Intro to Theory of Computation

Size: px
Start display at page:

Download "Intro to Theory of Computation"

Transcription

1 Intro to Theory of Computation 1/26/2016 LECTURE 5 Last time: Closure properties. Equivalence of NFAs, DFAs and regular expressions Today: Conversion from NFAs to regular expressions Proving that a language is not regular: pumping lemma Sofya Raskhodnikova Sofya Raskhodnikova; based on slides by Nick Hopper 5.1

2 NFAs to regular expressions Theorem. Every NFA has an equivalent regular expression. Proof idea: Transform NFA to a regular expression by removing states and relabeling the arrows with regular expressions. 0 01* /26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L4.2

3 I-clicker problem (frequency: AC) What is the regular expression that generates all strings that take this machine from q s to q a? b q s a q c q a A. ab c d B. ab c d C. abc d D. ab cd E. None of the above. d

4 Generalized NFAs Each transition is labeled with a regular expression Unique and distinct start and accept states No transitions to the start state No transitions from the accept state 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L4.4

5 Generalized NFAs a b q s a*b q a q a G accepts R(q w if s,q) it finds = a*b q 0 q 1 q k, w 1 w k : w i is generated by R(q i,q i+1 ) R(q a,q) = Ø w = w 1 w 2 w k R(q,q q 0 s =q ) = s Ø, q k =q a

6 NFA to GNFA NFA Add a new start state with no incoming arrows. Make a unique accept state with no outgoing arrows. 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L4.6

7 GNF to regular expression NFA While machine has more than 2 states: Pick an internal state, rip it out and relabel the arrows with regular expressions to account for the missing state. 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L4.7

8 a a,b a*b(a*b)(a b)* b q 0 q 1 q 2 q 3 R(q 0,q 3 ) = (a*b)(a b)*

9 bb b a q 1 b b a a q 2 q 3 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper

10 bb b a q 1 b a a ba b a q 2 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper

11 bb (a bb ba)b*a = R(q 1,q 1 ) b a q 1 a ba q 2 b (a ba)b* 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper

12 bb (a ba)b*a = R(q 1,q 1 ) q 1 q s b (a ba)b* = R(q 1,q a ) q a 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper

13 Convert the NFA to a regular expression q 1 a, b q 2 b (a b)b*b (a b)b*b(bb*b)*a b bb*b a b q 3 (a b)b*b(bb*b)*

14 Convert the NFA to a regular expression (a b)b*b(bb*b)*a ((a b)b*b(bb*b)*a )*( (a b)b*b(bb*b)*) (a b)b*b(bb*b)*

15 NFA to regular expression Add q start and q accept to create GNFA G. Run CONVERT(G) CONVERT(G): If #states = > 2 return the expression on the arrow going from q start to q accept 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper 5.15

16 NFA to regular expression Add q start and q accept to create GNFA G. Run CONVERT(G) CONVERT(G): If #states > 2 Build G from G: select q rip Q different from q start and q accept define Q = Q {q rip } define R as: R (q i,q j ) = R(q i,q rip )R(q rip,q rip )*R(q rip,q j ) R(q i,q j ) return CONVERT(G ) 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper 5.16

17 Conversion procedures DFA NFA definition Regular Language Regular Expression 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper 5.17

18 REGULAR OR NOT? Design an NFA for the language: {0 n 1 n 0 < n 2} 0 n 1 n 0 < n k} {0 n 1 n n > 0}? n (For R a regexp, R 2 means RR, and R n means RR R) 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.18

19 SOME LANGUAGES ARE NOT REGULAR! B = {0 n 1 n n 0} is NOT regular! 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.19

20 Proof (by contradiction) Let M be a k-state DFA that recognizes B. Consider the path M takes on 0 k 1 k : q k q 2k F q 0 q 1 q 2 q i q i+1 q j There must be i < j k such that q i = q j M accepts 0 k-(j-i) 1 k B! So M does not recognize the language B. 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.20

21 REGULAR OR NOT? C = { w w has equal number of 1s and 0s} NOT REGULAR D = { w w has equal number of occurrences of 01 and 10} (0Σ*0) (1Σ*1) 1 0 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.21

22 THE PUMPING LEMMA Let L be a regular language with L = Then there exists a length p such that if w L and w p then w can be split into three parts w=xyz where: 1. y > 0 2. xy p 3. xy i z L for all i 0 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.22

23 THE PUMPING LEMMA Example: Let L = 0*1* ; p = 1 w = 011 x = if w L and w p y = 0 then w = xyz, where: z = y > 0 Let L = (0 1)2*; p = 2. xy p w = 12 x = 1 3. xy i z L for all y i= 20 z = 2 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.23

24 Proof of the pumping lemma Let M be a DFA that recognizes L. Let p be the number of states in M. Assume w L is such that w p. We show w = xyz 1. y > 0 2. xy p 3. xy i z L for all i 0 x y z q 0 q i q j q w There must be j > i such that q i = q j. 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.24

25 USING THE PUMPING LEMMA Use the pumping lemma to prove that B = {0 n 1 n n 0} is not regular Hint: Assume B is regular, and try pumping w = 0 P 1 P If B is regular, w can be split into w = xyz, where 1. y > 0 2. xy p 3. xy i z B for all i 0 y is all 0s: xyyz has more 0s than 1s Contradiction! 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.25

26 GENERAL STRATEGY Proof by contradiction: assume L is regular. Then there is a pumping length p. Find a string w L with w p. Show that no matter how you choose xyz, w cannot be pumped! Conclude that L is not regular. 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.26

27 USING THE PUMPING LEMMA PALINDROMES = { ww R w {0,1}* } is not regular. Proof: Assume pumping length p Find a w PALINDROMES longer than p 0 P 1 P 1 P 0 P Show that w cannot be pumped: w= p 2p y must be in this part xyyz = p > p 2p p 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.27

28 USING THE PUMPING LEMMA PALINDROMES = { ww R w {0,1}* } is not regular. Proof: Assume pumping length p Find a w PALINDROMES longer than p 0 P 1 P 1 P 0 P Show that w cannot be pumped: If w = xyz with xy p then y = 0 J for some J>0. Then xyyz = 0 P+J 1 2P 0 P PALINDROMES Contradiction! 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.28

29 PUMPING DOWN Prove C = { 0 i 1 j i > j 0} is not regular. Proof: Assume pumping length p Find a w C longer than p 0 P+1 1 P Show that w cannot be pumped: p+1 p w= y must be in this part xyyz = xz = > p+1 P p P 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.29

30 PUMPING DOWN Prove C = { 0 i 1 j i > j 0} is not regular. Proof: Assume pumping length p Find a w C longer than p 0 P+1 1 P If w = xyz with xy p then y = 0 J for some J 1. Then xy 0 z = xz = 0 P+1-J 1 P C Contradiction! xz = /26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.30

31 Pumping lemma as a game 1. YOU pick the language L to be proved nonregular. 2. ADVERSARY picks p, but doesn't reveal to YOU what p is; YOU must devise a play for all possible p's. 3. YOU pick w, which should depend on p and which must be of length at least p. 4. ADVERSARY divides w into x, y, z, obeying conditions stipulated in the pumping lemma: y > 0 and xy n. Again, ADVERSARY does not tell YOU what x, y, z are, although they must obey the constraints. 5. YOU win by picking i, which may be a function of p, x, y, z, such that xy i z is not in L. 1/26/2016 Sofya Raskhodnikova; based on slides by Nick Hopper L5.31

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THE PUMPING LEMMA FOR REGULAR LANGUAGES and REGULAR EXPRESSIONS TUESDAY Jan 21 WHICH OF THESE ARE REGULAR? B = {0 n 1 n n 0} C = { w w has equal number

More information

Lecture 4: More on Regexps, Non-Regular Languages

Lecture 4: More on Regexps, Non-Regular Languages 6.045 Lecture 4: More on Regexps, Non-Regular Languages 6.045 Announcements: - Pset 1 is on piazza (as of last night) - If you don t have piazza access but are registered for 6.045, send email to TAs with

More information

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages

CS 154. Finite Automata vs Regular Expressions, Non-Regular Languages CS 154 Finite Automata vs Regular Expressions, Non-Regular Languages Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and guessing

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 9 Last time: Converting a PDA to a CFG Pumping Lemma for CFLs Today: Pumping Lemma for CFLs Review of CFGs/PDAs Sofya Raskhodnikova 2/9/2016 Sofya Raskhodnikova;

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation 1/19/2016 LECTURE 3 Last time: DFAs and NFAs Operations on languages Today: Nondeterminism Equivalence of NFAs and DFAs Closure properties of regular languages Sofya Raskhodnikova

More information

TDDD65 Introduction to the Theory of Computation

TDDD65 Introduction to the Theory of Computation TDDD65 Introduction to the Theory of Computation Lecture 2 Gustav Nordh, IDA gustav.nordh@liu.se 2012-08-31 Outline - Lecture 2 Closure properties of regular languages Regular expressions Equivalence of

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY. FLAC (15-453) - Spring L. Blum

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY. FLAC (15-453) - Spring L. Blum 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY THE PUMPING LEMMA FOR REGULAR LANGUAGES nd REGULAR EXPRESSIONS TUESDAY Jn 21 WHICH OF THESE ARE REGULAR? B = {0 n 1 n n 0} C = { w w hs equl numer of

More information

What we have done so far

What we have done so far What we have done so far DFAs and regular languages NFAs and their equivalence to DFAs Regular expressions. Regular expressions capture exactly regular languages: Construct a NFA from a regular expression.

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION "Winter" 2018 http://cseweb.ucsd.edu/classes/wi18/cse105-ab/ Today's learning goals Sipser Section 1.4 Explain the limits of the class of regular languages Justify why the

More information

Before we show how languages can be proven not regular, first, how would we show a language is regular?

Before we show how languages can be proven not regular, first, how would we show a language is regular? CS35 Proving Languages not to be Regular Before we show how languages can be proven not regular, first, how would we show a language is regular? Although regular languages and automata are quite powerful

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 14 Last time Turing Machine Variants Church-Turing Thesis Today Universal TM Decidable languages Designing deciders Sofya Raskhodnikova 3/1/2016 Sofya Raskhodnikova;

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 15 Last time Decidable languages Designing deciders Today Designing deciders Undecidable languages Diagonalization Sofya Raskhodnikova 3/1/2016 Sofya Raskhodnikova;

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Sipser Ch 1.4 Explain the limits of the class of regular languages Justify why the Pumping

More information

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10

acs-04: Regular Languages Regular Languages Andreas Karwath & Malte Helmert Informatik Theorie II (A) WS2009/10 Regular Languages Andreas Karwath & Malte Helmert 1 Overview Deterministic finite automata Regular languages Nondeterministic finite automata Closure operations Regular expressions Nonregular languages

More information

CS5371 Theory of Computation. Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression)

CS5371 Theory of Computation. Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression) CS5371 Theory of Computation Lecture 5: Automata Theory III (Non-regular Language, Pumping Lemma, Regular Expression) Objectives Prove the Pumping Lemma, and use it to show that there are non-regular languages

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 1.4 Give an example of a non-regular language Outline two strategies for proving

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY 15-453 FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY REVIEW for MIDTERM 1 THURSDAY Feb 6 Midterm 1 will cover everything we have seen so far The PROBLEMS will be from Sipser, Chapters 1, 2, 3 It will be

More information

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy:

Incorrect reasoning about RL. Equivalence of NFA, DFA. Epsilon Closure. Proving equivalence. One direction is easy: Incorrect reasoning about RL Since L 1 = {w w=a n, n N}, L 2 = {w w = b n, n N} are regular, therefore L 1 L 2 = {w w=a n b n, n N} is regular If L 1 is a regular language, then L 2 = {w R w L 1 } is regular,

More information

Theory of Computation (II) Yijia Chen Fudan University

Theory of Computation (II) Yijia Chen Fudan University Theory of Computation (II) Yijia Chen Fudan University Review A language L is a subset of strings over an alphabet Σ. Our goal is to identify those languages that can be recognized by one of the simplest

More information

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION

FORMAL LANGUAGES, AUTOMATA AND COMPUTATION FORMAL LANGUAGES, AUTOMATA AND COMPUTATION IDENTIFYING NONREGULAR LANGUAGES PUMPING LEMMA Carnegie Mellon University in Qatar (CARNEGIE MELLON UNIVERSITY IN QATAR) SLIDES FOR 15-453 LECTURE 5 SPRING 2011

More information

CS 154, Lecture 3: DFA NFA, Regular Expressions

CS 154, Lecture 3: DFA NFA, Regular Expressions CS 154, Lecture 3: DFA NFA, Regular Expressions Homework 1 is coming out Deterministic Finite Automata Computation with finite memory Non-Deterministic Finite Automata Computation with finite memory and

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa CS:4330 Theory of Computtion Spring 208 Regulr Lnguges Equivlences between Finite utomt nd REs Hniel Brbos Redings for this lecture Chpter of [Sipser 996], 3rd edition. Section.3. Finite utomt nd regulr

More information

Computational Models - Lecture 3

Computational Models - Lecture 3 Slides modified by Benny Chor, based on original slides by Maurice Herlihy, Brown University. p. 1 Computational Models - Lecture 3 Equivalence of regular expressions and regular languages (lukewarm leftover

More information

September 11, Second Part of Regular Expressions Equivalence with Finite Aut

September 11, Second Part of Regular Expressions Equivalence with Finite Aut Second Part of Regular Expressions Equivalence with Finite Automata September 11, 2013 Lemma 1.60 If a language is regular then it is specified by a regular expression Proof idea: For a given regular language

More information

Computer Sciences Department

Computer Sciences Department 1 Reference Book: INTRODUCTION TO THE THEORY OF COMPUTATION, SECOND EDITION, by: MICHAEL SIPSER 3 objectives Finite automaton Infinite automaton Formal definition State diagram Regular and Non-regular

More information

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2

Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 BIJU PATNAIK UNIVERSITY OF TECHNOLOGY, ODISHA Lecture Notes On THEORY OF COMPUTATION MODULE -1 UNIT - 2 Prepared by, Dr. Subhendu Kumar Rath, BPUT, Odisha. UNIT 2 Structure NON-DETERMINISTIC FINITE AUTOMATA

More information

ECS120 Fall Discussion Notes. October 25, The midterm is on Thursday, November 2nd during class. (That is next week!)

ECS120 Fall Discussion Notes. October 25, The midterm is on Thursday, November 2nd during class. (That is next week!) ECS120 Fall 2006 Discussion Notes October 25, 2006 Announcements The midterm is on Thursday, November 2nd during class. (That is next week!) Homework 4 Quick Hints Problem 1 Prove that the following languages

More information

Proving languages to be nonregular

Proving languages to be nonregular Proving languages to be nonregular We already know that there exist languages A Σ that are nonregular, for any choice of an alphabet Σ. This is because there are uncountably many languages in total and

More information

Computational Models: Class 3

Computational Models: Class 3 Computational Models: Class 3 Benny Chor School of Computer Science Tel Aviv University November 2, 2015 Based on slides by Maurice Herlihy, Brown University, and modifications by Iftach Haitner and Yishay

More information

More on Regular Languages and Non-Regular Languages

More on Regular Languages and Non-Regular Languages More on Regular Languages and Non-Regular Languages CSCE A35 Decision Properties of Regular Languages Given a (representation, e.g., RE, FA, of a) regular language L, what can we tell about L? Since there

More information

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1

Unit 6. Non Regular Languages The Pumping Lemma. Reading: Sipser, chapter 1 Unit 6 Non Regular Languages The Pumping Lemma Reading: Sipser, chapter 1 1 Are all languages regular? No! Most of the languages are not regular! Why? A finite automaton has limited memory. How can we

More information

Notes for Comp 497 (Comp 454) Week 5 2/22/05. Today we will look at some of the rest of the material in Part 1 of the book.

Notes for Comp 497 (Comp 454) Week 5 2/22/05. Today we will look at some of the rest of the material in Part 1 of the book. Notes for Comp 497 (Comp 454) Week 5 2/22/05 Today we will look at some of the rest of the material in Part 1 of the book Errata (Chapter 9) Chapter 9 p. 177, line 11, replace "for L 1 " by "for L 2 ".

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-3: Regular Expressions Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Define the following and give

More information

Formal Languages, Automata and Models of Computation

Formal Languages, Automata and Models of Computation CDT314 FABER Formal Languages, Automata and Models of Computation Lecture 5 School of Innovation, Design and Engineering Mälardalen University 2011 1 Content - More Properties of Regular Languages (RL)

More information

Exam 1 CSU 390 Theory of Computation Fall 2007

Exam 1 CSU 390 Theory of Computation Fall 2007 Exam 1 CSU 390 Theory of Computation Fall 2007 Solutions Problem 1 [10 points] Construct a state transition diagram for a DFA that recognizes the following language over the alphabet Σ = {a, b}: L 1 =

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is

Theory of Computation p.1/?? Theory of Computation p.2/?? Unknown: Implicitly a Boolean variable: true if a word is Abstraction of Problems Data: abstracted as a word in a given alphabet. Σ: alphabet, a finite, non-empty set of symbols. Σ : all the words of finite length built up using Σ: Conditions: abstracted as a

More information

Notes on Pumping Lemma

Notes on Pumping Lemma Notes on Pumping Lemma Finite Automata Theory and Formal Languages TMV027/DIT321 Ana Bove, March 5th 2018 In the course we see two different versions of the Pumping lemmas, one for regular languages and

More information

Name: Student ID: Instructions:

Name: Student ID: Instructions: Instructions: Name: CSE 322 Autumn 2001: Midterm Exam (closed book, closed notes except for 1-page summary) Total: 100 points, 5 questions, 20 points each. Time: 50 minutes 1. Write your name and student

More information

Intro to Theory of Computation

Intro to Theory of Computation Intro to Theory of Computation LECTURE 7 Last time: Proving a language is not regular Pushdown automata (PDAs) Today: Context-free grammars (CFG) Equivalence of CFGs and PDAs Sofya Raskhodnikova 1/31/2016

More information

Sample Midterm. Understanding the questions is part of the exam; you are not allowed to ask questions during the exam.

Sample Midterm. Understanding the questions is part of the exam; you are not allowed to ask questions during the exam. Sample Midterm Name: This exam consists of five questions. Each question is worth 10 points. The exam is worth 40 points. Your exam score is the sum of your four highest question scores. Calculators, cell

More information

Author: Vivek Kulkarni ( )

Author: Vivek Kulkarni ( ) Author: Vivek Kulkarni ( vivek_kulkarni@yahoo.com ) Chapter-2: Finite State Machines Solutions for Review Questions @ Oxford University Press 2013. All rights reserved. 1 Q.1 Construct Mealy and Moore

More information

1.3 Regular Expressions

1.3 Regular Expressions 51 1.3 Regular Expressions These have an important role in descriing patterns in searching for strings in many applications (e.g. awk, grep, Perl,...) All regular expressions of alphaet are 1.Øand are

More information

CS 133 : Automata Theory and Computability

CS 133 : Automata Theory and Computability CS 133 : Automata Theory and Computability Lecture Slides 1 Regular Languages and Finite Automata Nestine Hope S. Hernandez Algorithms and Complexity Laboratory Department of Computer Science University

More information

Chapter 6. Properties of Regular Languages

Chapter 6. Properties of Regular Languages Chapter 6 Properties of Regular Languages Regular Sets and Languages Claim(1). The family of languages accepted by FSAs consists of precisely the regular sets over a given alphabet. Every regular set is

More information

Properties of Regular Languages. Wen-Guey Tzeng Department of Computer Science National Chiao Tung University

Properties of Regular Languages. Wen-Guey Tzeng Department of Computer Science National Chiao Tung University Properties of Regular Languages Wen-Guey Tzeng Department of Computer Science National Chiao Tung University Closure Properties Question: L is a regular language and op is an operator on strings. Is op(l)

More information

CS375 Midterm Exam Solution Set (Fall 2017)

CS375 Midterm Exam Solution Set (Fall 2017) CS375 Midterm Exam Solution Set (Fall 2017) Closed book & closed notes October 17, 2017 Name sample 1. (10 points) (a) Put in the following blank the number of strings of length 5 over A={a, b, c} that

More information

CS 154, Lecture 4: Limitations on DFAs (I), Pumping Lemma, Minimizing DFAs

CS 154, Lecture 4: Limitations on DFAs (I), Pumping Lemma, Minimizing DFAs CS 154, Lecture 4: Limitations on FAs (I), Pumping Lemma, Minimizing FAs Regular or Not? Non-Regular Languages = { w w has equal number of occurrences of 01 and 10 } REGULAR! C = { w w has equal number

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 3 January 9, 2017 January 9, 2017 CS21 Lecture 3 1 Outline NFA, FA equivalence Regular Expressions FA and Regular Expressions January 9, 2017 CS21 Lecture 3 2

More information

Outline. CS21 Decidability and Tractability. Regular expressions and FA. Regular expressions and FA. Regular expressions and FA

Outline. CS21 Decidability and Tractability. Regular expressions and FA. Regular expressions and FA. Regular expressions and FA Outline CS21 Decidability and Tractability Lecture 4 January 14, 2019 FA and Regular Exressions Non-regular languages: Puming Lemma Pushdown Automata Context-Free Grammars and Languages January 14, 2019

More information

front pad rear pad door

front pad rear pad door front pad rear pad door REAR BOTH NEITHER closed FRONT open FRONT REAR BOTH NEITHER Think of this as a simple program that outputs one of two values (states) when provided with the current state and an

More information

Please give details of your calculation. A direct answer without explanation is not counted.

Please give details of your calculation. A direct answer without explanation is not counted. Please give details of your calculation. A direct answer without explanation is not counted. Your answers must be in English. Please carefully read problem statements. During the exam you are not allowed

More information

We have seen many ways to specify Regular languages. Are all languages Regular languages?

We have seen many ways to specify Regular languages. Are all languages Regular languages? Automata and Formal Languages Are all Languages Regular We have seen many ways to specify Regular languages Are all languages Regular languages? The answer is No, How can we tell? A language is regular

More information

CSCE 551 Final Exam, Spring 2004 Answer Key

CSCE 551 Final Exam, Spring 2004 Answer Key CSCE 551 Final Exam, Spring 2004 Answer Key 1. (10 points) Using any method you like (including intuition), give the unique minimal DFA equivalent to the following NFA: 0 1 2 0 5 1 3 4 If your answer is

More information

COMP4141 Theory of Computation

COMP4141 Theory of Computation COMP4141 Theory of Computation Lecture 4 Regular Languages cont. Ron van der Meyden CSE, UNSW Revision: 2013/03/14 (Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner, Rob van Glabbeek) Regular

More information

Finite Automata and Regular languages

Finite Automata and Regular languages Finite Automata and Regular languages Huan Long Shanghai Jiao Tong University Acknowledgements Part of the slides comes from a similar course in Fudan University given by Prof. Yijia Chen. http://basics.sjtu.edu.cn/

More information

Examples of Regular Expressions. Finite Automata vs. Regular Expressions. Example of Using flex. Application

Examples of Regular Expressions. Finite Automata vs. Regular Expressions. Example of Using flex. Application Examples of Regular Expressions 1. 0 10, L(0 10 ) = {w w contains exactly a single 1} 2. Σ 1Σ, L(Σ 1Σ ) = {w w contains at least one 1} 3. Σ 001Σ, L(Σ 001Σ ) = {w w contains the string 001 as a substring}

More information

I have read and understand all of the instructions below, and I will obey the University Code on Academic Integrity.

I have read and understand all of the instructions below, and I will obey the University Code on Academic Integrity. Midterm Exam CS 341-451: Foundations of Computer Science II Fall 2016, elearning section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand all

More information

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages

CSci 311, Models of Computation Chapter 4 Properties of Regular Languages CSci 311, Models of Computation Chapter 4 Properties of Regular Languages H. Conrad Cunningham 29 December 2015 Contents Introduction................................. 1 4.1 Closure Properties of Regular

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic and Theory of Computing Fuhua (Frank) Cheng Department of Computer Science University of Kentucky 1 Table of Contents: Week 1: Preliminaries (set algebra, relations, functions) (read Chapters

More information

10. The GNFA method is used to show that

10. The GNFA method is used to show that CSE 355 Midterm Examination 27 February 27 Last Name Sample ASU ID First Name(s) Ima Exam # Sample Regrading of Midterms If you believe that your grade has not been recorded correctly, return the entire

More information

PS2 - Comments. University of Virginia - cs3102: Theory of Computation Spring 2010

PS2 - Comments. University of Virginia - cs3102: Theory of Computation Spring 2010 University of Virginia - cs3102: Theory of Computation Spring 2010 PS2 - Comments Average: 77.4 (full credit for each question is 100 points) Distribution (of 54 submissions): 90, 12; 80 89, 11; 70-79,

More information

Introduction to computability Tutorial 7

Introduction to computability Tutorial 7 Introduction to computability Tutorial 7 Context free languages and Turing machines November 6 th 2014 Context-free languages 1. Show that the following languages are not context-free: a) L ta i b j a

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) October,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.   ETH Zürich (D-ITET) October, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) October, 5 2017 Part 3 out of 5 Last week, we learned about closure and equivalence of regular

More information

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages

Part 3 out of 5. Automata & languages. A primer on the Theory of Computation. Last week, we learned about closure and equivalence of regular languages Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 3 out of 5 ETH Zürich (D-ITET) October, 5 2017 Last week, we learned about closure and equivalence of regular

More information

The Pumping Lemma and Closure Properties

The Pumping Lemma and Closure Properties The Pumping Lemma and Closure Properties Mridul Aanjaneya Stanford University July 5, 2012 Mridul Aanjaneya Automata Theory 1/ 27 Tentative Schedule HW #1: Out (07/03), Due (07/11) HW #2: Out (07/10),

More information

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages Context Free Languages Automata Theory and Formal Grammars: Lecture 6 Context Free Languages Last Time Decision procedures for FAs Minimum-state DFAs Today The Myhill-Nerode Theorem The Pumping Lemma Context-free

More information

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1)

CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) CS 530: Theory of Computation Based on Sipser (second edition): Notes on regular languages(version 1.1) Definition 1 (Alphabet) A alphabet is a finite set of objects called symbols. Definition 2 (String)

More information

Computational Models - Lecture 3 1

Computational Models - Lecture 3 1 Computational Models - Lecture 3 1 Handout Mode Iftach Haitner and Yishay Mansour. Tel Aviv University. March 13/18, 2013 1 Based on frames by Benny Chor, Tel Aviv University, modifying frames by Maurice

More information

UNIT-III REGULAR LANGUAGES

UNIT-III REGULAR LANGUAGES Syllabus R9 Regulation REGULAR EXPRESSIONS UNIT-III REGULAR LANGUAGES Regular expressions are useful for representing certain sets of strings in an algebraic fashion. In arithmetic we can use the operations

More information

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs CSE : Foundations of Computing Lecture : Finite State Machine Minimization & NFAs State Minimization Many different FSMs (DFAs) for the same problem Take a given FSM and try to reduce its state set by

More information

More Properties of Regular Languages

More Properties of Regular Languages More Properties of Regular anguages 1 We have proven Regular languages are closed under: Union Concatenation Star operation Reverse 2 Namely, for regular languages 1 and 2 : Union 1 2 Concatenation Star

More information

Foundations of (Theoretical) Computer Science

Foundations of (Theoretical) Computer Science 91.304 Foundations of (Theoretical) Computer Science Chapter 1 Lecture Notes (Section 1.4: Nonregular Languages) David Martin dm@cs.uml.edu With some modifications by Prof. Karen Daniels, Fall 2014 This

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information

CS 154. Finite Automata, Nondeterminism, Regular Expressions

CS 154. Finite Automata, Nondeterminism, Regular Expressions CS 54 Finite Automata, Nondeterminism, Regular Expressions Read string left to right The DFA accepts a string if the process ends in a double circle A DFA is a 5-tuple M = (Q, Σ, δ, q, F) Q is the set

More information

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS

Automata Theory. Lecture on Discussion Course of CS120. Runzhe SJTU ACM CLASS Automata Theory Lecture on Discussion Course of CS2 This Lecture is about Mathematical Models of Computation. Why Should I Care? - Ways of thinking. - Theory can drive practice. - Don t be an Instrumentalist.

More information

Chapter 2 The Pumping Lemma

Chapter 2 The Pumping Lemma Chapter 2 The Pumping Lemma Fourth Academic Year/ Elective Course-General Electrical Engineering Department College of Engineering University of Salahaddin April 2015 Nonregular Languages Consider the

More information

Theory of Computation

Theory of Computation Fall 2002 (YEN) Theory of Computation Midterm Exam. Name:... I.D.#:... 1. (30 pts) True or false (mark O for true ; X for false ). (Score=Max{0, Right- 1 2 Wrong}.) (1) X... If L 1 is regular and L 2 L

More information

Uses of finite automata

Uses of finite automata Chapter 2 :Finite Automata 2.1 Finite Automata Automata are computational devices to solve language recognition problems. Language recognition problem is to determine whether a word belongs to a language.

More information

Part 4 out of 5 DFA NFA REX. Automata & languages. A primer on the Theory of Computation. Last week, we showed the equivalence of DFA, NFA and REX

Part 4 out of 5 DFA NFA REX. Automata & languages. A primer on the Theory of Computation. Last week, we showed the equivalence of DFA, NFA and REX Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu Part 4 out of 5 ETH Zürich (D-ITET) October, 12 2017 Last week, we showed the equivalence of DFA, NFA and REX

More information

CS154. Non-Regular Languages, Minimizing DFAs

CS154. Non-Regular Languages, Minimizing DFAs CS54 Non-Regular Languages, Minimizing FAs CS54 Homework is due! Homework 2 will appear this afternoon 2 The Pumping Lemma: Structure in Regular Languages Let L be a regular language Then there is a positive

More information

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur

Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Theory of Computation Prof. Raghunath Tewari Department of Computer Science and Engineering Indian Institute of Technology, Kanpur Lecture 10 GNFA to RE Conversion Welcome to the 10th lecture of this course.

More information

CSE 105 Theory of Computation Professor Jeanne Ferrante

CSE 105 Theory of Computation   Professor Jeanne Ferrante CSE 105 Theory of Computation http://www.jflap.org/jflaptmp/ Professor Jeanne Ferrante 1 Announcement & Reminders HW 2: Grades not available yet, will be soon Solutions posted, read even if you did well

More information

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever. ETH Zürich (D-ITET) September,

Automata & languages. A primer on the Theory of Computation. Laurent Vanbever.  ETH Zürich (D-ITET) September, Automata & languages A primer on the Theory of Computation Laurent Vanbever www.vanbever.eu ETH Zürich (D-ITET) September, 28 2017 Part 2 out of 5 Last week was all about Deterministic Finite Automaton

More information

False. They are the same language.

False. They are the same language. CS 3100 Models of Computation Fall 2010 Notes 8, Posted online: September 16, 2010 These problems will be helpful for Midterm-1. More solutions will be worked out. The midterm exam itself won t be this

More information

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3},

(b) If G=({S}, {a}, {S SS}, S) find the language generated by G. [8+8] 2. Convert the following grammar to Greibach Normal Form G = ({A1, A2, A3}, Code No: 07A50501 R07 Set No. 2 III B.Tech I Semester Examinations,MAY 2011 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All

More information

FS Properties and FSTs

FS Properties and FSTs FS Properties and FSTs Chris Dyer Algorithms for NLP 11-711 Announcements HW1 has been posted; due in class in 2 weeks Goals of Today s Lecture Understand properties of regular languages Understand Brzozowski

More information

HW 3 Solutions. Tommy November 27, 2012

HW 3 Solutions. Tommy November 27, 2012 HW 3 Solutions Tommy November 27, 2012 5.1.1 (a) Online solution: S 0S1 ɛ. (b) Similar to online solution: S AY XC A aa ɛ b ɛ C cc ɛ X axb aa b Y by c b cc (c) S X A A A V AV a V V b V a b X V V X V (d)

More information

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a.

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a. VTU QUESTION BANK Unit 1 Introduction to Finite Automata 1. Obtain DFAs to accept strings of a s and b s having exactly one a.(5m )( Dec-2014) 2. Obtain a DFA to accept strings of a s and b s having even

More information

Applied Computer Science II Chapter 1 : Regular Languages

Applied Computer Science II Chapter 1 : Regular Languages Applied Computer Science II Chapter 1 : Regular Languages Prof. Dr. Luc De Raedt Institut für Informatik Albert-Ludwigs Universität Freiburg Germany Overview Deterministic finite automata Regular languages

More information

CSE Theory of Computing: Homework 3 Regexes and DFA/NFAs

CSE Theory of Computing: Homework 3 Regexes and DFA/NFAs CSE 34151 Theory of Computing: Homework 3 Regexes and DFA/NFAs Version 1: Fe. 6, 2018 Instructions Unless otherwise specified, all prolems from the ook are from Version 3. When a prolem in the International

More information

Computational Theory

Computational Theory Computational Theory Finite Automata and Regular Languages Curtis Larsen Dixie State University Computing and Design Fall 2018 Adapted from notes by Russ Ross Adapted from notes by Harry Lewis Curtis Larsen

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 5 : DFA minimization

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 5 : DFA minimization COMP-33 Theory of Computation Fall 27 -- Prof. Claude Crépeau Lec. 5 : DFA minimization COMP 33 Fall 27: Lectures Schedule 4. Context-free languages 5. Pushdown automata 6. Parsing 7. The pumping lemma

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Lecture 14 Ana Bove May 14th 2018 Recap: Context-free Grammars Simplification of grammars: Elimination of ǫ-productions; Elimination of

More information

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen Pushdown automata Twan van Laarhoven Institute for Computing and Information Sciences Intelligent Systems Version: fall 2014 T. van Laarhoven Version: fall 2014 Formal Languages, Grammars and Automata

More information

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a . Solution E T F a E E + T T + T F + T a + T a + F a + a E E + T E + T + T T + T + T F + T + T a + T + T a + F + T a + a + T a + a + F a + a + a E T F ( E) ( T ) ( F) (( E)) (( T )) (( F)) (( a)) . Solution

More information

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism, CS 54, Lecture 2: Finite Automata, Closure Properties Nondeterminism, Why so Many Models? Streaming Algorithms 0 42 Deterministic Finite Automata Anatomy of Deterministic Finite Automata transition: for

More information

Text Search and Closure Properties

Text Search and Closure Properties Text Search and Closure Properties CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2017 1/30 Text Search 2/30 grep program grep -E regexp file.txt Searches

More information

Nondeterminism. September 7, Nondeterminism

Nondeterminism. September 7, Nondeterminism September 7, 204 Introduction is a useful concept that has a great impact on the theory of computation Introduction is a useful concept that has a great impact on the theory of computation So far in our

More information

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 9 : Myhill-Nerode Theorem and applications

COMP-330 Theory of Computation. Fall Prof. Claude Crépeau. Lec. 9 : Myhill-Nerode Theorem and applications COMP-33 Theory of Computation Fall 217 -- Prof. Claude Crépeau Lec. 9 : Myhill-Nerode Theorem and applications COMP 33 Fall 212: Lectures Schedule 1-2. Introduction 1.5. Some basic mathematics 2-3. Deterministic

More information