ e + γ QED. Electron Beam Polarimetry: Status and Prospects σ σ σ +σ = A P b P t Møller Polarimetry e + e e + e QED. A(E) = 7 9 σ lab 180 mb ster Rad. corrections to Born < 0.1% Detecting the γ at 0 angle Detecting the e with an energy loss Strong da - good σe dk γ /E γ needed A ke at E < 20 GeV T 1/(σ A 2 ) 1/k 2 1/E 2 P laser 100% Non-invasive measurement Syst. error 3 50 GeV: % Hard at < 1 GeV: (JLab project) 0.8% Rad. corrections to Born < 0.3% Detecting the e at θ CM 90 da dθ CM good systematics Beam energy independent Coincidence - no background Ferromagnetic target P T 8% > 1 µm: invasive measurement Beam I B < 2 4 µa (heating) Levchuk effect Low P T dead time Syst. error σ(p T ) 3% (0.3%) Syst. error 3% typically, (0.5%) DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 7

8 Møller Polarimeter with Saturated Iron foil JLab, Hall C, M. Hauger et al., NIM A 462, 382 (2001) External B Z 4 T Target foils 4-10 µm, perp. to beam P t not measured Important: annealing, etc. Tests for high current Beam σ X 50µm > r = 12µm At 20µA - accidentals/real 0.4 σ stat 1% in 2h 100 Hz to 10 khz Kick (1-2 mm) 20 µs source σ(a)/a optics, geometry 0.20% target 0.28% Levchuk effect 0.30% Current Studies A 1µA thick half-foil Higher duty factor total 0.46% 100 µa? DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 8

9 Møller Polarimeter with Atomic Hydrogen Target Project: E. Chudakov and V. Luppov, IEEE Trans. Nucl. Sci. 51, 1533 (2004). Ultra-cold traps 30K 0.3K H Solenoid 8T beam Storage Cell 4 cm 40 cm Atom H1: µ µe, E = µ B Population exp( E/kT ) At 300 mk Pe Density cm 3 Lifetime > 1 h Stat. 1% in 10 min at 100 µa Contamination and Depolarization at 100µA CEBAF Hydrogen molecules < Upper states c and d < 10 5 Excited states < 10 5 Helium, residual gas <0.1% - beam-measurable Depolarization by beam RF < Ion, electron contamination < 10 5 Ionization heating < Expected depolarization < 10 4 Limitations Problems I 2 b /F continuous beam (MAMI, CEBAF...) Complexity of the target Advantages Expected accuracy < 0.5% Non-invasive, continuous, the same beam DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 9

10 Bhabha/Møller Scattering at Colliders Linear Collider Depolarization in bunch collisions measurement at the collision point! Electron-Ion Collider - JLab Design e e GeV L cm 2 Experiment s, L pb 1 dσ dω CM 0.2 pb/ster Bhabha 10 5 events σ(p)/p 0.7% W - production s-channel vector exchange - Blondel scheme Faster methods are needed (Compton) e e 3 3 GeV GeV a new collision point at the center L cm 2 dσ dω CM 1000 pb/ster Møller Stat. 1% in 5 min A high luminosity collision point - some other interest? DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 10

11 Compton Polarimeters: Best Accuracy at High Energy SLAC SLD Stat: 1% in 3 min σ(p)/p source SLD ILC 1998 Goal Laser polarization 0.10% 0.10% Analyzing power 0.40% 0.20% Linearity 0.20% 0.10% Electronic noise 0.20% 0.05% total 0.50% 0.25% Beam: 45.6 GeV Beam: e 120 Hz 0.7 µa Laser: 532 nm, 50 mj at 7 ns 17 Hz Crossing angle 10 mrad e GeV detector - gas Cherenkov γ detector - calorimeter M.Woods, JLab Polarimetry workshop, 2003 DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 11

12 Compton Polarimeters: CW Low Energy Beam - Cavity λ P=1kW =1064 nm, k=1.65 ev Electron Beam Electrons detector Photons detector Magnetic Chicane k E E JLab Hall A Compton Beam: GeV Beam: µa at 500 MHz Laser: 1064 nm, 0.24 W Fabry-Pérot cavity kw Crossing angle 23 mrad e detector - Silicon µ-strip γ detector - calorimeter Stat: 1.0% in 30 min at 4.5 GeV, 40 µa Syst: 1.2% at 4.5 GeV source σ(p)/p Laser polarization 0.50% Response function 0.40% Calibration 0.60% Others 0.65% total 1.15% Upgrade Plans - 1% at 0.85 GeV Laser: 532 nm, 0.1 W Cavity kw Detector upgrade DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 12

13 Compton Polarimeters: Storage Rings (DESY) Current 30 GeV e 10 MHz 40 ma Laser: 532 nm, 100 mj at <100 Hz Crossing angle 8.7 mrad γ detector - calorimeter New Polarimeter Cavity 1064 nm (as JLab) Single bunch measurement Expected systematics: 0.1% Stat: 1.0% in 2 min in multi-photon mode Syst: 1.6% DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 13

14 Compton Polarimeters: Storage Rings (DESY) TPOL TPOL vs LPOL Stable for HERA-I Difference <2% Transverse polarization Laser: 532 nm CW Crossing angle 3.1 mrad Single photon mode γ detector - calorimeter Syst: 1.9% DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 14

15 Conclusion Accuracy of 1.0% becomes common for Compton polarimetry Accuracy of 0.5% is still exceptional Compton polarimetry fits very well the high energy storage rings Moller polarimetry can be used at low energy, one may be able to reach <0.5% DIS 2005, Madison, April 29, 2005 E.Chudakov (JLab) 15

Beam Polarimetry (for Future Experiments at JLab)

Beam Polarimetry (for Future Experiments at JLab) Outline E.Chudakov June 24, 2009, PAVI-09 Beam Polarimetry 1 Beam Polarimetry (for Future Experiments at JLab) E.Chudakov 1 1 JLab PAVI-09 Outline E.Chudakov June 24, 2009, PAVI-09 Beam Polarimetry 2 Outline

More information

Polarimetry in Hall A

Polarimetry in Hall A Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry in Hall A 1 Polarimetry in Hall A E.Chudakov 1 1 Hall A, JLab Moller-12 Workshop, Aug 2008 Outline E.Chudakov Moller-12 Workshop, Aug 2008 Polarimetry

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Møller Polarimetry in Hall A and Beyond

Møller Polarimetry in Hall A and Beyond Outline E.Chudakov EIC, Ann Arbor, Aug 2007 Møller Polarimetry: Hall A and beyond 1 Møller Polarimetry in Hall A and Beyond E.Chudakov 1 1 Hall A, JLab EIC Polarimetry Workshop, Ann Arbor, Aug 23-24, 2007

More information

Møller Polarimetry on Atomic Hydrogen

Møller Polarimetry on Atomic Hydrogen E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen 1 Møller Polarimetry on Atomic Hydrogen E.Chudakov 1 1 JLab Meeting at UVA Outline E.Chudakov June 21, 2011 Møller Polarimetry on Atomic Hydrogen

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Electron Beam Polarimetry at JLab

Electron Beam Polarimetry at JLab Electron Beam Polarimetry at JLab Experiments using polarized electrons at JLab JLab polarized beam Polarimetry at JLab: Mott polarimetry Møller polarimetry Compton polarimetry Special challenges of new

More information

Electron Polarimetry Overview

Electron Polarimetry Overview E.Chudakov IEB 2015, Cornell Electron Polarimetry Overview 1 / 35 Electron Polarimetry Overview E.Chudakov 1 1 JLab Workshop: Intense Electron Beams (IEB) June 17-20, Cornell, NY Outline E.Chudakov IEB

More information

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia

Toward 0.5% Electron Beam Polarimetry. Kent Paschke University of Virginia Toward 0.5% Electron Beam Polarimetry Kent Paschke University of Virginia Needs for 0.5% The proposed PV-DIS experiments may be systematics limited, with fractional errors approaching 0.5%. No

More information

EIC Electron Beam Polarimetry Workshop Summary

EIC Electron Beam Polarimetry Workshop Summary EIC Electron Beam Polarimetry Workshop Summary W. Lorenzon Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Abstract. A summary of the Precision Electron Beam

More information

EIC Electron Beam Polarimetry Workshop Summary

EIC Electron Beam Polarimetry Workshop Summary EIC Electron Beam Polarimetry Workshop Summary W. Lorenzon Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA Abstract. A summary of the Precision Electron Beam

More information

Overview on Compton Polarimetry

Overview on Compton Polarimetry General Issues O spin motion & alignment tolerances O beam-beam effects & upstream vs. Downstream Compton Polarimetry Basics O beam parameters & Compton detection methods O kinematics, cross sections &

More information

Lepton beam polarisation for the HERA experiments ZEUS and H1

Lepton beam polarisation for the HERA experiments ZEUS and H1 Lepton beam polarisation for the HERA experiments ZEUS and H1 Polarisation at collider machines The HERA storage ring The HERA polarimeters The collider experiments ZEUS and H1 The HERA II upgrade Data

More information

The low Q 2 chicane and Compton polarimeter at the JLab EIC

The low Q 2 chicane and Compton polarimeter at the JLab EIC EPJ Web of Conferences 112, 01007 (2016) DOI: 10.1051/ epjconf/ 201611201007 C Owned by the authors, published by EDP Sciences, 2016 The low Q 2 chicane and Compton polarimeter at the JLab EIC, Alexandre

More information

Electron Beam Polarimetry at Jefferson Lab Dave Gaskell Jefferson Lab (Hall C)

Electron Beam Polarimetry at Jefferson Lab Dave Gaskell Jefferson Lab (Hall C) Electron Beam Polarimetry at Jefferson Lab Dave Gaskell Jefferson Lab (Hall C) CASA Beam Physics Seminar February 14, 2008 1. Motivation: Why do we care so much about polarimetry? 2. Overview of JLab polarimeters

More information

Progress Report on the A4 Compton Backscattering Polarimeter

Progress Report on the A4 Compton Backscattering Polarimeter A4 Progress Report on the A4 Compton Backscattering Polarimeter Yoshio Imai, Institut für Kernphysik, Universität Mainz 8.6.24 International Workshop on Parity Violation and Hadronic Structure, LPSC Grenoble

More information

Polarimetry. POSIPOL 2011 Beijing Peter Schuler (DESY) - Polarimetry

Polarimetry. POSIPOL 2011 Beijing Peter Schuler (DESY) - Polarimetry Polarimetry Overview Compton Transmission Polarimetry at source energy Bhabha Polarimetry at 400 MeV Compton Polarimetry at 5 GeV Compton Polarimetry at full energy 1 Suitable Processes Compton Transmission

More information

Introduction to polarimetry at HERA

Introduction to polarimetry at HERA Introduction to polarimetry at HERA Alex Tapper Electron polarisation at HERA The LPOL The TPOL The LPOL cavity Electron polarisation in storage rings Electron beam deflected around a ring with B field

More information

Parity Violation Experiments

Parity Violation Experiments Parity Violation Experiments Krishna Kumar University of Massachusetts thanks to the HAPPEX, G0 and Qweak Collaborations, D. Armstrong, E. Beise, G. Cates, E. Chudakov, D. Gaskell, C. Furget, J. Grames,

More information

The Compton backscattering Polarimeter of the A4 Experiment

The Compton backscattering Polarimeter of the A4 Experiment A4 The Compton backscattering Polarimeter of the A4 Experiment Yoshio Imai Institut für Kernphysik, Universität Mainz Polarimeter Group: J. Diefenbach, Y. Imai, J. Lee, M. Sikora, S. Taylor 07.10.2004

More information

EICUG Working Group on Polarimetry. Elke Aschenauer BNL Dave Gaskell Jefferson lab

EICUG Working Group on Polarimetry. Elke Aschenauer BNL Dave Gaskell Jefferson lab EICUG Working Group on Polarimetry Elke Aschenauer BNL Dave Gaskell Jefferson lab 1 Outline Charge Polarimetry Requirements and Goals Electron Polarimetry Hadron Polarimetry Working Group Plans 2 Charge

More information

Electron Beam Polarimetry at JLab Hall C Dave Gaskell PST 2009 September 7, 2009

Electron Beam Polarimetry at JLab Hall C Dave Gaskell PST 2009 September 7, 2009 Electron Beam Polarimetry at JLab Hall C Dave Gaskell PST 2009 September 7, 2009 1. Møller Polarimeter 2. Compton Polarimeter 3. Summary JLab Polarimetry Techniques Three different processes used to measure

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

Aspects of The Standard Model and Beyond

Aspects of The Standard Model and Beyond Aspects of The Standard Model and Beyond Hadronic Physics Town Meeting at DNP2012 October 25, 2012 Mark Pitt Virginia Tech Parity violating electron scattering at JLab Proton s weak charge: Qweak Electron

More information

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011

The Lead Radius Experiment PREX. Dustin McNulty Idaho State University for the PREx Collaboration July 28, 2011 The Lead Radius Experiment PREX Dustin McNulty Idaho State University for the PREx Collaboration mcnulty@jlab.org July 28, 2011 The Lead Radius Experiment PREX Outline Motivation Parity Violation at JLab

More information

Precision electron polarimetry

Precision electron polarimetry Precision electron polarimetry E. Chudakov 1 Jefferson Lab 12000 Jefferson Ave, STE 16, Newport News, VA 23606 USA Abstract. A new generation of precise Parity-Violating experiments will require a sub-percent

More information

Introduction Polarimeters at MAMI Analysis Future Conclusion. Polarimetry at MAMI. V. Tyukin, Inst. of Nuclear Physics, Mainz, Germany

Introduction Polarimeters at MAMI Analysis Future Conclusion. Polarimetry at MAMI. V. Tyukin, Inst. of Nuclear Physics, Mainz, Germany Polarimetry at MAMI V. Tyukin, Inst. of Nuclear Physics, Mainz, Germany Workshop to Explore Physics Opportunities with Intense, Polarized Electron Beams up to 3 MeV MIT 213 15 March 213 Contents Introduction

More information

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack

Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Low-Energy Accelerators for High Precision Measurements Sebastian Baunack Johannes Gutenberg-Universität Mainz EINN 2017, Oct. 31 - Nov 4, 2017 Paphos, Cyprus 1 Outline New type of accelerators: ERL High

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

Upstream Polarimetry with 4-Magnet Chicane

Upstream Polarimetry with 4-Magnet Chicane Vahagn Gharibyan,, Peter Schuler Introduction & Overview O Compton polarimetry basics I, II, III O laser parameters O Tesla design & chicane design 4-Magnet Chicane O general layout & properties O movable

More information

The JLEIC electron low Q 2 chicane and Compton polarimeter

The JLEIC electron low Q 2 chicane and Compton polarimeter The JLEIC electron low Q 2 chicane and Compton polarimeter INPC 2016 Alexandre Camsonne, David Gaskell, Joshua Hoskins Hall A Jefferson Laboratory September 12 th 2016 JLEIC Layout Warm Electron Collider

More information

HERA II Physics. Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full.

HERA II Physics. Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full. HERA II Physics Both ZEUS & H1 have made major upgrades in order to utilise the increase in HERA luminosity to the full. 1 HERA II Physics The upgrades concentrate mainly on the following areas: - Vertex

More information

The P2 Experiment at MESA

The P2 Experiment at MESA The P2 Experiment at MESA Sebastian Baunack Johannes utenberg-universität Mainz Intense Electron Beams Workshop June 17-19, 2015 Cornell University External target experiments: Challenges and opportunities

More information

PREX Overview Extracting the Neutron Radius from 208 Pb

PREX Overview Extracting the Neutron Radius from 208 Pb PREX Overview Extracting the Neutron Radius from 208 Pb Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu March 17, 2013 Seamus Riordan CREX 2013 PREX 1/19 Outline Motivation

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

A4 Laser Compton polarimetry

A4 Laser Compton polarimetry A4 Laser Compton polarimetry progress since PAVI06 J. Diefenbach Workshop on Parity Violation 2009, Bar Harbor, Maine - 24.06.2009 Outline Principles of Laser Compton polarimetry Experimental Setup Data

More information

1. Polarimetry Strategy 2. Møller Polarimeter 3. Compton Polarimeter 4. Summary

1. Polarimetry Strategy 2. Møller Polarimeter 3. Compton Polarimeter 4. Summary Vladas Tvaskis (University of Manitoba) Hall C Users Meeting January 202. Polarimetry Strategy 2. Møller Polarimeter 3. Compton Polarimeter 4. Summary Q Weak requires measurement of the beam polarization

More information

Linear Collider Beam Instrumentation Overview

Linear Collider Beam Instrumentation Overview Linear Collider Beam Instrumentation Overview Linear Collider R&D Opportunities Workshop May 31 st, 2002 SLAC Eric Torrence* University of Oregon *with M.Woods and D.Cinabro BI Overview Beam Energy Polarization

More information

Large Acceptance High Luminosity Detector at 12 GeV

Large Acceptance High Luminosity Detector at 12 GeV Outline Large Acceptance High Luminosity Detector at 12 GeV E.Chudakov 1 1 Hall A, JLab For June 2006 Hall A Meeting Outline Outline 1 Motivation for a Large Acceptance at High Luminosity DIS Parity Violation

More information

Building a Tracking Detector for the P2 Experiment

Building a Tracking Detector for the P2 Experiment Building a Tracking Detector for the P Experiment DPG Frühjahrstagung, Hamburg 016 Marco Zimmermann Institute for Nuclear Physics March 3, 016 The P Experiment: Overview The Idea Precision measurement

More information

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26

Parity-Violating Measurements of the Weak Charge of. Pb (PREX) & Ca (CREX) . and possible future measurements. R. Michaels, ICNT / MSU, Aug /26 Parity-Violating Measurements of the Weak Charge of 208 Pb (PREX) & 48 Ca (CREX) 208 Pb 48 Ca. and possible future measurements R. Michaels, ICNT / MSU, Aug 2013 1/26 Hall A at Jefferson Lab Hall A High

More information

PRECISE electron-beam polarimetry will become increasingly

PRECISE electron-beam polarimetry will become increasingly IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 51, NO. 4, AUGUST 2004 1533 Møller Polarimetry With Atomic Hydrogen Targets Eugene Chudakov and Vladimir Luppov Abstract A novel proposal of using polarized atomic

More information

Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC

Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC 1of23 Measurement of the Proton Beam Polarization with Ultra Thin Carbon Targets at RHIC Brookhaven National Laboratory for the RHIC Polarimetry Group Sep 12, 2013 Relativistic Heavy Ion Collider world

More information

Sub-percent precision Møller polarimetry in experimental Hall C

Sub-percent precision Møller polarimetry in experimental Hall C Sub-percent precision Møller polarimetry in experimental Hall C College of William and Mary E-mail: jmagee@jlab.org Modern experiments in Jefferson Lab Hall C require precise knowledge of the electron

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

Precision Polarimetry at JLab, 6 GeV Era G. B. Franklin Carnegie Mellon University

Precision Polarimetry at JLab, 6 GeV Era G. B. Franklin Carnegie Mellon University Precision Polarimetry at JLab, 6 GeV Era G. B. Franklin Carnegie Mellon University Hall A Compton Upgrade Team: M. Friend, D. Parno, F. Benmokhtar, A. Camsonne, G.B. Franklin, R. Michaels, S. Nanda, K.

More information

Upstream Polarimetry with 4-Magnet Chicane

Upstream Polarimetry with 4-Magnet Chicane 2005 International Linear Collider Workshop Stanford, U.S.A. Upstream Polarimetry with 4-Magnet Chicane N. Meyners, V. Gharibyan, K.P. Schüler DESY, Hamburg, Germany We have extended an earlier polarimeter

More information

1 Introduction. THE Q W eak EXPERIMENT: A SEARCH FOR NEW PHYSICS AT THE TeV SCALE. W. Deconinck 1, for the Q W eak Collaboration

1 Introduction. THE Q W eak EXPERIMENT: A SEARCH FOR NEW PHYSICS AT THE TeV SCALE. W. Deconinck 1, for the Q W eak Collaboration THE Q W eak EXPERIMENT: A SEARCH FOR NEW PHYSICS AT THE TeV SCALE W. Deconinck 1, for the Q W eak Collaboration (1) College of William & Mary, Williamsburg, VA, USA E-mail: wdeconinck@wm.edu Abstract The

More information

Compton Storage Rings

Compton Storage Rings Compton Polarimetry @ Storage Rings Wolfgang Hillert ELectron Stretcher Accelerator Physics Institute of Bonn University Møller-Polarimeter Compton-Polarimeter Mott-Polarimeter Compton Scattering Differential

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

Status report on parity violation in the (1232) resonance

Status report on parity violation in the (1232) resonance Status report on parity violation in the (1232) resonance Luigi Capozza A4 Collaboration Institut für Kernphysik Johannes Gutenberg Universität Mainz Institutsseminar - 6.2.2006 Luigi Capozza, Institutsseminar

More information

PoS(PSTP 2013)034. Precession Polarimetry at JLab, 6 GeV. G.B. Franklin Carnegie Mellon University

PoS(PSTP 2013)034. Precession Polarimetry at JLab, 6 GeV. G.B. Franklin Carnegie Mellon University at JLab, 6 GeV Carnegie Mellon University E-mail: gbfranklin@cmu.edu The JLab Hall A Compton Polarimeter is used to measure the polarization of the electron beam as it enters the experimental hall. When

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

MOLLER Experiment. Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc.

MOLLER Experiment. Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc. MOLLER Experiment D.S. Armstrong Nov. 9 2010 Precision Tests of the Standard Model ECT* Workshop Moller scattering: intro Previous measurement: SLAC E158 MOLLER: new physics reach Experimental Concept

More information

TLEP White Paper : Executive Summary

TLEP White Paper : Executive Summary TLEP White Paper : Executive Summary q TLEP : A first step in a long- term vision for particle physics In the context of a global project CERN implementation A. Blondel J. Osborne and C. Waajer See Design

More information

E166: Polarized Positrons & Polarimetry

E166: Polarized Positrons & Polarimetry (DESY) - on behalf of the E166 Collaboration ILC: - why polarized positrons - e+ source options - undulator source scheme E166 - proof-of-principle demonstration of the undulator method - undulator basics

More information

The MOLLER experiment - testing the Standard Model at Jefferson Lab

The MOLLER experiment - testing the Standard Model at Jefferson Lab The MOLLER experiment - testing the Standard Model at Jefferson Lab Dustin McNulty Idaho State University mcnulty@jlab.org for the May 30, 2012 The MOLLER experiment - testing the Standard Model at Jefferson

More information

C-REX : Parity-Violating Measurement of the Weak Charge of

C-REX : Parity-Violating Measurement of the Weak Charge of C-REX : Parity-Violating Measurement of the Weak Charge of 48 Ca to an accuracy of 0.02 fm Spokespersons: Juliette Mammei Dustin McNulty Robert Michaels that s me Kent Paschke Seamus Riordan (contact person)

More information

Positron-proton to electron-proton elastic cross section ratios from CLAS: Systematic uncertainties and Implications of the results

Positron-proton to electron-proton elastic cross section ratios from CLAS: Systematic uncertainties and Implications of the results Positron-proton to electron-proton elastic cross section ratios from CLAS: Systematic uncertainties and Implications of the results Dasuni Adikaram Old Dominion University Dipak Rimal, Larry Weinstein,

More information

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak

A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak A Precision Measurement of Elastic e+p Beam Normal Single Spin Asymmetry and Other Transverse Spin Measurements from Qweak Buddhini P. Waidyawansa For the Qweak Collaboration JLab Users Group Meeting June

More information

MØLLER POLARIMETRY WITH ATOMIC HYDROGEN TARGETS. Project Description

MØLLER POLARIMETRY WITH ATOMIC HYDROGEN TARGETS. Project Description MØLLER POLARIMETRY WITH ATOMIC HYDROGEN TARGETS Project Description Revision 2 First version: February 22, 2003 Last revision: January, 2005 E.A. Chudakov Thomas Jefferson National Accelerator Facility

More information

PRECISION MØLLER POLARIMETRY AND APPLICATIONS AT JEFFERSON LABORATORY

PRECISION MØLLER POLARIMETRY AND APPLICATIONS AT JEFFERSON LABORATORY PRECISION MØLLER POLARIMETRY AND APPLICATIONS AT JEFFERSON LABORATORY A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF

More information

Neutral Current Cross Sections With Polarised Lepton Beam At ZEUS

Neutral Current Cross Sections With Polarised Lepton Beam At ZEUS Neutral Current Cross Sections With Polarised Lepton Beam At Syed Umer Noor York University, Canada On Behalf of the Collaboration DIS 6, - 4 April 6, Tsukuba, Japan Syed Umer Noor (York University) NC

More information

Parity Violation Experiments & Beam Requirements

Parity Violation Experiments & Beam Requirements Parity Violation Experiments & Beam Requirements Riad Suleiman Center for Injectors and Sources MCC Ops Training August 05, 2009 Outline Fundamental Interactions and Conservation Rules Parity Reversal

More information

APEX: Goals and Strategy

APEX: Goals and Strategy APEX: Goals and Strategy Natalia Toro (Perimeter Institute) e 2 10-4 10-5 10-6 10-7 10-8 E141 A' Æ Standard Model a m, 5 s E774 a m,±2 s favored a e DarkLight WASA Phenix HPS 2015 KLOE MAMI APEX BaBar

More information

Sta$s$cs, Systema$cs and Run Phases

Sta$s$cs, Systema$cs and Run Phases Sta$s$cs, Systema$cs and Run Phases DOE Nuclear Physics MOLLER Science Review UMass, Amherst! September, 2014 Kent Paschke University of Virginia α Rates, Noise Budget, and Sta$s$cal Precision 0.4 0.35

More information

Photoproduction of J/ψ on Nuclei

Photoproduction of J/ψ on Nuclei Outline E.Chudakov SRC Workshop, Jlab 2007 Photoproduction of J/ψ on Nuclei 1 Photoproduction of J/ψ on Nuclei E.Chudakov 1 1 JLab SRC Workshop, Jlab 2007 E.Chudakov SRC Workshop, Jlab 2007 Photoproduction

More information

Spin Physics in Jefferson Lab s Hall C

Spin Physics in Jefferson Lab s Hall C Spin Physics in Jefferson Lab s Hall C Frank R. Wesselmann Norfolk State University Outline Introduction Jefferson Lab, Hall C Concepts & Definitions Experiments & Measurements Spin as Goal Spin as Tool

More information

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II L. J. Kaufman University of Massachusetts The HAPPEX Collaboration Thomas Jefferson National Accelerator Facility

More information

Proton Radius Puzzle and the PRad Experiment at JLab

Proton Radius Puzzle and the PRad Experiment at JLab Proton Radius Puzzle and the PRad Experiment at JLab NC A&T State University, NC USA for the PRad collaboration Spokespersons:, H. Gao, M. Khandaker, D. Dutta Outline The Proton Radius Puzzle Recent status

More information

Full-Acceptance Detector Integration at MEIC

Full-Acceptance Detector Integration at MEIC Full-Acceptance Detector Integration at MEIC Vasiliy Morozov for MEIC Study Group Electron Ion Collider Users Meeting, Stony Brook University June 27, 2014 Lattice design of geometrically-matched collider

More information

The neutron skin in neutronrich nuclei at Jefferson Lab

The neutron skin in neutronrich nuclei at Jefferson Lab The neutron skin in neutronrich nuclei at Jefferson Lab Mark Dalton, University of Virginia For the PREX and CREX Collaborations Low Energy Workshop Boston 15 March 2013 1 Weak Charge Distribution of Heavy

More information

POLARIMETER WORKING GROUP - D.G. Crabb Department of Physics, University of Michigan Ann Arbor, MI

POLARIMETER WORKING GROUP - D.G. Crabb Department of Physics, University of Michigan Ann Arbor, MI 111 POLARIMETER WORKING GROUP - SUMMARY D.G. Crabb Department of Physics, University of Michigan Ann Arbor, MI 48109-1120 In previous workshops and other discussions t-3 of polarimeters at high energy

More information

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab Positron program at the Idaho Accelerator Center Giulio Stancari Idaho State University and Jefferson Lab International Workshop on Positrons at Jefferson Lab Newport News, Virginia (USA), 26 March 2009

More information

Probing the Atomic Nucleus at Jefferson Lab

Probing the Atomic Nucleus at Jefferson Lab Probing the Atomic Nucleus at Jefferson Lab (a glimpse ) Fatiha Benmokhtar Duquesne University. *Thanks to R. Ent for some of the material 1 Building Blocks of Matter Electrons Atom Nucleus -Most of the

More information

Precision High Field Møller Polarimetry in Hall A Status Report

Precision High Field Møller Polarimetry in Hall A Status Report Precision High Field Møller Polarimetry in Hall A Status Report Jim Napolitano, Temple University Work Carried Out by Ted Berger, Ben LeRose (RPI) John LeRose (JJL Magnet Optics) and James Wilhelmi and

More information

Beam-plasma Physics Working Group Summary

Beam-plasma Physics Working Group Summary Beam-plasma Physics Working Group Summary P. Muggli, Ian Blumenfeld Wednesday: 10:55, Matt Thompson, LLNL, "Prospect for ultra-high gradient Cherenkov wakefield accelerator experiments at SABER 11:25,

More information

P.M. King Ohio University for the MOLLER Collaboration

P.M. King Ohio University for the MOLLER Collaboration Parity violating electron scattering at JLab: the MOLLER experiment P.M. King Ohio University for the MOLLER Collaboration SESAPS, 10 November 2016; University of Virginia, Charlottesville, VA The Standard

More information

Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 7, 042802 (2004) Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement J. M. Grames,* C. K.

More information

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues An Experiments Krishna Kumar Stony Brook University The Electroweak Box Workshop at

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

The Jefferson Lab 12 GeV Program

The Jefferson Lab 12 GeV Program The Jefferson Lab 12 GeV Program The Jefferson Lab facilities have undergone a substantial upgrade, both of accelerator, CEBAF, and of the experimental installations. We will discuss the progress to completion

More information

Project P2 - The weak charge of the proton

Project P2 - The weak charge of the proton Institute for Nuclear Physics, University of Mainz E-mail: beckerd@kph.uni-mainz.de K. Gerz, S. Baunack, K. S. Kumar, F. E. Maas The goal of Project P2 is to determine the electroweak mixing angle sin

More information

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge Measure: Parity-violating asymmetry in e + p elastic scattering at Q 2 ~ 0.03 GeV 2 to ~4% relative

More information

Richard Hall-Wilton University College London. July 2002

Richard Hall-Wilton University College London. July 2002 PPRP, Richard Hall-Wilton University College London July 2002 July 2002, RAL Overview Introduction to HERA and ZEUS Detector Status Central Tracking Detector Microvertex Detector Global Tracking Trigger

More information

Development of Soft X-rayX using Laser Compton Scattering

Development of Soft X-rayX using Laser Compton Scattering 26 th Advanced ICFA Beam Dynamics Workshop on Nanometre-Size Colliding Beams September 2-6, 2002 at Lausanne Development of Soft X-rayX Source using Laser Compton Scattering R. Kuroda*, S. Kashiwagi*,

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

The E166 Experiment: Undulator-Based Production of Polarized Positrons

The E166 Experiment: Undulator-Based Production of Polarized Positrons The E166 Experiment: Undulator-Based Production of Polarized Positrons Hermann Kolanoski (Humboldt-Universität Berlin) for the E166 Collaboration ILC: - physics with polarised e + e - - undulator source

More information

Low energy Positron Polarimetry at the ILC

Low energy Positron Polarimetry at the ILC Low energy Positron Polarimetry at the ILC Gideon Alexander, Ralph Dollan, Thomas Lohse, Sabine Riemann, Andreas Schälicke, Peter Schüler, Pavel Starovoitov, Andriy Ushakov January 23, 29 Abstract For

More information

The π 0 Lifetime Experiment and Future Plans at JLab

The π 0 Lifetime Experiment and Future Plans at JLab The π 0 Lifetime Experiment and Future Plans at JLab North Carolina A&T State University, Greensboro, NC, USA (for the PrimEx Collaboration at JLab) Outline The PrimEx Experiment at JLab: Physics Motivation

More information

high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010

high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010 high luminosity searches at JLab: mixing, Compton, and beam dump OK Baker (for the LIPSS collaboracon) JLAB Workshop September 20, 2010 overview Recent and near term LIPSS DM searches at FEL hidden sector

More information

Touschek polarimeter for beam energy measurement of VEPP-4M collider LNFSS-08 1 / 16

Touschek polarimeter for beam energy measurement of VEPP-4M collider LNFSS-08 1 / 16 Touschek polarimeter for beam energy measurement of VEPP-4M collider Ivan Nikolaev Budker Institute of Nuclear Physics Novosibirsk, Russia Frascati Spring School Bruno Touschek May 12-16 2008 Touschek

More information

Measurement of Nucleon Strange Form Factors at High Q 2

Measurement of Nucleon Strange Form Factors at High Q 2 Measurement of Nucleon Strange Form Factors at High Q 2 (HAPPEX III Collaboration) Rupesh Silwal 22 March, 2011 At very low Q2, GsE/M relates to the strange matrix elements of the nucleon (strange radius

More information

Measurement of the e + e - π 0 γ cross section at SND

Measurement of the e + e - π 0 γ cross section at SND Measurement of the e + e - π 0 γ cross section at SND L.Kardapoltsev (for SND collaboration) Budker Institute of Nuclear Physics, Novosibirsk state university PhiPsi 2017, Mainz, Germany June 2017 Outline

More information

Beam Instrumentation Challenges for Parity-Violation Experiments

Beam Instrumentation Challenges for Parity-Violation Experiments Beam Instrumentation Challenges for Parity-Violation Experiments Manolis Kargiantoulakis Intense Electron Beams Workshop 2015 Cornell University Many thanks to Mark Pitt, Kent Paschke, Mark Dalton, for

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION. Multi-TeV CLIC Photon Collider Option. H. Burkhardt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - SL DIVISION CERN-SL-2000-070 CLIC Note 463 AP Multi-TeV CLIC Photon Collider Option H. Burkhardt Considerations for an option of γγ collisions at multi-tev

More information

arxiv: v1 [nucl-ex] 15 Apr 2016

arxiv: v1 [nucl-ex] 15 Apr 2016 arxiv:1604.04602v1 [nucl-ex] 15 Apr 2016 Beam Normal Single Spin Asymmetry Measurements from Q weak Buddhini P. Waidyawansa for the Q weak Collaboration C122, 12000 Jefferson Avenue, Newport News, VA 23602

More information

Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University

Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University 1. Compton Scattering Polarimetry General Considerations Complications and Systematic Errors 2. CMU Integrating DAQ Content of Data

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Spin Feedback System at COSY

Spin Feedback System at COSY Spin Feedback System at COSY 21.7.2016 Nils Hempelmann Outline Electric Dipole Moments Spin Manipulation Feedback System Validation Using Vertical Spin Build-Up Wien Filter Method 21.7.2016 Nils Hempelmann

More information