The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

Size: px
Start display at page:

Download "The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H"

Transcription

1 T Constrn Lonst Common Susqun Prolm Rotm.R n Rotm.H

2 Prsntton Outln. LCS Alortm Rmnr Uss o LCS Alortm T CLCS Prolm Introuton Motvton For CLCS Alortm T CLCS Prolm Nïv Alortm T CLCS Alortm A Dynm Prormmn Alortm Tm Anlyss

3 LCS Alortm Rmnr Bor w wll t to know our prolm lts rmmr LCS prolm n ts ynm soluton: T Prolm: Gvn squns X=<x,..,xm> n Y=<y,..,yn>, n ommon susqun wos lnt s mxmum. Exmpl: Sprntm n tournmnt sktll Prntn nort roln snoynk prnt nrn s

4 LCS Alortm Rmnr Soluton: Lt Z = <z,..., z k > ny LCS o X n Y.. I x m = y n, tn z k = x m = y n n Z k s n LCS o X m n Y n.. I x m y n, tn tr z k x m n Z s n LCS o X m n Y.. or z k y n n Z s n LCS o X n Y n X: Y:

5 LCS Alortm Rmnr Soluton: Lt Z = <z,..., z k > ny LCS o X n Y.. I x m = y n, tn z k = x m = y n n Z k s n LCS o X m n Y n.. I x m y n, tn tr z k x m n Z s n LCS o X m n Y.. or z k y n n Z s n LCS o X n Y n. Cs : X m = Y n X: Y:

6 LCS Alortm Rmnr Soluton: Lt Z = <z,..., z k > ny LCS o X n Y.. I x m = y n, tn z k = x m = y n n Z k s n LCS o X m n Y n.. I x m y n, tn tr z k x m n Z s n LCS o X m n Y.. or z k y n n Z s n LCS o X n Y n. Cs : X m = Y n X: Y: LCS(X m, Y n )

7 LCS Alortm Rmnr Soluton: Lt Z = <z,..., z k > ny LCS o X n Y.. I x m = y n, tn z k = x m = y n n Z k s n LCS o X m n Y n.. I x m y n, tn tr z k x m n Z s n LCS o X m n Y.. or z k y n n Z s n LCS o X n Y n. Cs : X m Y n X: Y: m

8 LCS Alortm Rmnr Soluton: Lt Z = <z,..., z k > ny LCS o X n Y.. I x m = y n, tn z k = x m = y n n Z k s n LCS o X m n Y n.. I x m y n, tn tr z k x m n Z s n LCS o X m n Y.. or z k y n n Z s n LCS o X n Y n. Cs : X m Y n X: Y: m LCS(X m, Y n )

9 LCS Alortm Rmnr Soluton: Lt Z = <z,..., z k > ny LCS o X n Y.. I x m = y n, tn z k = x m = y n n Z k s n LCS o X m n Y n.. I x m y n, tn tr z k x m n Z s n LCS o X m n Y.. or z k y n n Z s n LCS o X n Y n. Cs : X m Y n X: Y: m LCS(X m, Y n )

10 Uss o LCS Alortm Wy mt w wnt to solv t lonst ommon susqun prolm? Tr r svrl motvtn ppltons. Fl omprson: T Unx prorm "" s us to ompr two rnt vrsons o t sm l, to trmn wt ns v n m to t l. It works y nn lonst ommon susqun o t lns o t two ls; ny ln n t susqun s not n n, so wt t splys s t rmnn st o lns tt v n. In ts nstn o t prolm w soul tnk o ln o l s n snl omplt rtr n strn.

11 Uss o LCS Alortm

12 Uss o LCS lortm Srn rsply: Mny txt tors lk "ms" sply prt o l on t srn, uptn t srn m s t l s n. For slow ln trmnls, ts prorms wnt to sn t trmnl s w rtrs s possl to us t to upt ts sply orrtly. It s possl to vw t omputton o t mnmum lnt squn o rtrs n to upt t trmnl s n sort o ommon susqun prolm (t ommon susqun tlls you t prts o t sply tt r lry orrt n on't n to n).

13 T CLCS Prolm Introuton Suppos w wnt to qunty t smlrty o S n S. W my sy tt tr smlrty s sn LCS(S,S ) s strn o lnt S : S : Howvr, ts msurmnt s not ststory w know tt t susqun pprs n ot strns n soul onsr or t smlrty msurmnt.

14 T CLCS Prolm Introuton To tk t susqun nto ount, w sk or t lonst (not nssrly unqu) su squn tt s susqun o ot S n S n ontns s susqun S : S : In ts s, ot n o lnt r LCSs unr ts onstrnt, n t smlrty msurmnt oms.

15 Motvton : Som Trmnoloy Frst RNs (Ronuls): lns llulr RNA tt s no lonr rqur. ply ky rols n t mturton o RNA moluls, su s mssnr RNAs.

16 Motvton T orns o CLCS ly n onormts, wr squns ontnn DNA n protns r ompr. In t lssl LCS, w look or t lonst susqun n somtms t otn rsult s o lttl olol vlu. Ts s us y t t tt w v no posslty to us ny pror, olol, knowl o t squns. For xmpl (Tn t l.): In t lnmnt o RNs squns, t s known tt squns ontn tr tvst rsus, Hs(H), Lyn(K), Hs(H), tt r ssntl or RNA rn. Tror, olosts otn r ntrst only n t susqun n w ts tr rsus our n t vn orr (t squn HKH s onstrn).

17 T CLCS Prolm Nïv Alortm Gvn strns S= n, S= m n P=p p p r wr r mn(m,n), t CLCS prolm or S n S wt rspt to P s to n lonst ommon susqun o S n S tt ontns P. Nïv Alortm: For vry susqun o S or S tt ontns t susqun P, k wtr t s susqun o S or S. Rturn lonst su susqun. Tm: O(mx(m,n) mn(n,m) ). mn(n,m) susquns o S or S. E susqun tks O(n) or O(m) tm to sn or P. It tks O(m) or O(n) to k wtr tt squn pprs n S or S.

18 T CLCS Prolm Intuton Smplton: Look t t lnt o CLCS(S, S, P) n xtn t l. to n CLCS(S, S, P) tsl S : S : P:

19 T CLCS Prolm Intuton Smplton: Look t t lnt o CLCS(S, S, P) n xtn t l. to n CLCS(S, S, P) tsl S : S : P: LCS I S [] = S []!= P[k], w my sy tt It woul tk prt n ormn CLCS(S, S, P) So woul ny otr rtr tt ontruts to t lnt o CLCS(S, S, P)

20 T CLCS Prolm Intuton Strty: Consr rkponts orrsponn to mtn rtrs n S n S. Us LCS n CLCS rursvly S : S : P:? LCS

21 T CLCS Prolm Intuton Strty: Consr rkponts orrsponn to mtn rtrs n S n S. Us LCS n CLCS rursvly. W rk pont s ttr? S : S : P: CLCS LCS LCS All possl omntons o rkponts must tkn nto ount to W orms t optml soluton.

22 T CLCS Prolm Dntons Lt S[x] t rtr t poston x n strn S. Lt S[x..y] t sustrn o S rom postons x to y x y, n n mpty strn otrws. Lt L(x,y,x',y') t lnt o LCS(S[x..x ], S[y..y']) x<x' n, n y<y' m, n otrws. For k r, n, m, lt L k (,) t lnt o CLCS (S[..], S[..], P[..k]) S[]=S[]=P[k], n n otrws. It s sy to know tt: L (,)=L(,,,)+ S[]=S[]=P[], n n otrws.

23 T CLCS Alortm Lmm: For k r, n n m, L k (,) = Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. S : x S : y P: CLCS LCS Proo: Suppos tt S[]=S[]=P[k], k>. Lt x n y su tt S[x]=S[y]=P[k ] wr x< n y<. Tr xsts onstrn ommon susqun o S[..] n S[.. ] wt lnt L k (x,y)+l(x+,y+,, )+. Sn L k (, ) s t lonst lnt o onstrn ommon susqun or S[..] n S[.. ] wt rspt to P[..k], w v: L k (,) Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}

24 T CLCS Alortm Lmm: For <=k<=r, <=<=n n <=<=m, L k (,) = Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. S : x S : y P: CLCS LCS Assum L k (,) > Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+} n lt x n y su tt S[x ]=S[y ]=P[k] n n optml soluton s st wt lnt Lk(,). Tn L k (,) = CLCS(S [..x ],S [..y ],P[..k])+LCS(S [(x +)..()],S [(y +)..()])+ > Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+} But: L k (x,y ) CLCS(S[..x ],S[..y ],P[..k]) L(x +,y +,,) LCS(S[(x +)..()],S[(y +)..()]) Tror: L k (x,y )+L(x +,y +,,)+ > Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+} w s ontrton.

25 T CLCS Alortm Lmm: T lnt o ls, G, or strns S n S wt rspt to strn P s: G =mx <=<=n,<=<=m {L r (,)+L(+,+,n,m)} wr n, m n r r t lnts o S, S n P, rsptvly. Proo: Lt S =S $, S =S $ n P =P $, wr $ s not prsnt n ny o S, S, P. Lt L (x,x,y,y ) t lnt o ls(s [x..x ],S [y..y ]) Lt L k (,) t lnt o ls(s [..],S [..],P [..k]) S []=S []=P [k] n n otrws. By t rsult o Lmm, w v t ollown: L k (,) = Lt G not ls(s,s,p). It ollows tt G = G <=x<x <=n+, <=y <y<=m+ <=k <=r+, <= <=n+, <= <=m+ Mx <=x<,<=y< {L k (x,y)+l (x+,y+,,)+}, S []=S []=P [k] n, otrws <=k<=r+, <=<=n+, <=<=m+ S [n+]=s [m+]=p [r+]=$ G = L r+ (n+,m+)=mx <=x<n+,<=y<m+ {L r (x,y)+l (x+,y+,n,m)+} S () [..n(m)]=s () [..n(m)], P[..r]=P [..r] L r (x,y)=l r (x,y) n L(x+,y+,n,m)=L (x+,y+,n,m) G = L r+ (n+,m+) = Mx <=x<=n,<=y<=m {L r (x,y)+l(x+,y+,n,m)+} <=x<=n <=y<=m Fnlly, w onlu tt: G = G = Mx <=x<=n,<=y<=m {L r (x,y)+l(x+,y+,n,m)}.

26 A Rursv Alortm Lmms & v totr rursv lortm: Lmm: lnt o CLCS(S,S,P)=mx <=<=n,<=<=m {L r (,)+L(+,+,n,m)} wr (n,m,r)=lnt(s,s,p). CLCS (S,S,P): (n,m,r) ln(s,s,p) G n or =..n, =..m: rs CLCSR(S [..],S [..],P) + LCS(S [+.n],s [+..m]) G < rs tn G rs Lmm: L k (,) = Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. CLCSR (S,S,P): // nor s s (,,k) ln(s,s,p) L[,,k] n I S []=S []=P[k]: or x=.., y=..: rs CLCSR(S [..x],s [..y],p[..k]) + LCS(S [x+..],s [y+..])+ L[,,k] < rs tn L[,,k] rs rturn L[,,k]

27 A Dynm Prormmn Alortm Ovrlppn suprolms: S : S : P: S[]=S[]=P[] n (,) xpt (,), (,) CLCSR (S [..],S [..],P[..]): n (,)!= (,), (,) CLCSR (S [..],S [..],P[..]): n (,)!= (,), (,) LCS(S [..],S [..]) // s s LCS(S [..],S [..]) // s s Ovrlppn LCS su prolms: Us prprossn. Ovrlppn CLCS su prolms my lso our: Us DP l.

28 A Dynm Prormmn Alortm Apply prprossn st or trmnn L(x,y,x,y ) n O() tm. Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = S : S : LCS:

29 A Dynm Prormmn Alortm Apply prprossn st or trmnn L(x,y,x,y ) n O() tm. Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = S : S : LCS:

30 A Dynm Prormmn Alortm Apply prprossn st or trmnn L(x,y,x,y ) n O() tm. Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = S : S : LCS:

31 A Dynm Prormmn Alortm Apply prprossn st or trmnn L(x,y,x,y ) n O() tm. Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = S : S : LCS: E ntry [,] n t lookup tl vn y pplyn t prprossn st, stors Mtrx, M,, o sz (n +) (m +) su tt t vlu o M, [u, v] s t lnt o LCS(S [.. + u ],S [..+ v ]), wr <=u<=n + n <=v<=m +.

32 A Dynm Prormmn Alortm Apply prprossn st or trmnn L(x,y,x,y ) n O() tm. Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = S : S : LCS: Prprossn: For n n m w omput mtrx M o sz (n+)x(m+) to stor LCS(S [..+u],s [..+v]) wr u n+ n v m+. E su mtrx n omput n O((n+)(m+)). All mtrs M n omput n Σ <=<=n Σ <=<=m O((n+)(m+))=O(m n )

33 A Dynm Prormmn Alortm Comput D mtrx, ottomup, to n L k (,). Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = 9 7 S : S : P: L (,): s s: L (,)= or ll (,) xpt tt: L (,)=L(,,,)+= L (,)=L(,,,)+=

34 A Dynm Prormmn Alortm Comput D mtrx, ottomup, to n L k (,). Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = 9 7 S : S : P: L (,): L (,)= or ll (,) xpt tt: L (,)=mx {L (,)+L(,,,), L (,)=L(,,,)}+= L (,)=mx {L (,)+L(,,,), L (,)=L(,,,)}+=

35 A Dynm Prormmn Alortm Comput D mtrx, ottomup, to n L k (,). Lmm: Mx <=x<,<=y< {L k (x,y)+l(x+,y+,,)+}, S []=S []=P[k] ; n, otrws. L k (,) = 9 7 S : S : P: L (,): L (,)= or ll (,) xpt tt: L (9,)=mx {L (,)+L(7,,,7), L (,)+L(7,7,,7)}+=

36 A Dynm Prormmn Alortm Comput D mtrx, ottomup, to n L k (,). Lmm: G =mx <=<=n,<=<=m {L r (,)+L(+,+,n,m)} 9 7 S : S : P: L (,) L (,) L (,) By t rsult o Lmm: G =mx{l (9,)+L(,9,,)}=7

37 Tm Anlyss Prprossn: For n n m w omput mtrx M o sz (n+)x(m+) to stor LCS(S [..+u],s [..+v]) wr u n+ n v m+. E su mtrx n omput n O((n+)(m+)). All mtrs M n omput n Σ <=<=n Σ <=<=m O((n+)(m+)) = O(m n ) Alortm: Atr Prprossn stp, t vlu o L(x,y,x,y ) n omput n O() tm y tl lookup or M xy [x x,y y]. Aorn to t ormulton n Lmm, L k (,) n oun n O() tm L k s known. Tn, L k n otn n O(Σ <=<=n,<=<=m ())=O(n m ) tm ll L k s n O(rn m ) tm. Morovr, t tks O(mn) to omput G orn to Lmm wn L r s Known. Tror, w onlu tt t CLCS prolm n solv n O(rn m ) tm n totl.

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH NOTS:. LN MTN SUR WT NTUR/SOPROPYL LOOL PROR TO RN L OR LOO. PPLY LOTT 4 ON TRS. TORQU TO. Nm / 00 lb-in 4. TORQU TO 45-50 Nm / - lb-ft 5. TORQU TO Nm / 4.5 lb-ft. TORQU TO 0 Nm / lb-in. TORQU TO 5.5 Nm

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

An Introduction to Clique Minimal Separator Decomposition

An Introduction to Clique Minimal Separator Decomposition Alortms 2010, 3, 197-215; o:10.3390/3020197 Rvw OPEN ACCESS lortms ISSN 1999-4893 www.mp.om/ournl/lortms An Introuton to Clqu Mnml Sprtor Domposton Ann Brry 1,, Romn Poorln 1 n Gnvèv Smont 2 1 LIMOS UMR

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures (4, )-ooslty o plnr rps wt orn struturs Znr Brkkyzy 1 Crstopr Cox Ml Dryko 1 Krstn Honson 1 Mot Kumt 1 Brnr Lký 1, Ky Mssrsmt 1 Kvn Moss 1 Ktln Nowk 1 Kvn F. Plmowsk 1 Drrk Stol 1,4 Dmr 11, 015 Astrt All

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

A Simple Method for Identifying Compelled Edges in DAGs

A Simple Method for Identifying Compelled Edges in DAGs A Smpl Mto or Intyn Compll Es n DAGs S.K.M. Won n D. Wu Dprtmnt o Computr Sn Unvrsty o Rn Rn Ssktwn Cn S4S 0A2 Eml: {won, nwu}@s.urn. Astrt Intyn ompll s s mportnt n lrnn t strutur (.., t DAG) o Bysn ntwork.

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Graph Search Algorithms

Graph Search Algorithms Grp Sr Aortms 1 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms. 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2),

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks.

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks. Dt-rlll rmtvs or Sptl Oprtons Usn M Qutrs* Erk G. Hol Hnn Smt Computr Sn Dprtmnt Computr Sn Dprtmnt Cntr or Automton Rsr Cntr or Automton Rsr Insttut or Avn Computr Sns Insttut or Avn Computr Sns Unvrsty

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010 Pylont Tr Inrns Usn Qurtt Splts By Kvn Ml Htok Blor o Sn Lnor-Ryn Unvrsty 2010 Sumtt n Prtl Fulllmnt o t Rqurmnts or t Dr o Mstr o Sn n Mtmts Coll o Arts n Sns Unvrsty o Sout Croln 2012 Apt y: Év Czrk,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

Isomorphism In Kinematic Chains

Isomorphism In Kinematic Chains Intrntonl Journl o Rsr n Ennrn n Sn (IJRES) ISSN (Onln): 0-, ISSN (Prnt): 0- www.rs.or Volum Issu ǁ My. 0 ǁ PP.0- Isomorpsm In Knmt Cns Dr.Al Hsn Asstt.Prossor, Dprtmnt o Mnl Ennrn, F/O- Ennrn & Tnoloy,

More information

Solving Problems with Uncertainty: A case study using Tsuitate-Tsume-Shogi

Solving Problems with Uncertainty: A case study using Tsuitate-Tsume-Shogi olvn Prolms wt nrtnty: A s stuy usn sutt-sum-o Mkoto kut n Hroyuk I Dprtmnt o Computr n, zuok nvrsty {skut, }@s.n.szuok..jp Astrt s ppr xplors t posslty o omputn mprt-normton ms wt ous on ts nm, nmly,

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33.

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33. NOTS: RVSON STORY RV T SRPTON O Y //04 RLS OR PROUTON 433 P 34 55 033 OUMNT STTUS: NOT O PROPRTRY NORMTON TS OUMNT SLL NOT RPROU NOR SLL T NORMTON ONTN RN US Y OR SLOS TO OTR XPT S XPRSSLY UTORZ Y OR LT

More information

Power-Aware Scheduling under Timing Constraints for Mission-Critical Embedded Systems

Power-Aware Scheduling under Timing Constraints for Mission-Critical Embedded Systems owr-wr Suln unr Tmn onstrnts or Msson-rtl Em Systms Jnn Lu, H. ou, Nr rz, F Kur Dpt. o Eltrl & omputr Ennrn Unvrsty o lorn Irvn, 92697-262 US jnnl, ou, nr, kur@.u.u Dpt. o Eltrl & omputr Ennrn Unvrsty

More information

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY RVSON STORY RV T SRPTON O Y //0 RLS OR PROUTON T LN MR ----- L /0/0 UPT SN N OMPONNTS US: S 3-03 (*N TWO PLS ONLY) WS 3-5, PRT 3-00 TO SSMLY. T OLLOWN UPT: 3-30, 3-403, 3-403, 3-40, 3-45, 3-4, 3-5. 30

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

a ( b ) ( a ) a ( c ) ( d )

a ( b ) ( a ) a ( c ) ( d ) Lzy Complton o Prtl Orr to t Smllst Ltt Krll Brtt 1, Ml Morvn 1, Lour Nourn 2 1 LITP/IBP - Unvrst Dns Drot Prs 7 Cs 7014 2, pl Jussu 75256 Prs Cx 05 Frn. ml: (rtt,morvn)@ltp.p.r. 2 Dprtmnt 'Inormtqu Fonmntl

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) k-trs CMSC 420 k-trs Invnt n 1970s Jon Bntl Nm ornll mnt 3-trs, 4-trs, t wr k ws t # o mnsons Now, popl s k-tr o mnson I: E lvl o t tr omprs nst 1 mnson. Lt s us v onl two lrn t no (nst o 2 ) k-trs E lvl

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance

24.1 Sex-Linked Inheritance. Chapter 24 Chromosomal Basis of Inheritance Sex-Linked Inheritance Sex-Linked Inheritance ptr 24 romosoml sis o Inritn 24. Sx-Link Inritn Normlly, ot mls n mls v 23 pirs o romosoms 22 pirs r ll utosoms On pir is t sx romosoms Mls r XY mls r XX opyrit T Mrw-Hill ompnis, In. Prmission rquir or

More information

A Gentle Introduction to Matroid Algorithmics

A Gentle Introduction to Matroid Algorithmics A Gntl Introuton to Mtro Alortms Mtts F. Stllmnn Aprl, 06 Mtro xoms T trm mtro ws rst us n 9 y Hsslr Wtny []. ovrvw oms rom t txtooks o Lwlr [] n Wls []. Most o t mtrl n ts A mtro s n y st o xoms wt rspt

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chptr. Intrvl Shulng Gry Algorthms Sls y Kvn Wyn. Copyrght 005 Prson-Ason Wsly. All rghts rsrv. Intrvl Shulng Intrvl Shulng: Gry Algorthms Intrvl shulng. Jo strts t s n fnshs t f. Two os omptl f thy on't

More information

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query Intrntonl Journl o Appl Ennrn Rsr ISSN 973-4562 Volum 13, Numr 2 (218) pp. 1496-15 An Applton to Sr or H-Prorty Wr Opponnt n Sptl Gms Usn Qury Jonwn Km Smt Lrl Arts Coll, Smyook Unvrsty, 815 Hwrn-ro, Nowon-u,

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

18 Basic Graph Properties

18 Basic Graph Properties O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Stronger Virtual Connections in Hex

Stronger Virtual Connections in Hex IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL 7, NO 2, JUNE 2015, PAGES 156-166 156 Stronr Vrtul Conntons n Hx Ju Pwlwz n Ryn Hywr n Plp Hnrson n Bror Arnson Astrt For onnton ms

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Data-Depend Hash Algorithm

Data-Depend Hash Algorithm Dt-Dp s Algortm ZJ Xu K Xu uzwz@gml.com ukzp@gml.com Astrct: W stuy som tcologys tt popl vlop lys ttck s lgortm. W wy tt us t-p uc rsst rtl ttck. T w sg s lgortm tt cll Dt-Dp s Algort(DDA. A DDA s smpl

More information