NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

Size: px
Start display at page:

Download "NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent"

Transcription

1 An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University 1

2 Outline I. Introduction Quantum tunneling of magnetization Initial discoveries Single molecule magnets II. Magnetic Interactions in SMMs Energy scales, Spin Hamiltonians Mn12-acetate III. Resonant Quantum Tunneling of Magnetization Thermally activated, thermally assisted and pure Crossover between regimes Quantum phase interference IV. Experimental Techniques Micromagnetometry SQUIDs and Nano-SQUIDs EPR V. Collective Effects Magnetic ordering Magnetic deflagration 2

3 Magnetic Nanostructures Image from, W. Wernsdorfer, Advances in Chemical Physics 2001 and ArXiv:

4 Quantum Tunneling of Magnetization +m -m U Thermal Quantum T c = U/k B B(0) Thermal relaxation (over the barrier) Quantum Tunneling Magnetic Field Relaxation rate T c Temperature 4 also, Enz and Schilling, van Hemmen and Suto (1986)

5 Magnetic Bistability in a Molecular Magnet Nature 1993, and Sessoli et al., JACS 1993 Magnetic hysteresis at 2.8 K and below (2.2 K) S=10 ground state spin

6 Quantum Tunneling in Single Molecule Magnets Single crystal studies of Mn12: L. Thomas, et al. Nature 383, 145 (1996) Susceptibility studies: J.M. Hernandez, et al. EPL 35, 301 (1996) 2009 Boulder School, Lecture 3

7 Single Molecule Magnets Physics Mn 84 S=6 SMM Characteristics Molecules High spin ground state Uniaxial anisotropy Single crystals Synthesized in solution Modified chemically Peripheral ligands Oxidized/reduced Soluble = Bonded to surfaces -Individual molecule can be magnetized and exhibit magnetic hysteresis Quantum Tunneling of Magnetization Quantum Phase Interference Crossover Thermal Assisted to Pure QTM Quantum Coherence Random-Field Ising Ferromagnetism

8 First SMM: Mn12-acetate [Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 ].2CH 3 COOH.4H 2 O 8 Mn 3+ S=2 4 Mn 4+ S=3/2 Magnetic Core Competing AFM Interactions Ground state S=10 Organic Environment 2 acetic acid molecules 4 water molecules S 4 site symmetry Single Crystal Tetragonal lattice a=1.7 nm, b=1.2 nm Strong uniaxial magnetic anisotropy (~60 K) Weak intermolecular dipole interactions (~0.1 K) 8 Micro-Hall magnetometer

9 Intra-molecular Exchange Interactions S=2 J 1 S=3/2 J 2 J 3 J 1 J 2 J 3 J 4 J 1 ~ 215 K J 2,J 3 ~ 85 K J 4 ~ 45 K H = <ij> J 4 r J ij S i S r j + i r S i D i S r i +... (2S 1 +1) 8 (2S 2 +1) 4 =10 8 S=10 and 2S+1=21 9

10 Magnetic Anisotropy and Spin Hamiltonian Spin Hamiltonian H = DS z 2 gµ B S H S z m>= m m > E m = Dm 2 (Ising-like) Uniaxial anisotropy 2S+1 spin levels z up x down y U=DS 2 10

11 Resonant Quantum Tunneling of Magnetization Relaxation processes in SMMs Magnetic relaxation at high temperature Thermal activation (over the barrier) z up y U=U 0 (1-H/H o ) 2 x down M/M s Magnetic field µ o H z (T) 11

12 Resonant Quantum Tunneling of Magnetization H = DS z 2 gµ B S z H z S z m>= m m > E m = Dm 2 gµ B H z m with Zeeman term Resonance fields where antiparallel spin projections are coincident, H k =kd/gµ B, levels m and m ; k=m+m z up y U=U 0 (1-H/H o ) 2 x down Magnetic field Anisotropy Field: H A = 2DS gµ B 12

13 Resonant Quantum Tunneling of Magnetization H L = kh R kh R < H L < (k+1)h R H L = (k+1)h R on-resonance off-resonance on-resonance 10 on-resonance off-resonance on-resonance QT on (fast relaxation) QT off (slow relaxation) H L (T ) 13

14 Resonant Quantum Tunneling of Magnetization Relaxation processes in SMMs Magnetic relaxation at intermediate temperature Thermally assisted tunneling z up U=U 0 (1-H/H o ) 2 x down y U Γ TAT = f (T) k=6 k=7 k=8 Magnetic field 14 H z

15 Resonant Quantum Tunneling of Magnetization Relaxation processes in SMMs Magnetic relaxation at low temperature Pure quantum tunneling z up U=U 0 (1-H/H o ) 2 y x Magnetic field down M/M s Magnetic hysteresis Field sweep rate 0.4 T/min 0.2 T/min 0.1 T/min 0.05 T/min 0.02 T/min k=7 k=8-0.5 k= Applied Field (Tesla)

16 Crossover from Thermally Assisted to Pure QTM H = DS z 2 gµ B S z H z gµ B S x H x Tunnel splitting on resonance Upper levels Large splitting Low Boltzmann population Δ m,m' D H x H A m m' Relaxation pathway = f(t) Lowest levels Small splitting High Boltzman population Δ m,m Theory of thermally assisted tunneling: Villian (1997), Leuenberger & Loss (2000) and Chudnovsky & Garanin (1999) Crossover: Chudnovsky & Garanin, PRL

17 Thermal to Quantum Crossover in Magnetization Relaxation ln Γ Quantum Tunneling Thermal activation crossover ln Γ Top E T 0 1/S T ln Γ E T 0 1/S T T 0 T Bottom T 0 T T 0 T Second order crossover Larkin and Ovchinnikov '83 First order crossover Chudnovsky '92 17 U(x) = x 2 + x 4 x 2 ± x 3 U(x) = x 2 x 4 ± x 5 Chudnovsky and Garanin '97 Uniaxial nanomagnets for small transverse magnetic fields!!!

18 Energy/(DS 2 ) D=0.548(3) K g z =1.94(1) H0= D/gzµB = 0.42 T B=1.17(2) 10-3 K (EPR: Barra et al., PRB 97) Energy relative to the lowest level in the metastable well m =6 m =7 m =8 m =9 m =10 n = H z /H o K. Mertes et al. PRB 2001

19 m(t) NYU 1.10 K K 0.4 this crossover should lead to a better understanding of the mechanisms of tunneling in Mn12. This work was supported by NSF-INT (Grant No ) and NYU. Experiments on the Crossover to Pure QTM in Mn12-acetate 1.29 K 0.2 VOLUME 85, NUMBER 22 E.TM.T Chudnovsky and J. Tejada,27 Macroscopic P H Y 1.40 S I CK A L R E V I E[1] W See LE ERS NOVEMBERTunnel2000 ing of the Magnetic Moment (Cambridge University Press, Cambridge, UK, 1997), Chap. 7. We the measured crossoverj.temperature K) [2] note J. R.that Friedman, M. P. Sarachik, Tejada, and ('1.1 R. Ziolo, oo θ=0 is significantly higher than predicted (0.6 K) [24]. This θ=35 Phys. Rev. Lett. 76, 3830 (1996); L. Thomas, F. Lionti, R. n=6 may Ballou, be due to intrinsicr. mechanism promoting tunneling n=4 D.an Gatteschi, Sessoli, and B. Barbara, Nature 0.99 K in Mn such as a transverse anisotropy. Further studies of 12 (London) 383, 145 (1996). this shouldt.lead to C. a better understanding of the [3] crossover C. Sangregorio, Ohm, Paulsen, R. Sessoli, and D K 0.6 mechanisms tunneling in Mn. (1997). Gatteschi,ofPhys. Rev. Lett. 78, K work D.was supported by NSF-INT (Grant [4]This R. Sessoli, Gatteschi, A. Caneschi, and M. A. Novak, 0.2 Nature (London) 365, 141 (1993). No ) and NYU. 0.4 [5] M. Novak and R. Sessoli, in Quantum Tunneling of Mag1.29 K K 0.60 netization-qtm 94, edited by L. Gunther and B. Barbara (Kluwer, Dordrecht, 1995), p. 171; B. Barbara et al., J. [1] See E. M. Chudnovsky and J. Tejada, Macroscopic Tunnel , 1825 (1995). Magn. Magn. Mater K ing of the Magnetic Moment (Cambridge University Press, m =6 [6] J. M. Hernandez et al., Europhys. Lett. 35, 301 (1996) K Cambridge, UK, 1997), Chap. 7. 0, 133R.(1999). [7] W. Wernsdorfer and R. Sessoli, Science 284and [2] J. R. Friedman, M. P. Sarachik, J. Tejada, Ziolo, 0.4 b) o m =7, 2453 (1998). [8] S. Hill et al., Phys. Rev. Lett. 80 z Time (seconds) θ=35 Phys. Rev. Lett. 76, 3830 (1996); L. Thomas, F. Lionti, R., 8819 (1997). Nature [9] M. Hennion et al., Phys. B 56and n=4 Ballou, D. Gatteschi, R. Rev. Sessoli, B. Barbara, FIG. 4. Relaxation of the magnetization vs time at different [10] A. L. Barra, D., Gatteschi, and R. Sessoli, Phys. Rev. B 56, m =8 145 (1996). (London) 383 temperatures0.3 for (a) n! 6, u! 0±, showing a crossover to a (1997). 0.5 [3] 8192 C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. quantum regime at approximately 1 K, and (b) n! 4, u! 35±,, 628 (1999). [11] I. MirebeauPhys. et al.,rev. Phys. Rev (1997). Gatteschi, Lett. 78,Lett. showing no temperature independent regime. m!t" is a reduced (1999). [12] Y. Zhong etd. al.,gatteschi, J. Appl. m =9 Phys. 85, 5636and [4] R. Sessoli, A. Caneschi, M. A. Novak, magnetization: 0.2 m!t"! #Ms 2 M!t"$%2Ms. In (a) the five [13] E. M. Chudnovsky and, 141 D. A.(1993). Garanin, Phys. Rev. Lett. 79, Nature (London) 365 curves below 0.74 K overlap (0.56, 0.58, 0.63, 0.68, and (1997). [5] 4469 M. Novak and R. Sessoli, in Quantum Tunneling of Mag0.74 K). These curves can be fit with m!t"! m0 exp#!2t%t"b $, 11 L. 847Gunther (1999); and G.-H.B.Kim, Eu[14] G.-H. Kim, Phys. Rev.edited B m =10 59,by netization-qtm 94, Barbara where m0! , t!! " Ks, b!, 216 (2000); H. J. W. Müller-Kirsten, D. K. rophys The fit overlaps the data. In (b) the unmarked (Kluwer,Lett. Dordrecht, 1995), p. 171; B. Barbara et al., 4J. n = 0Rev. B160, Park, J. M.Mater. S. Rana, Phys. curves from top to bottom correspond to T! 0.68, 0.70, 0.75,, 1825 (1995). (1999), and Magn.and Magn therein. 0.83, 0.91, and 0.95 K. [6] references J. M. Hernandez et al., Europhys. Lett. 35, 301 (1996) K [15] The analogy to phase is a purely one as 133 (1999). [7] W. Wernsdorfer and R.transitions Sessoli, Science 284,formal discussed in [13]. The first-order, second-order terminol, 2453 (1998). [8] S. Hill et al., Phys. Rev. Lett. 80 temperature it changes significantly. This temperature cor0 2 due to4larkin Time (seconds) for the escape crossover, 8819 (1997). [9] ogy M. Hennion et al.,rate Phys. Rev. B is56originally responds to the crossover temperature seen in Fig. 3 [16]. and R. Sessoli, Phys. Rev. B 56, FIG. 4. Relaxation of the magnetization vs time at different [10] and A. L.Ovchinnikov Barra, D. Gatteschi, consistent with pure QT. In contrast, for the peak n!to4,a ±, showing a crossover temperatures for (a) n! 6, u! 0 [16] A. I. Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 59, 8192 (1997). uquantum! 35±,regime the magnetization relaxation at approximately 1 K, andrate (b) changes n! 4, usignifi! 35±, (1984). et al., Phys. Rev. Lett. 83, 628 (1999). z [11] 420 I. Mirebeau cantly temperature decreases in them!t" entire showingasnothe temperature independent regime. is a studied reduced, 512(1999). (2000). [17] Kentetetal., al.,j.europhys. Lett. [12] A. Y. D. Zhong Appl. Phys. 85, magnetization: m!t" curves! #Ms 2 (a) the exfive s. a In range. Relaxation canm!t"$%2m be fit by stretched (2000). [18] Wernsdorfer et al., Lett. Phys. 50, 552 [13] W. E. M. Chudnovsky and Europhys. D. A. Garanin, Rev. Lett. 79, curves below 0.74 K overlap 0.58, b0.63, 0.68,band ponential function m!t"! m0(0.56, exp#2!t%t" $, where [19] A. D. Kent, S. von Molnar, S. Gider, and D. D. Awschalom, 4469 (1997). b& 0.74 K). These curves can be fit with m!t"! m0 exp#!2t%t" $, 6656 (1994). Appl. Phys. 76,Rev. 0.4 form of relaxation has pre, (1999); G.-H. Kim, Eu[14] J. G.-H. Kim, Phys. B 59 where0.6. m0 This! , t!! been 0.15" observed s, b! (1980). D. K. [20] T. Lis, Acta Sect.H.BJ.36 W., 2042 Müller-Kirsten, rophys. Lett. Crystallogr. 51, 216 (2000); viously in FeThe in Mn [21], Inalthough it is not overlaps the (b) the unmarked 8 [3]fitand 12 data. and Park, and J. M. Rana, Phys. Rev. B 60, 6662 [21] L. Thomas, A. S. Caneschi, and B. Barbara, Phys.(1999), Rev. Lett. curves from understood top to bottom[22]. correspond to T! 0.68, 0.70, 0.75, completely references therein., 2398 (1999) , 0.91, and 0.95 In summary, we K. have presented new low temperature [15] N. The to phase is a Phys. purely Rev. formal one80 as, [22] V.analogy Prokof ev and P.transitions C. E. Stamp, Lett. magnetic studies of thermally assisted and pure quantum discussed in [13]. The first-order, second-order terminol5794 (1998); E. M. Chudnovsky, Phys. Rev. Lett. 84, 5676 temperature changes significantly. temperature tunneling in itmn crossoverthis between these cortwo 12. The ogy for the escape rate crossover due to, 5677 (2000); N. V. Prokof ev and P. C.isE.originally Stamp, ibid., 84Larkin respondswas to found the crossover temperature in Fig. 3 regimes to be either abrupt or seen gradual, dependand Ovchinnikov [16]. C. Paulsen, and R. Sessoli, ibid., (2000); W. Wernsdorfer, consistent pure QT. contrast, of forapplied the peak n! 4, ing on the with magnitude and In orientation magnetic [16] 84 A., I.5678 Larkin and Y. N. Ovchinnikov, Sov. Phys. JETP 59, (2000). ± u! 35, the longitudinal magnetization relaxation rate changes signififield. Higher and transverse fields broaden the 420A.(1984). [23] D. Garanin, X. Martinez Hidalgo, and E. M. Chudcantly as the temperature in the entirewe studied consistent with adecreases recent model [23]. have 2012,crossover, Orlando, Tutorial Session, Sunday, October 7,novsky, 2012 [17] A. D. Kent et al., 49, 512 (2000). 639 (1998). Phys. Rev.Europhys. B 57, 13 Lett. range. Relaxation curves can be fit by a stretched ex(2000). [18] L. W.Bokacheva, WernsdorferA.etD.al., Europhys. Lett. 50, 552Polyhedron also shown that below the crossover temperature the mag[24] Kent, and M. A. Walters, ponential function m!t"! m0 exp#2!t%t"b $, where b & [19] A. D. Kent, S. von Molnar, S. Gider, and D. D. Awschalom, 0 1 a) 0.4 b) 0.56 K T 0.74 K 0.83 K Schematic: dominant levels as a function of temperature m(t) m(t) M(t) m(t) dm/dh versus H c Energy/(DS2) c Thermal ~1 K ~0.1 K H /H o ADK et al. EPL 2000 L. Bokacheva, PRL 2001 K. Mertes et al. PRB 2001 W. Wernsdorfer et al. PRL ICMM Quantum

20 Tunneling Selection Rules H = DS 2 z gµ B S z H z + H A Form of H A determined by the site symmetry of the molecule Fe 8 Mn 12 -acetate 180 o 90 o C 2 -site symmetry (rhombic) S 4 -site symmetry (tetragonal) H A = E(S 2 x S 2 y) H A = C(S S 4 ) 20

21 Hysteresis Loops as a Function of Transverse Magnetic Field Landau-Zener Transitions P 1 1 P P = e = 2 /(2 v) v =2Sgµ B db z /dt 21

22 Oscillations and Parity Effect in the Tunnel Splitting Spin-parity effects in QTM: Loss et al., 1992 von Delft & Henley, 1992 Predicted for a biaxial system by Garg 1992! 22

23 Quantum Phase Interference in Fe8 H = DS 2 z + E(S 2 x S 2 y) gµ B S x H x H T H T 23

24 Micromagnetometry µ-hall Effect B sample µ-squid B sample 1 µm Hall bars 1 to 10 µm Josephson Junctions Based on Lorentz Force Measures magnetic field Large applied in-plane magnetic fields (>20 T) Broad temperature range Single magnetic particles! Based on flux quantization! Measures magnetic flux! Applied fields below the upper critical field (~1 T)! Low temperature (below T c )! Single magnetic particles! Ultimate sensitivity ~1 µ B Ultimate sensitivity ~10 2 µ B 24 see, A. D. Kent et al., Journal of Applied Physics 1994 W. Wernsdorfer, JMMM 1995

25 Nano-SQUID 25

26 High Frequency EPR S. Hill, HMFML & FSU θ Cylindrical TE01n (Q ~ ) f = GHz Single crystal mm 3 T = 0.5 to 300 K, µ o H up to 45 tesla We use a Millimeter-wave Vector Network Analyzer (MVNA, ABmm) as a spectrometer 26 M. Mola et al., Rev. Sci. Inst. 71, 186 (2000)

27 Single-crystal, high-field/frequency EPR S. Hill, HMFML & FSU Reminder: field//z z, S 4 -axis H z m s represents spin- projection along the molecular 4-fold axis Magnetic dipole transitions (Δm s = ±1) - note frequency scale! EPR measures level spacings directly, unlike magnetometry methods 27

28 Energy level diagram for D < 0 system, B//z S. Hill, HMFML & FSU B // z-axis of molecule 28

29 HFEPR for high symmetry (C3v) Mn4 cubane; S = 9/2 Cavity transmission (arb. units - offset) S. Hill, HMFML & FSU [Mn 4 O 3 (OSiMe 3 )(O 2 CEt) 3 (dbm) 3 ] 3 / 2 to 1 / 2 1 / 2 to 1 / 2 5 / 24 K 2 to 3 / 2 18 K 14 K 7 / 8 K 2 to 5 / 2 6 K 9 / 2 to 7 / 2 f = 138 GHz 4 K Magnetic field (tesla) 29

30 Fit to easy axis data - yields diagonal crystal field terms 30

31 Collective Effects in Single Molecule Magnets Magnetic Molecules in crystals interact with one another through magnetic dipole and exchange interactions Dipolar Interactions H ij = µ 0 4 r 3 3( m i ˆr ij )( m j ˆr ij ) m i m j H dip = 1 2 i=j H ij m = S = gµ B / Interaction strength is small but the interaction is long range E dip = µ 0 (gµ B S) 2 /V cell ' 0.1 K for Mn 12 Long range order at low temperature (e.g., FM or AFM state) Magnetic ground state depends on the crystal structure and crystal shape 31

32 Quantum Fluctuations and Long-Range Order Mn12-acetate Single Crystals (bcc tetragonal lattice of molecules) A ferromagnetic phase was predicted: -Fernandez and Alonso, PRB Garanin and Chudnovsky, PRB 2008 Neutron scattering data shows low-t ferromagnetic order: -Luis et al., PRL 2005 Expect Mn12 to be an example of a transverse field Ising system Interacting Ising spins in a transverse field H = X ij J ij S z i S z j h X i S x i H =0 T H P. Subedi, ADK, B. Wen, M. P. Sarachik, Y. Yeshurun, A. J. Millis, S. Mukherjee and G. Christou, PRB 2012 B. Wen, Pradeep Subedi, Y. Yeshurun, M. Sarachik, ADK, A. J. Millis, PRB 2010 Myriam Sarachik, TUL 4 (Tuesday afternoon) 32

33 Susceptibility Randomness Theoretical Model Theory vs Experiment Conclusion NYU eld (H ) = T/s Quantum Fluctuations and Long-Range Order T = 2 K Mn12-acetate Single Crystals (bcc tetragonal lattice of molecules) H!! 067 T/s = T/s T = 2 K H! ! Energy, E m m Introduction Setup Susceptibility Randomness Theoretical Model Theory vs Experiment Conclusion! m m Magnetic Field, Hz neracies 0 by 1mixing 0 2 the 3 states χ 1 (arb. units) ying H 1 H 0 T 1 T 2 T 3 T 4 T 5 T T (K) Pure-system Random-field P. Subedi, ADK, B. Wen, M. P. Sarachik, Y. Yeshurun, A. J. Millis, S. Mukherjee and G. Christou, PRB 2012 Energy, E breaks the symmetry and lifts the Phase Diagram & Curie-Weiss Temperature m m breaks the symmetry and lifts the Applying H degeneracies by mixing the states. Increasing H the relaxation Curie-Weiss process m law towards thermal equilibrium. m c FM = T TCW 0.4 Magnetic Field, Hz 0.8 promotes quantum tunneling, accelerating T CW (K) Experimental Pure-system MFA Random-field MFA asing H B. promotes Wen, Pradeep Subedi, quantum Y. Yeshurun, tunneling, M. Sarachik, ADK, accelerating A. J. Millis, PRB 2010 elaxation process towards thermal equilibrium. 8 H (T) ` PM 27

34 Magnetic Deflagration Magnetic Molecules in crystals also couple through photons and phonons a y Using transverse field both energies Y. Suzuki, et al., Phys. Rev. Lett. 95, (2005) & A. Hernandez-Mınguez, Phys.Rev. Lett. 95, (2005) MF-06: Pradeep Subedi, Quantum deflagration in Mn12 a transverse magnetic field MC-09: Jonathan Friedman, Collective Coupling of Fe8 SMM to a resonant cavity 34

35 Summary I. Introduction Quantum tunneling of magnetization Initial discoveries Single molecule magnets II. Magnetic Interactions in SMMs Energy scales, Spin Hamiltonians Mn12-acetate III. Resonant Quantum Tunneling of Magnetization Thermally activated, thermally assisted and pure Crossover between regimes Quantum phase interference IV. Experimental Techniques Micromagnetometry SQUIDs and Nano-SQUIDs EPR V. Collective Effects Magnetic ordering Magnetic deflagration 35

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

Quantum dynamics in Single-Molecule Magnets

Quantum dynamics in Single-Molecule Magnets Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 permanent magnets macroscopic micron particles Magnetic

More information

Quantum step heights in hysteresis loops of molecular magnets

Quantum step heights in hysteresis loops of molecular magnets PHYSICAL REVIEW B, VOLUME 65, 224401 Quantum step heights in hysteresis loops of molecular magnets Jie Liu, 1 Biao Wu, 1 Libin Fu, 2 Roberto B. Diener, 1 and Qian iu 1 1 Department of Physics, The University

More information

arxiv:cond-mat/ v2 10 Dec 1998

arxiv:cond-mat/ v2 10 Dec 1998 Quantum Coherence in Fe 8 Molecular Nanomagnets E. del Barco 1, N. Vernier 1, J.M. Hernandez 2, J.Tejada 2, E.M. Chudnovsky 3, E. Molins 4 and G. Bellessa 1 1 Laboratoire de Physique des Solides, Bâtiment

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Intermolecular interactions (dipolar and exchange)

Intermolecular interactions (dipolar and exchange) Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm)

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets W. Wernsdorfer, 1 S. Bhaduri, 2 A. Vinslava, 2 and G. Christou 2 1 Laboratoire L.

More information

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes

Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes Polyhedron 20 (2001) 1139 1145 www.elsevier.nl/locate/poly Single-molecule magnets: Jahn Teller isomerism and the origin of two magnetization relaxation processes in Mn 12 complexes Sheila M.J. Aubin a,

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015 Narrow Zero-Field Tunneling Resonance in Triclinic Mn 12 Acetate Ribbons I. Imaz 1, J. Espin 1, D. Maspoch 1,2 1 Institut Català de Nanotecnologia, ICN2, Esfera Universitat Autónoma Barcelona (UAB), Campus

More information

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance

Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance Quantum characterization of Ni4 magnetic clusters using electron paramagnetic resonance S. Maccagnano a, R. S. Edwards b, E. Bolin b, S. Hill b, D. Hendrickson c, E. Yang c a Department of Physics, Montana

More information

arxiv:cond-mat/ Jan 2000

arxiv:cond-mat/ Jan 2000 arxiv:cond-mat/0001144 11 Jan 000 Macroscopic Quantum Phase Interference in Antiferromagnetic Particles Yi-Hang Nie 1,Yan-Hong Jin 1 5, J.-Q.Liang 1 3,H.J.W.Muller-Kirsten 3,D.K.Park 3 4,F.-C.Pu 5 6 1

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

www.mrs.org/publications/bulletin Single-Molecule Magnets George Christou, Dante Gatteschi, David N. Hendrickson, and Roberta Sessoli Introduction Magnets are widely used in a large number of applications,

More information

Pure and random-field quantum criticality in the dipolar Ising model: Theory of Mn 12 acetates

Pure and random-field quantum criticality in the dipolar Ising model: Theory of Mn 12 acetates PHYSICAL REVIEW B 8, 3 Pure and random-field quantum criticality in the dipolar Ising model: Theory of Mn acetates A. J. Millis, A. D. Kent, M. P. Sarachik, 3 and Y. Yeshurun Department of Physics, Columbia

More information

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

Multiphoton antiresonance in large-spin systems

Multiphoton antiresonance in large-spin systems PHYSICAL REVIEW B 76, 054436 2007 Multiphoton antiresonance in large-spin systems C. Hicke and M. I. Dykman Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824,

More information

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk

magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk Polyhedron 26 (2007) 2320 2324 www.elsevier.com/locate/poly 55 Mn nuclear spin relaxation in the truly axial single-molecule magnet Mn 12 -t-butylacetate thermally-activated down to 400 mk A.G. Harter

More information

Magnetization tunneling in single-molecule magnets

Magnetization tunneling in single-molecule magnets Polyhedron 20 (2001) 1479 1488 www.elsevier.nl/locate/poly Magnetization tunneling in single-molecule magnets David N. Hendrickson a, *, George Christou b, Hidehiko Ishimoto c, Jae Yoo a, Euan K. Brechin

More information

Enhanced magnetic anisotropy of Mn 12 -acetate

Enhanced magnetic anisotropy of Mn 12 -acetate Journal of Magnetism and Magnetic Materials 301 (2006) 31 36 www.elsevier.com/locate/jmmm Enhanced magnetic anisotropy of Mn 12 -acetate D.M. Seo a, V. Meenakshi a, W. Teizer a,, H. Zhao b, K.R. Dunbar

More information

Synthesis, Structure and Magnetic Properties of Mn 12 Single Molecule Magnet Containing 4-(Methylthio)benzoate as Peripheral Ligands

Synthesis, Structure and Magnetic Properties of Mn 12 Single Molecule Magnet Containing 4-(Methylthio)benzoate as Peripheral Ligands Mn 12 SMM Containing Sulfur-Containing Ligands Bull. Korean Chem. Soc. 2005, Vol. 26, No. 7 1065 Synthesis, Structure and Magnetic Properties of Mn 12 Single Molecule Magnet Containing 4-(Methylthio)benzoate

More information

Antiferromagnetic interactions in a distorted cubane-type tetranuclear manganese cluster

Antiferromagnetic interactions in a distorted cubane-type tetranuclear manganese cluster Journal of Physics: Conference Series Antiferromagnetic interactions in a distorted cubane-type tetranuclear manganese cluster To cite this article: E Kampert et al 2010 J. Phys.: Conf. Ser. 200 022022

More information

Search for new iron single-molecule magnets

Search for new iron single-molecule magnets Polyhedron 22 (2003) 1865/1870 www.elsevier.com/locate/poly Search for new iron single-molecule magnets Evan M. Rumberger a, Stephen Hill b, Rachel S. Edwards b, Wolfgang Wernsdorfer c, Lev N. Zakharov

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum

Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Magnetic Dynamics of Nanoscale Magnets: From Classical to Quantum Hua Chen Course: Solid State II, Instructor: Elbio Dagotto, Semester: Spring 2008 Department of Physics and Astronomy, the University of

More information

K. Kim, D.M. Seo, J. Means, V. Meenakshi, W. Teizer a) Department of Physics, Texas A&M University, College Station, TX

K. Kim, D.M. Seo, J. Means, V. Meenakshi, W. Teizer a) Department of Physics, Texas A&M University, College Station, TX Mn 12 -acetate film pattern generated by photolithography methods K. Kim, D.M. Seo, J. Means, V. Meenakshi, W. Teizer a) Department of Physics, Texas A&M University, College Station, TX 77843-4242 H. Zhao,

More information

Magnetic quantum tunnelling in subsets of

Magnetic quantum tunnelling in subsets of Magnetic quantum tunnelling in subsets of Mn -Ac molecules D. Phalen a, S. Hill b a Department of Physics, Rice University, Houston, TX 77005 b Department of Physics, University of Florida, Gainesville,

More information

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department Multi-bit magnetic memory using Fe 8 high spin molecules Oren Shafir Magnetism Group, Physics Department Outline Preface: memory unit Fe8 as a high spin molecule Quantum tunneling In Fe8 Experiments: Faraday

More information

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia

THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE. ERNEST MEŠTROVIĆb. HR Zagreb, Croatia ISSN1330 0008 CODEN FIZAE4 THERMAL RELAXATION AND QUANTUM TUNNELLING OF THE MAGNETIZATION IN Mn 12 -ACETATE DAMIR PAJIĆa,1,KREŠO ZADROa, TOMISLAV FRIŠČIĆb, NENAD JUDAŠb and ERNEST MEŠTROVIĆb a Department

More information

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution

High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution High-frequency ESR and frequency domain magnetic resonance spectroscopic studies of single molecule magnets in frozen solution F. El Hallak, 1 J. van Slageren, 1, * J. Gómez-Segura, 2 D. Ruiz-Molina, 2

More information

Magnetic properties of spherical fcc clusters with radial surface anisotropy

Magnetic properties of spherical fcc clusters with radial surface anisotropy Magnetic properties of spherical fcc clusters with radial surface anisotropy D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 66506-2601 (December 6, 1994) We

More information

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH October 29, 2012 Lecture plan N-body problem Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia) 3. Magnetic

More information

Phase transitions in Bi-layer quantum Hall systems

Phase transitions in Bi-layer quantum Hall systems Phase transitions in Bi-layer quantum Hall systems Ming-Che Chang Department of Physics Taiwan Normal University Min-Fong Yang Departmant of Physics Tung-Hai University Landau levels Ferromagnetism near

More information

Resonant Magnetization Tunneling in Molecular Magnets

Resonant Magnetization Tunneling in Molecular Magnets Resonant Magnetization Tunneling in Molecular Magnets Department of Physics Amherst College Amherst, MA 01001-5000 The frontier between the classical and quantum worlds can be approached in one of two

More information

Low temperature dynamics of magnetic nanoparticles

Low temperature dynamics of magnetic nanoparticles Low temperature dynamics of magnetic nanoparticles J.-P. Bouchaud, V. Dupuis, J. Hammann, M. Ocio, R. Sappey and E. Vincent Service de Physique de l Etat Condensé CEA IRAMIS / SPEC (CNRS URA 2464) CEA

More information

Presented by: Göteborg University, Sweden

Presented by: Göteborg University, Sweden SMR 1760-3 COLLEGE ON PHYSICS OF NANO-DEVICES 10-21 July 2006 Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices Presented by: Robert Shekhter Göteborg University, Sweden * Mechanically

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

Phase Transitions in Relaxor Ferroelectrics

Phase Transitions in Relaxor Ferroelectrics Phase Transitions in Relaxor Ferroelectrics Matthew Delgado December 13, 2005 Abstract This paper covers the properties of relaxor ferroelectrics and considers the transition from the paraelectric state

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

Techniques for inferring M at small scales

Techniques for inferring M at small scales Magnetism and small scales We ve seen that ferromagnetic materials can be very complicated even in bulk specimens (e.g. crystallographic anisotropies, shape anisotropies, local field effects, domains).

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014 Resonant Spin Tunneling in Randomly Oriented Nanospheres of Mn Acetate S. Lendínez, R. Zarzuela, J. Tejada Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Martí i Franquès,

More information

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids Physica B 280 (2000) 264}268 Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids W. Wernsdorfer *, E. Bonet Orozco, B. Barbara, A. Benoit,

More information

Nanoparticles magnetization switching by Surface Acoustic Waves

Nanoparticles magnetization switching by Surface Acoustic Waves Nanoparticles magnetization switching by Surface Acoustic Waves Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 828 Barcelona, Spain. Advisor: Javier Tejada Palacios Abstract: In this

More information

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS.

MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS. MAGNETIC QUBITS AS HARDWARE FOR QUANTUM COMPUTERS. J. Tejada*, E. M. Chudnovsky, E. del Barco*, J. M. Hernandez* and T. P. Spiller * Physics Department. University of Barcelona, Diagonal 647, 08028 Barcelona,

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Artificial spin ice: Frustration by design

Artificial spin ice: Frustration by design Artificial spin ice: Frustration by design Peter Schiffer Pennsylvania State University Joe Snyder, Ben Ueland, Rafael Freitas, Ari Mizel Princeton: Bob Cava, Joanna Slusky, Garret Lau Ruifang Wang, Cristiano

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Dipolar magnetic order in crystals of molecular nanomagnets

Dipolar magnetic order in crystals of molecular nanomagnets 1 Dipolar magnetic order in crystals of molecular nanomagnets Fernando Luis Instituto de Ciencia de Materiales de Aragón, C.S.I.C. - Universidad de Zaragoza, and Dpto. de Física de la Materia Condensada,

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet Jung Hoon Han (SungKyunKwanU, Suwon) Su Do Yi SKKU Shigeki Onoda RIKEN Naoto Nagaosa U of Tokyo arxiv:0903.3272v1 Nearly ferromagnetic

More information

7. Basics of Magnetization Switching

7. Basics of Magnetization Switching Beyond CMOS computing 7. Basics of Magnetization Switching Dmitri Nikonov Dmitri.e.nikonov@intel.com 1 Outline Energies in a nanomagnet Precession in a magnetic field Anisotropies in a nanomagnet Hysteresis

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature09478 Supplementary Figures and Legends Supplementary Figure 1. ORTEP plot of molecule 1 in phase I of Fe 4 C 5 viewed perpendicular (left) and parallel (right) to the idealized threefold

More information

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size

Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size Lecture 26: Nanosystems Superconducting, Magnetic,. What is nano? Size Quantum Mechanics Structure Properties Recall discussion in Lecture 21 Add new ideas Physics 460 F 2006 Lect 26 1 Outline Electron

More information

Magnetic qubits as hardware for quantum computers

Magnetic qubits as hardware for quantum computers INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 12 (2001) 181 186 www.iop.org/journals/na PII: S0957-4484(01)20911-8 Magnetic qubits as hardware for quantum computers J Tejada 1,4, E M Chudnovsky

More information

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets

[Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets Polyhedron 22 (2003) 2267/2271 www.elsevier.com/locate/poly [Mn 18 ] 2 and [Mn 21 ] 4 single-molecule magnets E.C. Sañudo a, E.K. Brechin b, C. Boskovic b, W. Wernsdorfer c, J. Yoo d, A. Yamaguchi e, T.R.

More information

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6 Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6 Abstract D. L. Huber Department of Physics, University of Wisconsin-Madison, Madison, WI 53706

More information

arxiv: v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman

arxiv: v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman Single-Molecule Nanomagnets 1 Single-Molecule Nanomagnets arxiv:1001.4194v2 [cond-mat.mes-hall] 4 Aug 2010 Jonathan R. Friedman Department of Physics, Amherst College, Amherst, MA 01002, USA Myriam P.

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials

CHAPTER 2 MAGNETISM. 2.1 Magnetic materials CHAPTER 2 MAGNETISM Magnetism plays a crucial role in the development of memories for mass storage, and in sensors to name a few. Spintronics is an integration of the magnetic material with semiconductor

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department

More information

Interaction between a single-molecule

Interaction between a single-molecule Interaction between a single-molecule magnet Mn 12 monolayer and a gold surface 12 Kyungwha Park Department of Physics, Virginia Tech Salvador Barraza-Lopez (postdoc) Michael C. Avery (undergraduate) Supported

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

Manipulating Quantum Spins by a Spin-Polarized Current: An Approach Based Upon PT -Symmetric Quantum Mechanics

Manipulating Quantum Spins by a Spin-Polarized Current: An Approach Based Upon PT -Symmetric Quantum Mechanics Manipulating Quantum Spins by a Spin-Polarized Current: An Approach Based Upon PT -Symmetric Quantum Mechanics Aleix Bou Comas 1, Eugene M. Chudnovsky 2 and Javier Tejada 1 1 Facultat de Física, Universitat

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Internal Degrees of Freedom and Spin Transitions in Single Molecule Magnets

Internal Degrees of Freedom and Spin Transitions in Single Molecule Magnets University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Internal Degrees of Freedom and Spin Transitions in Single Molecule Magnets 2016 James Atkinson University

More information

Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields. Sergei Zvyagin

Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields. Sergei Zvyagin Spin dynamics of S=1/2 Hesienberg AFM chains in magnetic fields Sergei Zvyagin Dresden High Magnetic Field Laboratory (HLD) Helmholtz-Zentrum Dresden-Rossendorf Dresden, Germany In collaboration with Experiment:

More information

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017

«Chaînes Aimants» et «Molécules Aimants» dans les Oxydes. GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017 «Chaînes Aimants» et «Molécules Aimants» dans les Oxydes MCM2 MEETICC GDR MCM2 & MEETICC Strasbourg, 5 6 octobre 2017 «Propriétés magnétiques & électroniques : échelles de temps et d espace» Can oxides

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Spin amplification, reading, and writing in transport through anisotropic magnetic molecules

Spin amplification, reading, and writing in transport through anisotropic magnetic molecules PHYSICAL REVIEW B 73, 235304 2006 Spin amplification, reading, and writing in transport through anisotropic magnetic molecules Carsten Timm 1,2, * and Florian Elste 2, 1 Department of Physics and Astronomy,

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Competing Ferroic Orders The magnetoelectric effect

Competing Ferroic Orders The magnetoelectric effect Competing Ferroic Orders The magnetoelectric effect Cornell University I would found an institution where any person can find instruction in any study. Ezra Cornell, 1868 Craig J. Fennie School of Applied

More information

HIGH SPIN MOLECULES: UNUSUAL MAGNETIC SUSCEPTIBILITY RELAXATION BEHAVIOR OF A DODECANUCLEAR MANGANESE AGGREGATE IN TWO OXIDATION STATES

HIGH SPIN MOLECULES: UNUSUAL MAGNETIC SUSCEPTIBILITY RELAXATION BEHAVIOR OF A DODECANUCLEAR MANGANESE AGGREGATE IN TWO OXIDATION STATES HIGH SPIN MOLECULES: UNUSUAL MAGNETIC SUSCEPTIBILITY RELAXATION BEHAVIOR OF A DODECANUCLEAR MANGANESE AGGREGATE IN TWO OXIDATION STATES HUI-LIEN TSAI,! HILARY J. EPPLEY,Za NADINE DE VRIES,Za KIRSTEN FOLTING,Zb

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Anisotropic Magnetic Structures in Iron-Based Superconductors

Anisotropic Magnetic Structures in Iron-Based Superconductors Anisotropic Magnetic Structures in Iron-Based Superconductors Chi-Cheng Lee, Weiguo Yin & Wei Ku CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook Another example of SC

More information