HW 3 Solutions. Tommy November 27, 2012

Size: px
Start display at page:

Download "HW 3 Solutions. Tommy November 27, 2012"

Transcription

1 HW 3 Solutions Tommy November 27, (a) Online solution: S 0S1 ɛ. (b) Similar to online solution: S AY XC A aa ɛ b ɛ C cc ɛ X axb aa b Y by c b cc (c) S X A A A V AV a V V b V a b X V V X V (d) S 0S01 0S10 1S00 00S1 01S0 10S0 SS ɛ First, I will show that every regular expression r has an equivalent contextfree grammar. The proof is by induction on the complexity of the expression r. asis Suppose r =. Then an equivalent grammar is S r. Suppose r = ɛ. Then an equivalent grammar is S r ɛ. Suppose r = a for some alphabet symbol a. Then an equivalent grammar is S r a. Induction As our inductive hypothesis, we assume that there are equivalent context-free grammars for all regular expressions that are strictly less complex than r. 1

2 5.2.1 (a) Suppose r = r 1 r 2 for some regular expressions r 1 and r 2. Then an equivalent grammar for r can be constructed by combining the grammars for r 1 and r 2 with the following extra rule: S r S r1 S r2. Suppose r = r 1 +r 2 for some regular expressions r 1 and r 2. Then an equivalent grammar for r can be constructed by combining the grammars for r 1 and r 2 with the following extra rule: S r S r1 S r2. Suppose r = t for some regular expression t. Then an equivalent grammar for r can be constructed by adding the following extra rule to the grammar for t: S r S t S r ɛ. Since all regular expressions fall into one of the above six cases, we conclude that all regular expressions have equivalent context-free grammars. To see that all regular languages L are context-free, simply take a regular expression for L (guaranteed to exist) and convert it to a context-free grammar. 2

3 (b) (c) Let w be a string of balanced parentheses. I will show by induction (on the length of w) that w is generated by the given grammar. asis Suppose w = ɛ. Since the grammar has the rule ɛ, we see that it generates w. Induction Our inductive hypothesis is that the grammar generates all 3

4 5.4.1 (a) strings of balanced parentheses that are strictly shorter than w. Suppose w is the concatenation of two non-empty strings w 1, w 2 of balanced parentheses. The inductive hypothesis tells us that the grammar generates both w 1 and w 2, so we see that w is generated by the rule. Suppose w = (t) for some string t of balanced parentheses. Since t is shorter than w, our inductive hypothesis tells us that t is generated by the grammar. Therefore, w is generated by the rule (). Since all strings of balanced parentheses fall into one of the above three cases, we conclude that all strings of balanced parentheses are generated by the grammar. (b) (c) and and S asbs aasbs aabs aab S as aasbs aabs aab. S asbs asb aasb aab S as aasbs aasb aab (a) Online solution: (q, 01, Z 0 ) (q, 1, XZ 0 ) (q, ɛ, XZ 0 ), (p, 1, Z 0 ) (p, ɛ, Z 0 ), (p, ɛ, ɛ) 4

5 (b) (q, 0011, Z 0 ) (q, 011, XZ 0 ) (q, 11, XXZ 0 ), (p, 011, Z 0 ) (q, 1, XXZ 0 ), (p, 11, XZ 0 ) (q, ɛ, XXZ 0 ), (p, 1, XZ 0 ), (p, 11, Z 0 ), (p, 1, XXZ 0 ) (p, ɛ, XZ 0 ), (p, ɛ, XXZ 0 ), (p, 1, Z 0 ), (p, 1, ɛ), (p, 1, XZ 0 ), (p, ɛ, XXXZ 0 ) (p, ɛ, Z 0 ), (p, ɛ, ɛ) (c) (q, 010, Z 0 ) (q, 10, XZ 0 ) (q, 0, XZ 0 ), (p, 10, Z 0 ) (q, ɛ, XXZ 0 ), (p, 0, Z 0 ), (p, 0, ɛ) (p, ɛ, XZ 0 ) (p, ɛ, Z 0 ) The PDA has just one state q and its transition function is given by δ(q, ɛ, S) = {(q, aaa)} δ(q, ɛ, A) = {(q, as), (q, bs), (q, a)} δ(q, a, a) = {(q, ɛ)} δ(q, b, b) = {(q, ɛ)} (a) (b) 5

6 (c) (a) Ṡ AS A A aas a aa SbS A bb bs Sb b (b) Ṡ AS A A aas a aa SbS aas a aa bb bs Sb b (c) All symbols are productive and reachable. (d) Now, we Chomskylize it: Ṡ AZ A A XY a XA SV XY a XA W W W S SW b Z S Y AS X a W b V W S 6

7 7.1.3 (a) Ṡ 0A A C S A C S (b) Ṡ 0S0 1S1 SS A 0S0 1S1 SS S0 1S1 SS C 0S0 1S1 SS (c) Ṡ 0S0 1S1 SS (d) Now, we Chomskylize it: Ṡ AC D SS AA A 0 1 C SA D S (a) We choose a k b k+1 c k+2 to be our string that s in the language. The adversary selects one or two places to pump (if he picks two, they have to be no more than k symbols apart): If the adversary picks... a string containing more than one type of letter, a string containing b, and possibly a string containing a a string containing b, and possibly a string containing c string(s) containing only as string(s) containing only cs pump... times, so that... Example 2 the letters aaabbbbccccc get all mixed aaababbbbccccc up. 2 #(b) #(c) aaabbbbccccc aaaabbbbbccccc 0 #(a) #(b) aaabbbbccccc aaabbb c ccc 2 #(a) #(b) aaabbbbccccc aaaaaabbbbccccc 0 #(b) #(c) aaabbbbccccc aaabbbbc c 7

8 (b) We choose a k b k c k to be our string that s in the language. The adversary picks one or two places to pump: If he picks a string containing more than one type of letter, we can pump it twice to mix up the order of the letters. E.g., aaabbbccc aaababbbccc. If he picks string(s) containing only cs, we pump it twice to make #(c) > #(b). E.g., aaabbbccc aaabbbccccc. If he picks one string to contain some number of as and the other string to contain an equal number of bs, then we pump zero times to make #(c) > #(b). E.g., aaabbbccc aa b bccc. In any remaining cases, the adversary will have selected a differing number of as and bs, so we pump twice (or any number of times except once) to disequalize the as and bs. E.g., aaabbbccc aaabbbbcccc. (c) For this language, we use the PLL. Since the prime numbers grow weirdly, there are no infinite subsets of this language whose strings are a constant length apart. Therefore, the language is not contextfree. (d) We can use the PLL again. In this language, every string has length equal to i + i 2 for some integer i. Since the squares grow faster than linearly, there is no infinite subset of this language whose strings are a constant length apart. Therefore, the language is not context-free. (e) We choose our string to be a k b k c 2k and repeat the case analysis from part (b). (f) First, please note that every string in this language is divided into three parts: w, w R, and then w again. Notice that each of these three parts must contain exactly the same number of 0s and exactly the same number of 1s as each other. Every string in the language has this property. Now we choose our string t = 0 k 1 2k 0 2k 1 k, which has the form ww R w if we let w = 0 k 1 k. The adversary then selects one or two places to pump. Notice that the adversary cannot select portions from all three parts of t (by three parts, I mean w and w R and w). At best, he can affect only two of them. Assume that the adversary s selection is confined to the first two parts, leaving the third part unaffected. In this case, we pump zero times, creating a new shorter string t. Since t is shorter, each of its three parts must also be shorter. This means that the number of 1s in the last part of t is still exactly k, but the number of 0s in it is now strictly less than k. Now recall the fact that each of the three parts of t must have an equal number of 0s and an equal number of 1s. In order to balance out the numbers of 0s and 1s in all three parts of t, the adversary would have needed to select some 0s in both of the first two parts without selecting any 1s. However, this is impossible because the relevant 0s are too far apart (they are separated by 1 2k ). We win. 8

9 What if the adversary s selection is confined to the last two parts instead of the first two parts? Don t worry; the situation is completely symmetric. What if neither of the above two cases hold? Don t worry; the adversary can t make a selection that escapes both of the previous cases (a) If the adversary picks k > 2, then we cannot pick a long enough string in the language. (b) The adversary can pick k > 2. Then we ll have to pick a string in the language, and it must have the form 0 n 1 n for some n (simply because all strings in the language have this form). Then the adversary can select two places to pump: the first will be a 0, and the second will be a 1 (e.g ). Then, no matter how many times we pump, the number of 0s will remain equal to the number of 1s and the string will remain in the language. (c) The adversary can pick k > 2. Then we ll have to pick a palindrome w. If w has odd length, then the adversary can simply pick the middle digit; no matter how many times we pump, the string remains a palindrome. If w has even length, then the adversary can pick the two middle digits, which of course must be the same digit if w is a palindrome. Again, no matter how many times we pump, the string remains a palindrome Here s the grammar again: S A C A A a CC b C A a (a) Online solution in a different format: (b) Substring a b ab ba aba bab abab baba ababa Symbols A C S A S A C Since the last line contains the letter S, we see that ababa is in the language. 9

10 (c) Substring a b ba aa ab baa aaa aab baaa aaab baaab Symbols A C S A S A C S C Since the last line contains the letter S, we see that baaab is in the language. Substring a b aa ab ba aab aba bab aaba abab aabab Symbols A C S A S A C Since the last line contains the letter S, we see that aabab is in the language. 10

Concordia University Department of Computer Science & Software Engineering

Concordia University Department of Computer Science & Software Engineering Concordia University Department of Computer Science & Software Engineering COMP 335/4 Theoretical Computer Science Winter 2015 Assignment 3 1. In each case, what language is generated by CFG s below. Justify

More information

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules).

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules). 1a) G = ({R, S, T}, {0,1}, P, S) where P is: S R0R R R0R1R R1R0R T T 0T ε (S generates the first 0. R generates

More information

Theory of Computation - Module 3

Theory of Computation - Module 3 Theory of Computation - Module 3 Syllabus Context Free Grammar Simplification of CFG- Normal forms-chomsky Normal form and Greibach Normal formpumping lemma for Context free languages- Applications of

More information

Theory of Computation

Theory of Computation Fall 2002 (YEN) Theory of Computation Midterm Exam. Name:... I.D.#:... 1. (30 pts) True or false (mark O for true ; X for false ). (Score=Max{0, Right- 1 2 Wrong}.) (1) X... If L 1 is regular and L 2 L

More information

In English, there are at least three different types of entities: letters, words, sentences.

In English, there are at least three different types of entities: letters, words, sentences. Chapter 2 Languages 2.1 Introduction In English, there are at least three different types of entities: letters, words, sentences. letters are from a finite alphabet { a, b, c,..., z } words are made up

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014 Q.2 a. Show by using Mathematical Induction that n i= 1 i 2 n = ( n + 1) ( 2 n + 1) 6 b. Define language. Let = {0; 1} denote an alphabet. Enumerate five elements of the following languages: (i) Even binary

More information

Chapter 4. Regular Expressions. 4.1 Some Definitions

Chapter 4. Regular Expressions. 4.1 Some Definitions Chapter 4 Regular Expressions 4.1 Some Definitions Definition: If S and T are sets of strings of letters (whether they are finite or infinite sets), we define the product set of strings of letters to be

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-3: Regular Expressions Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Define the following and give

More information

Chapter 6. Properties of Regular Languages

Chapter 6. Properties of Regular Languages Chapter 6 Properties of Regular Languages Regular Sets and Languages Claim(1). The family of languages accepted by FSAs consists of precisely the regular sets over a given alphabet. Every regular set is

More information

Homework 4 Solutions. 2. Find context-free grammars for the language L = {a n b m c k : k n + m}. (with n 0,

Homework 4 Solutions. 2. Find context-free grammars for the language L = {a n b m c k : k n + m}. (with n 0, Introduction to Formal Language, Fall 2016 Due: 21-Apr-2016 (Thursday) Instructor: Prof. Wen-Guey Tzeng Homework 4 Solutions Scribe: Yi-Ruei Chen 1. Find context-free grammars for the language L = {a n

More information

Homework 5 - Solution

Homework 5 - Solution DCP3122 Introduction to Formal Languages, Spring 2015 Instructor: Prof. Wen-Guey Tzeng Homework 5 - Solution 5-May-2015 Due: 18-May-2015 1. Given Σ = {a, b, c}, find an NPDA that accepts L = {a n b n+m

More information

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a.

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a. VTU QUESTION BANK Unit 1 Introduction to Finite Automata 1. Obtain DFAs to accept strings of a s and b s having exactly one a.(5m )( Dec-2014) 2. Obtain a DFA to accept strings of a s and b s having even

More information

HW6 Solutions. Micha l Dereziński. March 20, 2015

HW6 Solutions. Micha l Dereziński. March 20, 2015 HW6 Solutions Micha l Dereziński March 20, 2015 1 Exercise 5.5 (a) The PDA accepts odd-length strings whose middle symbol is a and whose other letters are as and bs. Its diagram is below. b, Z 0 /XZ 0

More information

FABER Formal Languages, Automata. Lecture 2. Mälardalen University

FABER Formal Languages, Automata. Lecture 2. Mälardalen University CD5560 FABER Formal Languages, Automata and Models of Computation Lecture 2 Mälardalen University 2010 1 Content Languages, g Alphabets and Strings Strings & String Operations Languages & Language Operations

More information

CS500 Homework #2 Solutions

CS500 Homework #2 Solutions CS500 Homework #2 Solutions 1. Consider the two languages Show that L 1 is context-free but L 2 is not. L 1 = {a i b j c k d l i = j k = l} L 2 = {a i b j c k d l i = k j = l} Answer. L 1 is the concatenation

More information

Solution to CS375 Homework Assignment 11 (40 points) Due date: 4/26/2017

Solution to CS375 Homework Assignment 11 (40 points) Due date: 4/26/2017 Solution to CS375 Homework Assignment 11 (40 points) Due date: 4/26/2017 1. Find a Greibach normal form for the following given grammar. (10 points) S bab A BAa a B bb Ʌ Solution: (1) Since S does not

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic and Theory of Computing Fuhua (Frank) Cheng Department of Computer Science University of Kentucky 1 Table of Contents: Week 1: Preliminaries (set algebra, relations, functions) (read Chapters

More information

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100

EXAMPLE CFG. L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa. L = {a n b : n 0 } L = {a n b : n 1 } S asb ab S 1S00 S 1S00 100 EXAMPLE CFG L = {a 2n : n 1 } L = {a 2n : n 0 } S asa aa S asa L = {a n b : n 0 } L = {a n b : n 1 } S as b S as ab L { a b : n 0} L { a b : n 1} S asb S asb ab n 2n n 2n L {1 0 : n 0} L {1 0 : n 1} S

More information

PS2 - Comments. University of Virginia - cs3102: Theory of Computation Spring 2010

PS2 - Comments. University of Virginia - cs3102: Theory of Computation Spring 2010 University of Virginia - cs3102: Theory of Computation Spring 2010 PS2 - Comments Average: 77.4 (full credit for each question is 100 points) Distribution (of 54 submissions): 90, 12; 80 89, 11; 70-79,

More information

Homework 4. Chapter 7. CS A Term 2009: Foundations of Computer Science. By Li Feng, Shweta Srivastava, and Carolina Ruiz

Homework 4. Chapter 7. CS A Term 2009: Foundations of Computer Science. By Li Feng, Shweta Srivastava, and Carolina Ruiz CS3133 - A Term 2009: Foundations of Computer Science Prof. Carolina Ruiz Homework 4 WPI By Li Feng, Shweta Srivastava, and Carolina Ruiz Chapter 7 Problem: Chap 7.1 part a This PDA accepts the language

More information

ECS120 Fall Discussion Notes. October 25, The midterm is on Thursday, November 2nd during class. (That is next week!)

ECS120 Fall Discussion Notes. October 25, The midterm is on Thursday, November 2nd during class. (That is next week!) ECS120 Fall 2006 Discussion Notes October 25, 2006 Announcements The midterm is on Thursday, November 2nd during class. (That is next week!) Homework 4 Quick Hints Problem 1 Prove that the following languages

More information

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages Context Free Languages Automata Theory and Formal Grammars: Lecture 6 Context Free Languages Last Time Decision procedures for FAs Minimum-state DFAs Today The Myhill-Nerode Theorem The Pumping Lemma Context-free

More information

6.8 The Post Correspondence Problem

6.8 The Post Correspondence Problem 6.8. THE POST CORRESPONDENCE PROBLEM 423 6.8 The Post Correspondence Problem The Post correspondence problem (due to Emil Post) is another undecidable problem that turns out to be a very helpful tool for

More information

Automata Theory Final Exam Solution 08:10-10:00 am Friday, June 13, 2008

Automata Theory Final Exam Solution 08:10-10:00 am Friday, June 13, 2008 Automata Theory Final Exam Solution 08:10-10:00 am Friday, June 13, 2008 Name: ID #: This is a Close Book examination. Only an A4 cheating sheet belonging to you is acceptable. You can write your answers

More information

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013

AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013 Q.2 a. Prove by mathematical induction n 4 4n 2 is divisible by 3 for n 0. Basic step: For n = 0, n 3 n = 0 which is divisible by 3. Induction hypothesis: Let p(n) = n 3 n is divisible by 3. Induction

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science C1. Formal Languages and Grammars Malte Helmert University of Basel March 14, 2016 Introduction Example: Propositional Formulas from the logic part: Definition (Syntax of Propositional

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

1 Alphabets and Languages

1 Alphabets and Languages 1 Alphabets and Languages Look at handout 1 (inference rules for sets) and use the rules on some examples like {a} {{a}} {a} {a, b}, {a} {{a}}, {a} {{a}}, {a} {a, b}, a {{a}}, a {a, b}, a {{a}}, a {a,

More information

Fundamentele Informatica II

Fundamentele Informatica II Fundamentele Informatica II Answer to selected exercises 5 John C Martin: Introduction to Languages and the Theory of Computation M.M. Bonsangue (and J. Kleijn) Fall 2011 5.1.a (q 0, ab, Z 0 ) (q 1, b,

More information

CSE 105 Homework 5 Due: Monday November 13, Instructions. should be on each page of the submission.

CSE 105 Homework 5 Due: Monday November 13, Instructions. should be on each page of the submission. CSE 05 Homework 5 Due: Monday November 3, 207 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments

More information

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs

Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harvard CS 121 and CSCI E-207 Lecture 10: CFLs: PDAs, Closure Properties, and Non-CFLs Harry Lewis October 8, 2013 Reading: Sipser, pp. 119-128. Pushdown Automata (review) Pushdown Automata = Finite automaton

More information

Theory of Computation

Theory of Computation Theory of Computation Lecture #2 Sarmad Abbasi Virtual University Sarmad Abbasi (Virtual University) Theory of Computation 1 / 1 Lecture 2: Overview Recall some basic definitions from Automata Theory.

More information

download instant at Assume that (w R ) R = w for all strings w Σ of length n or less.

download instant at  Assume that (w R ) R = w for all strings w Σ of length n or less. Chapter 2 Languages 3. We prove, by induction on the length of the string, that w = (w R ) R for every string w Σ. Basis: The basis consists of the null string. In this case, (λ R ) R = (λ) R = λ as desired.

More information

Lecture 11 Context-Free Languages

Lecture 11 Context-Free Languages Lecture 11 Context-Free Languages COT 4420 Theory of Computation Chapter 5 Context-Free Languages n { a b : n n { ww } 0} R Regular Languages a *b* ( a + b) * Example 1 G = ({S}, {a, b}, S, P) Derivations:

More information

CS 341 Homework 16 Languages that Are and Are Not Context-Free

CS 341 Homework 16 Languages that Are and Are Not Context-Free CS 341 Homework 16 Languages that Are and Are Not Context-Free 1. Show that the following languages are context-free. You can do this by writing a context free grammar or a PDA, or you can use the closure

More information

Properties of Context-Free Languages

Properties of Context-Free Languages Properties of Context-Free Languages Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Section 1 (closed-book) Total points 30

Section 1 (closed-book) Total points 30 CS 454 Theory of Computation Fall 2011 Section 1 (closed-book) Total points 30 1. Which of the following are true? (a) a PDA can always be converted to an equivalent PDA that at each step pops or pushes

More information

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I Internal Examination 2017-18 B.Tech III Year VI Semester Sub: Theory of Computation (6CS3A) Time: 1 Hour 30 min. Max Marks: 40 Note: Attempt all three

More information

Solutions to Problem Set 3

Solutions to Problem Set 3 V22.0453-001 Theory of Computation October 8, 2003 TA: Nelly Fazio Solutions to Problem Set 3 Problem 1 We have seen that a grammar where all productions are of the form: A ab, A c (where A, B non-terminals,

More information

Finite Automata and Regular Languages

Finite Automata and Regular Languages Finite Automata and Regular Languages Topics to be covered in Chapters 1-4 include: deterministic vs. nondeterministic FA, regular expressions, one-way vs. two-way FA, minimization, pumping lemma for regular

More information

Automata Theory CS F-08 Context-Free Grammars

Automata Theory CS F-08 Context-Free Grammars Automata Theory CS411-2015F-08 Context-Free Grammars David Galles Department of Computer Science University of San Francisco 08-0: Context-Free Grammars Set of Terminals (Σ) Set of Non-Terminals Set of

More information

Miscellaneous. Closure Properties Decision Properties

Miscellaneous. Closure Properties Decision Properties Miscellaneous Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms and inverse homomorphisms.

More information

Notes on Pumping Lemma

Notes on Pumping Lemma Notes on Pumping Lemma Finite Automata Theory and Formal Languages TMV027/DIT321 Ana Bove, March 5th 2018 In the course we see two different versions of the Pumping lemmas, one for regular languages and

More information

Context-Free Grammars and Languages. Reading: Chapter 5

Context-Free Grammars and Languages. Reading: Chapter 5 Context-Free Grammars and Languages Reading: Chapter 5 1 Context-Free Languages The class of context-free languages generalizes the class of regular languages, i.e., every regular language is a context-free

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

The Pumping Lemma (cont.) 2IT70 Finite Automata and Process Theory

The Pumping Lemma (cont.) 2IT70 Finite Automata and Process Theory The Pumping Lemma (cont.) 2IT70 Finite Automata and Process Theory Technische Universiteit Eindhoven May 4, 2016 The Pumping Lemma theorem if L Σ is a regular language then m > 0 : w L, w m : x,y,z : w

More information

REGular and Context-Free Grammars

REGular and Context-Free Grammars REGular and Context-Free Grammars Nicholas Mainardi 1 Dipartimento di Elettronica e Informazione Politecnico di Milano nicholas.mainardi@polimi.it March 26, 2018 1 Partly Based on Alessandro Barenghi s

More information

Exam 1 CSU 390 Theory of Computation Fall 2007

Exam 1 CSU 390 Theory of Computation Fall 2007 Exam 1 CSU 390 Theory of Computation Fall 2007 Solutions Problem 1 [10 points] Construct a state transition diagram for a DFA that recognizes the following language over the alphabet Σ = {a, b}: L 1 =

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

Solution Scoring: SD Reg exp.: a(a

Solution Scoring: SD Reg exp.: a(a MA/CSSE 474 Exam 3 Winter 2013-14 Name Solution_with explanations Section: 02(3 rd ) 03(4 th ) 1. (28 points) For each of the following statements, circle T or F to indicate whether it is True or False.

More information

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission.

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission. CSE 5 Homework Due: Monday October 9, 7 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in this

More information

C1.1 Introduction. Theory of Computer Science. Theory of Computer Science. C1.1 Introduction. C1.2 Alphabets and Formal Languages. C1.

C1.1 Introduction. Theory of Computer Science. Theory of Computer Science. C1.1 Introduction. C1.2 Alphabets and Formal Languages. C1. Theory of Computer Science March 20, 2017 C1. Formal Languages and Grammars Theory of Computer Science C1. Formal Languages and Grammars Malte Helmert University of Basel March 20, 2017 C1.1 Introduction

More information

Pushdown Automata. Reading: Chapter 6

Pushdown Automata. Reading: Chapter 6 Pushdown Automata Reading: Chapter 6 1 Pushdown Automata (PDA) Informally: A PDA is an NFA-ε with a infinite stack. Transitions are modified to accommodate stack operations. Questions: What is a stack?

More information

Notes for Comp 497 (454) Week 10

Notes for Comp 497 (454) Week 10 Notes for Comp 497 (454) Week 10 Today we look at the last two chapters in Part II. Cohen presents some results concerning the two categories of language we have seen so far: Regular languages (RL). Context-free

More information

1. Induction on Strings

1. Induction on Strings CS/ECE 374: Algorithms & Models of Computation Version: 1.0 Fall 2017 This is a core dump of potential questions for Midterm 1. This should give you a good idea of the types of questions that we will ask

More information

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar

TAFL 1 (ECS-403) Unit- III. 3.1 Definition of CFG (Context Free Grammar) and problems. 3.2 Derivation. 3.3 Ambiguity in Grammar TAFL 1 (ECS-403) Unit- III 3.1 Definition of CFG (Context Free Grammar) and problems 3.2 Derivation 3.3 Ambiguity in Grammar 3.3.1 Inherent Ambiguity 3.3.2 Ambiguous to Unambiguous CFG 3.4 Simplification

More information

3515ICT: Theory of Computation. Regular languages

3515ICT: Theory of Computation. Regular languages 3515ICT: Theory of Computation Regular languages Notation and concepts concerning alphabets, strings and languages, and identification of languages with problems (H, 1.5). Regular expressions (H, 3.1,

More information

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages CSci 311, Models of Computation Chapter 4 Properties of Regular Languages H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 4.1 Closure Properties of Regular

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. March 13/18, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

CMSC 330: Organization of Programming Languages. Regular Expressions and Finite Automata

CMSC 330: Organization of Programming Languages. Regular Expressions and Finite Automata CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata CMSC330 Spring 2018 1 How do regular expressions work? What we ve learned What regular expressions are What they

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Regular Expressions and Finite Automata CMSC 330 Spring 2017 1 How do regular expressions work? What we ve learned What regular expressions are What they

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 5 2017 Part 3 out of 5 Last week, we learned about closure and equivalence of regular

More information

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 3 out of 5 ETH Zürich (D-ITET) October, 5 2017 Last week, we learned about closure and equivalence of regular

More information

Comment: The induction is always on some parameter, and the basis case is always an integer or set of integers.

Comment: The induction is always on some parameter, and the basis case is always an integer or set of integers. 1. For each of the following statements indicate whether it is true or false. For the false ones (if any), provide a counter example. For the true ones (if any) give a proof outline. (a) Union of two non-regular

More information

Theory of Computation (Classroom Practice Booklet Solutions)

Theory of Computation (Classroom Practice Booklet Solutions) Theory of Computation (Classroom Practice Booklet Solutions) 1. Finite Automata & Regular Sets 01. Ans: (a) & (c) Sol: (a) The reversal of a regular set is regular as the reversal of a regular expression

More information

Solution. S ABc Ab c Bc Ac b A ABa Ba Aa a B Bbc bc.

Solution. S ABc Ab c Bc Ac b A ABa Ba Aa a B Bbc bc. Section 12.4 Context-Free Language Topics Algorithm. Remove Λ-productions from grammars for langauges without Λ. 1. Find nonterminals that derive Λ. 2. For each production A w construct all productions

More information

False. They are the same language.

False. They are the same language. CS 3100 Models of Computation Fall 2010 Notes 8, Posted online: September 16, 2010 These problems will be helpful for Midterm-1. More solutions will be worked out. The midterm exam itself won t be this

More information

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor 60-354, Theory of Computation Fall 2013 Asish Mukhopadhyay School of Computer Science University of Windsor Pushdown Automata (PDA) PDA = ε-nfa + stack Acceptance ε-nfa enters a final state or Stack is

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska

cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska cse303 ELEMENTS OF THE THEORY OF COMPUTATION Professor Anita Wasilewska LECTURE 14 SMALL REVIEW FOR FINAL SOME Y/N QUESTIONS Q1 Given Σ =, there is L over Σ Yes: = {e} and L = {e} Σ Q2 There are uncountably

More information

Context-free grammars and languages

Context-free grammars and languages Context-free grammars and languages The next class of languages we will study in the course is the class of context-free languages. They are defined by the notion of a context-free grammar, or a CFG for

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 9 Last time: Converting a PDA to a CFG Pumping Lemma for CFLs Today: Pumping Lemma for CFLs Review of CFGs/PDAs Sofya Raskhodnikova 2/9/2016 Sofya Raskhodnikova;

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

Automata Theory - Quiz II (Solutions)

Automata Theory - Quiz II (Solutions) Automata Theory - Quiz II (Solutions) K. Subramani LCSEE, West Virginia University, Morgantown, WV {ksmani@csee.wvu.edu} 1 Problems 1. Induction: Let L denote the language of balanced strings over Σ =

More information

Context-free Languages and Pushdown Automata

Context-free Languages and Pushdown Automata Context-free Languages and Pushdown Automata Finite Automata vs CFLs E.g., {a n b n } CFLs Regular From earlier results: Languages every regular language is a CFL but there are CFLs that are not regular

More information

Introduction to Theory of Computing

Introduction to Theory of Computing CSCI 2670, Fall 2012 Introduction to Theory of Computing Department of Computer Science University of Georgia Athens, GA 30602 Instructor: Liming Cai www.cs.uga.edu/ cai 0 Lecture Note 3 Context-Free Languages

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215, Lecture 5 c 2007 1 The Pumping Lemma Theorem. (Pumping Lemma) Let be context-free. There exists a positive integer divided into five pieces, Proof for for each, and..

More information

Automata Theory CS F-13 Unrestricted Grammars

Automata Theory CS F-13 Unrestricted Grammars Automata Theory CS411-2015F-13 Unrestricted Grammars David Galles Department of Computer Science University of San Francisco 13-0: Language Hierarchy Regular Languaes Regular Expressions Finite Automata

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Properties of Context-Free Languages. Closure Properties Decision Properties

Properties of Context-Free Languages. Closure Properties Decision Properties Properties of Context-Free Languages Closure Properties Decision Properties 1 Closure Properties of CFL s CFL s are closed under union, concatenation, and Kleene closure. Also, under reversal, homomorphisms

More information

The Pumping Lemma for Context Free Grammars

The Pumping Lemma for Context Free Grammars The Pumping Lemma for Context Free Grammars Chomsky Normal Form Chomsky Normal Form (CNF) is a simple and useful form of a CFG Every rule of a CNF grammar is in the form A BC A a Where a is any terminal

More information

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata. Code No: R09220504 R09 Set No. 2 II B.Tech II Semester Examinations,December-January, 2011-2012 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer

More information

Grade 6 Math Circles October 20/21, Formalism and Languages: Beyond Regular Languages

Grade 6 Math Circles October 20/21, Formalism and Languages: Beyond Regular Languages Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 20/21, 2015 Formalism and Languages: Beyond Regular Languages Dr. Troy Vasiga

More information

Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition

Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition Harvard CS 121 and CSCI E-207 Lecture 12: General Context-Free Recognition Salil Vadhan October 11, 2012 Reading: Sipser, Section 2.3 and Section 2.1 (material on Chomsky Normal Form). Pumping Lemma for

More information

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a . Solution E T F a E E + T T + T F + T a + T a + F a + a E E + T E + T + T T + T + T F + T + T a + T + T a + F + T a + a + T a + a + F a + a + a E T F ( E) ( T ) ( F) (( E)) (( T )) (( F)) (( a)) . Solution

More information

Question Bank UNIT I

Question Bank UNIT I Siddhivinayak Technical Campus School of Engineering & Research Technology Department of computer science and Engineering Session 2016-2017 Subject Name- Theory of Computation Subject Code-4KS05 Sr No.

More information

CSCI 340: Computational Models. Regular Expressions. Department of Computer Science

CSCI 340: Computational Models. Regular Expressions. Department of Computer Science CSCI 340: Computational Models Regular Expressions Chapter 4 Department of Computer Science Yet Another New Method for Defining Languages Given the Language: L 1 = {x n for n = 1 2 3...} We could easily

More information

SFWR ENG 2FA3. Solution to the Assignment #4

SFWR ENG 2FA3. Solution to the Assignment #4 SFWR ENG 2FA3. Solution to the Assignment #4 Total = 131, 100%= 115 The solutions below are often very detailed on purpose. Such level of details is not required from students solutions. Some questions

More information

CS 133 : Automata Theory and Computability

CS 133 : Automata Theory and Computability CS 133 : Automata Theory and Computability Lecture Slides 1 Regular Languages and Finite Automata Nestine Hope S. Hernandez Algorithms and Complexity Laboratory Department of Computer Science University

More information

Recitation 4: Converting Grammars to Chomsky Normal Form, Simulation of Context Free Languages with Push-Down Automata, Semirings

Recitation 4: Converting Grammars to Chomsky Normal Form, Simulation of Context Free Languages with Push-Down Automata, Semirings Recitation 4: Converting Grammars to Chomsky Normal Form, Simulation of Context Free Languages with Push-Down Automata, Semirings 11-711: Algorithms for NLP October 10, 2014 Conversion to CNF Example grammar

More information

Lecture 12 Simplification of Context-Free Grammars and Normal Forms

Lecture 12 Simplification of Context-Free Grammars and Normal Forms Lecture 12 Simplification of Context-Free Grammars and Normal Forms COT 4420 Theory of Computation Chapter 6 Normal Forms for CFGs 1. Chomsky Normal Form CNF Productions of form A BC A, B, C V A a a T

More information

Ogden s Lemma for CFLs

Ogden s Lemma for CFLs Ogden s Lemma for CFLs Theorem If L is a context-free language, then there exists an integer l such that for any u L with at least l positions marked, u can be written as u = vwxyz such that 1 x and at

More information

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. UNIT 2 Structure NON-DETERMINISTIC FINITE AUTOMATA

More information

5.A Examples of Context-Free Grammars 3.1 and 3.2 of Du & Ko s book(pp )

5.A Examples of Context-Free Grammars 3.1 and 3.2 of Du & Ko s book(pp ) 5.A Examples of Context-Free Grammars 3.1 and 3.2 of Du & Ko s book(pp. 91-108) Example 3.1 Consider S ε asb. What is L(S)? Solution S asb aasbb a n Sb n a n b n. L(S) = {a n b n n 0} Example 3.2 Consider

More information

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1)

COSE212: Programming Languages. Lecture 1 Inductive Definitions (1) COSE212: Programming Languages Lecture 1 Inductive Definitions (1) Hakjoo Oh 2018 Fall Hakjoo Oh COSE212 2018 Fall, Lecture 1 September 5, 2018 1 / 10 Inductive Definitions Inductive definition (induction)

More information

Closure Properties of Context-Free Languages. Foundations of Computer Science Theory

Closure Properties of Context-Free Languages. Foundations of Computer Science Theory Closure Properties of Context-Free Languages Foundations of Computer Science Theory Closure Properties of CFLs CFLs are closed under: Union Concatenation Kleene closure Reversal CFLs are not closed under

More information

TAFL 1 (ECS-403) Unit- II. 2.1 Regular Expression: The Operators of Regular Expressions: Building Regular Expressions

TAFL 1 (ECS-403) Unit- II. 2.1 Regular Expression: The Operators of Regular Expressions: Building Regular Expressions TAFL 1 (ECS-403) Unit- II 2.1 Regular Expression: 2.1.1 The Operators of Regular Expressions: 2.1.2 Building Regular Expressions 2.1.3 Precedence of Regular-Expression Operators 2.1.4 Algebraic laws for

More information

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols

Finite Automata and Formal Languages TMV026/DIT321 LP Useful, Useless, Generating and Reachable Symbols Finite Automata and Formal Languages TMV026/DIT321 LP4 2012 Lecture 13 Ana Bove May 7th 2012 Overview of today s lecture: Normal Forms for Context-Free Languages Pumping Lemma for Context-Free Languages

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/26/2016 LECTURE 5 Last time: Closure properties. Equivalence of NFAs, DFAs and regular expressions Today: Conversion from NFAs to regular expressions Proving that a language

More information

10. The GNFA method is used to show that

10. The GNFA method is used to show that CSE 355 Midterm Examination 27 February 27 Last Name Sample ASU ID First Name(s) Ima Exam # Sample Regrading of Midterms If you believe that your grade has not been recorded correctly, return the entire

More information