Topic 6: Optimization I. Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7

Size: px
Start display at page:

Download "Topic 6: Optimization I. Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7"

Transcription

1 Topic 6: Optimization I Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7 1

2 For a straight line Y=a+bX Y= f (X) = a + bx First Derivative dy/dx = f = b constant slope b Second Derivative d 2 Y/dX 2 = f = 0 constant rate of change - the change in the slope is zero - (i.e. change in Y due to change in X does not depend on X) Y a X 2

3 For non-linear functions Y Y=X α α>1 X Y Y=X α 0< α < 1 X 3

4 First Derivative Y= f (X) = X α dy/dx = f = α X α-1 > 0 Positive Slope: change in Y due to change X is Positive Second Derivative d 2 Y/dX 2 = f = (α-1)α X (α-1)-1 or d 2 Y/dX 2 = f = (α-1)α(y/x 2 ) 4

5 d 2 Y/dX 2 = f = (α-1)α(y/x 2 ) Sign of Second Derivative? d 2 Y/dX 2 = f = 0 if α = 1 constant rate of change d 2 Y/dX 2 = f > 0 if α > 1 increasing rate of change (change Y due to change X is bigger at higher X the change in the slope is positive) d 2 Y/dX 2 = f < 0 if α < 1 decreasing rate of change (change Y due to change X is smaller at higher X the change in the slope is negative) 5

6 Maximisation and Minimisation Stationary Points Second-order derivatives Applications 6

7 Y B A X*=1 If f (X) < 0 as X will Y If f (X) > 0 as X will Y If f (X) = 0 slope 0 as X no change Y 7

8 Definition Stationary points are the turning points or critical points of a function Slope of tangent to curve is zero at stationary points Stationary point(s) at A & B: where f (X) = 0 8

9 Are these a Max or Min point of the function? 1) examine slope in region near the stationary point Sign of first derivative around a turning point: Before At After Maximum plus zero minus Minimum minus zero plus dy / dx = f (X) is (, 0, +) min dy / dx = f (X) is (+, 0, -) max 9

10 2) or calculate the second derivative look at the change in the slope beyond the stationary point if d 2 Y/dX 2 = f (X) > 0 a minimum the change in the slope is positive beyond the stationary point, so the point is a local minimum if d 2 Y/dX 2 = f (X) < 0 a maximum the change in the slope is negative beyond the stationary point, so the point is a local maximum if d 2 Y/dX 2 = f (X) = 0 indeterminate the change in the slope is zero beyond the stationary point - could be a max, or a min, or an inflection point 10

11 e.g. inflection point f =0 & f =0 11

12 To find the Max or Min of a function Y= f(x) 1) First Order Condition (F.O.C.): set slope dy/dx = f (X) = 0 this identifies the stationary point(s) 2) Second Order Condition (S.O.C.): check the sign of the second derivative (gives the change in the slope) d 2 Y/dX 2 = f (X) > 0 a minimum d 2 Y/dX 2 = f (X) < 0 a maximum d 2 Y/dX 2 = f (X) = 0 indeterminate this identifies whether the slope of the function is increasing, decreasing, or does not change after the stationary point(s) 12

13 Find the Maxima and Minima of the following functions: y 2 = x + 2x F.O.C. : slope=0 at stationary point dy dx = 2 x + 2 = 2x = 2 x = 1 0 Y X S.O.C. : check sign of second derivative at x=-1 d 2 dx y 2 = 2 > 0 (slope increases after the stationary point, so must be a minimum at x= -1) 13

14 Example 1: Profit Maximisation Question. A firm faces the demand curve P=8-0.5Q and total cost function TC=1/3Q 3-3Q 2 +12Q. Find the level of Q that maximises total profit and verify that this value of Q is where MC=MR 14

15 Answer.going to take a few slides! The function we want to Maximise is PROFIT. And Profit = Total Revenue Total Cost Find Total Revenue. P = 8-0.5Q inverse demand function TR (Q) = P.Q = 8Q - ½Q 2 TC (Q) = 1 / 3 Q 3-3Q Q N ow write out the profit function MAX Π = TR - TC Π (Q) = -4Q + 2 ½ Q 2 1 / 3 Q 3 15

16 MAX Π (Q) = -4Q + 2 ½ Q 2 1 / 3 Q 3 First Order Condition: dπ/dq = f (Q)= Q Q 2 = 0 (solve quadratic Q 2 + 5Q 4 by applying formula: ) b ± ( b 2 4ac) Q = Optimal Q solves as: Q * =1 and Q * = 4 Second Order Condition: d 2 Π/dQ 2 = f (Q) = 5 2Q Sign? f = 3 > 0 if Q * = 1 (Min) f = - 3 < 0 if Q * = 4 (Max) 2a So profit is max at output Q = 4 16

17 Continued.. Verify that MR = MC at Q = 4: TR (Q) = 8Q - ½Q 2 MR = dtr/dq = 8 Q Evaluate at Q = 4..then MR = 4 TC (Q) = 1 / 3 Q 3-3Q Q MC = dtc/dq = Q 2 6Q +12 Evaluate at Q = 4. then MC = = +4 Thus At Q = 4, we have MR = MC 17

18 Maximisation and Minimisation Tax Example The (inverse) Supply and Demand Equations of a good are given, respectively, as P- t = 8 + Q S P = 80 3Q D A tax t per unit, imposed on suppliers, is being considered. At what value of t does the government maximise tax revenue in market equilibrium? 18

19 What do we want to maximise? Tax revenue in equilibrium.. This will be equal to the tax rate t multiplied by the equilibrium quantity So first we need to find the equilibrium quantity 19

20 Solution To find equilibrium Q, Set Supply equal to Demand. In equilibrium, QD = QS so Q t = 80 3Q Now Solve for Q Q e = 18 ¼ t Now we can write out our objective function Tax Revenue T = t.q e = t(18 ¼ t) MAX T(t) = 18t ¼t 2 t * 20

21 MAX T(t) = 18t ¼t 2 t* First Order Condition for max: set the slope (or first derivative) = 0 dt/dt = 18 ½ t = 0 t * = 36 Second Order Condition for max: check sign of second derivative d 2 T/dt 2 = -½ < 0 at all values of x Thus, tax rate of 36 will Maximise tax revenue in equilibrium 21

22 Now we can compute out the equilibrium P and Q and the total tax revenue when t = 36 At t * = 36 Q e = 18 ¼ t * = 9 Tax Revenue T = t *.Q e = 18t * ¼t *2 = 324 P e = Q e t * = 53 If t = 0, then tax revenue = 0, Q e = 18, P e = Q e + 8 = 26 22

23 Is the full burden of the tax passed on to consumers? Ex-ante (no tax) P e = 26 Ex-post (t * =36) P e = 53 The tax is t * = 36, but the price increase is only 27 (75% paid by consumer) 23

24 Another example Cost Producing Q output given capital K is: 2 C = 8K + Q 2 K (a) if K=20 in Short Run, find the level of Q at which AC is minimised. (b) Show that MC and AC are equal at this point. 24

25 Solution Substituting in K = 20 to our C function: C = (8*20) + (2/20)Q 2 = Q 2 AC = C/Q = 160/Q + 0.1Q and MC = dc/dq = 0.2Q First Order Condition: set first derivative (slope)=0 AC is at min when dac/dq = 0 So dac/dq = - 160/Q = 0 And this solves as Q 2 = 1600 Q = 40 25

26 Second Order Condition Second Order Condition: check sign at Q = 40 If d 2 AC/dQ 2 >0 min. Since dac/dq = - 160/Q Then d 2 AC/dQ 2 = + 320/Q 3 Evaluate at Q = 40, d 2 AC/dQ 2 = 320 / 40 3 >0 min AC at Q = 40 26

27 b) Now show MC = AC when Q = 40: AC = C/Q = 160/Q + 0.1Q AC at Q=40: 160/40 + (0.1*40) = 8 and MC = dc/dq = 0.2Q So MC at Q = 40: 0.2*40 = 8 MC = AC at min AC when Q=40 27

28 c) What level of K minimises C when Q = 1000? Substitute C = 8 K + 2 K Q = 1000 to C Q 2 2 = 8 K + dc/dk = 8 (2( )/ K 2 )= 0 Solving 8K 2 = 2.(1000) 2 K 2 = ¼.(1000) 2 optimal K* = ¼.(1000) =½(1000)=500 if Q = 1000, optimal K* = 500 function ( 1000 ) K 2 more generally, if Q = Q 0, optimal K = ½ Q 0 28

29 Second Order Condition: check sign of second derivative at K = 500 If d 2 C/dK 2 >0 min. Since dc/dk = 8 (2( )/ K 2 ) d 2 C/dK 2 = + (2.( ).2K )/ K 4 >0 for all values of K>0 and so C are at a min when K = 500 The min cost producing Q =1000 occurs when K = 500 Subbing in value k = 500 we get C = 8000 or more generally, min cost producing Q 0 occurs when K = Q 0 /2 and so C = 4Q 0 + 4Q 0 = 8Q 0 29

30 Topic 6: Maximisation and Minimisation Second DeIdentifying the max and min of various functions Identifying the max and min of various functions sketch graphs Finding value of t that maximises tax revenues, given D and S functions Identifying all local max and min of various functions. Identifying profit max output level. Differentiate various functions. 30

31 Maximisation and Minimisation Second-order derivatives Stationary Points Optimisation I Applications 31

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation Second Order Derivatives Course Manual Background to Topic 6 Maximisation and Minimisation Jacques (4 th Edition): Chapter 4.6 & 4.7 Y Y=a+bX a X Y= f (X) = a + bx First Derivative dy/dx = f = b constant

More information

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function).

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function). Integration Course Manual Indefinite Integration 7.-7. Definite Integration 7.-7.4 Jacques ( rd Edition) Indefinite Integration 6. Definite Integration 6. y F (x) x n + c dy/dx F`(x) f(x) n x n- Given

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS Variables, functions and slopes: A Variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify the

More information

Optimization Techniques

Optimization Techniques Optimization Techniques Methods for maximizing or minimizing an objective function Examples Consumers maximize utility by purchasing an optimal combination of goods Firms maximize profit by producing and

More information

Essential Mathematics for Economics and Business, 4 th Edition CHAPTER 6 : WHAT IS THE DIFFERENTIATION.

Essential Mathematics for Economics and Business, 4 th Edition CHAPTER 6 : WHAT IS THE DIFFERENTIATION. Essential Mathematics for Economics and Business, 4 th Edition CHAPTER 6 : WHAT IS THE DIFFERENTIATION. John Wiley and Sons 13 Slopes/rates of change Recall linear functions For linear functions slope

More information

Functions. A function is a rule that gives exactly one output number to each input number.

Functions. A function is a rule that gives exactly one output number to each input number. Functions A function is a rule that gives exactly one output number to each input number. Why it is important to us? The set of all input numbers to which the rule applies is called the domain of the function.

More information

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics

Mathematics for Economics ECON MA/MSSc in Economics-2017/2018. Dr. W. M. Semasinghe Senior Lecturer Department of Economics Mathematics for Economics ECON 53035 MA/MSSc in Economics-2017/2018 Dr. W. M. Semasinghe Senior Lecturer Department of Economics MATHEMATICS AND STATISTICS LERNING OUTCOMES: By the end of this course unit

More information

EXAMINATION #4 ANSWER KEY. I. Multiple choice (1)a. (2)e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b.

EXAMINATION #4 ANSWER KEY. I. Multiple choice (1)a. (2)e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b. William M. Boal Version A EXAMINATION #4 ANSWER KEY I. Multiple choice (1)a. ()e. (3)b. (4)b. (5)d. (6)c. (7)b. (8)b. (9)c. (10)b. (11)b. II. Short answer (1) a. 4 units of food b. 1/4 units of clothing

More information

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y))

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y)) Anwers for Review Quiz #1. Material Covered. Klein 1, 2; Schaums 1, 2 1. Solve the following system of equations for x, y and z: x + y = 2 2x + 2y + z = 5 7x + y + z = 9 Answers: x = 1, y = 1, z = 1. 2.

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.3. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Example: change in the sales of a company; change in the value

More information

EC611--Managerial Economics

EC611--Managerial Economics EC611--Managerial Economics Optimization Techniques and New Management Tools Dr. Savvas C Savvides, European University Cyprus Models and Data Model a framework based on simplifying assumptions it helps

More information

Differentiation. 1. What is a Derivative? CHAPTER 5

Differentiation. 1. What is a Derivative? CHAPTER 5 CHAPTER 5 Differentiation Differentiation is a technique that enables us to find out how a function changes when its argument changes It is an essential tool in economics If you have done A-level maths,

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

STUDY MATERIALS. (The content of the study material is the same as that of Chapter I of Mathematics for Economic Analysis II of 2011 Admn.

STUDY MATERIALS. (The content of the study material is the same as that of Chapter I of Mathematics for Economic Analysis II of 2011 Admn. STUDY MATERIALS MATHEMATICAL TOOLS FOR ECONOMICS III (The content of the study material is the same as that of Chapter I of Mathematics for Economic Analysis II of 2011 Admn.) & MATHEMATICAL TOOLS FOR

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS 1 Variables, functions and slopes A variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify

More information

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important

Chapter 6: Sections 6.1, 6.2.1, Chapter 8: Section 8.1, 8.2 and 8.5. In Business world the study of change important Study Unit 5 : Calculus Chapter 6: Sections 6., 6.., 6.. Chapter 8: Section 8., 8. and 8.5 In Business world the study of change important Eample: change in the sales of a company; change in the value

More information

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 4 DIFFERENTIATION DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIUES 1 LECTURE 4 DIFFERENTIATION 1 Differentiation Managers are often concerned with the way that a variable changes over time Prices, for example,

More information

Part I: Multiple Choice Questions (5 points each) d dx (x3 e 4x ) =

Part I: Multiple Choice Questions (5 points each) d dx (x3 e 4x ) = Part I: Multiple Choice Questions (5 points each) 1. d dx (x3 e 4x ) = (a) 12x 2 e 4x (b) 3x 2 e 4x + 4x 4 e 4x 1 (c) x 3 e 4x + 12x 2 e 4x (d) 3x 2 e 4x + 4x 3 e 4x (e) 4x 3 e 4x 1 2. Suppose f(x) is

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium

Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Exercises 8 Quadratic function and equations Quadratic function/equations, supply, demand, market equilibrium Objectives - know and understand the relation between a quadratic function and a quadratic

More information

Y = f (x) Y Y. x 0 x 1 x. Managerial Economics -- Some Mathematical Notes. Basic Concepts: derivatives.

Y = f (x) Y Y. x 0 x 1 x. Managerial Economics -- Some Mathematical Notes. Basic Concepts: derivatives. Managerial Economics -- Some Mathematical Notes I Basic Concepts: derivatives. The derivative of a function denotes its rate of change as a result of change in the right hand side variable(s). When we

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Refresher Course in Mathematics September 013 Lecture 3 Differentiation Francesco Feri Rationale for Differentiation Much of economics is concerned with optimisation (maximise

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

Section 12.2 The Second Derivative

Section 12.2 The Second Derivative Section 12.2 The Second Derivative Higher derivatives If f is a differentiable function, then f is also a function. So, f may have a derivative of its own, denoted by (f ) = f. This new function f is called

More information

THE FIRM: DEMAND AND SUPPLY

THE FIRM: DEMAND AND SUPPLY Prerequisites Almost essential Firm: Optimisation THE FIRM: DEMAND AND SUPPLY MICROECONOMICS Principles and Analysis Frank Cowell July 2017 1 Moving on from the optimum We derive the firm's reactions to

More information

Exam A. Exam 3. (e) Two critical points; one is a local maximum, the other a local minimum.

Exam A. Exam 3. (e) Two critical points; one is a local maximum, the other a local minimum. 1.(6 pts) The function f(x) = x 3 2x 2 has: Exam A Exam 3 (a) Two critical points; one is a local minimum, the other is neither a local maximum nor a local minimum. (b) Two critical points; one is a local

More information

b. /(x) = -x^-;r^ r(x)= -SX"" f'(^^^ ^ -^x"- "3.^ ^ Mth 241 Test 2 Extra Practice: ARC and IRC Name:

b. /(x) = -x^-;r^ r(x)= -SX f'(^^^ ^ -^x- 3.^ ^ Mth 241 Test 2 Extra Practice: ARC and IRC Name: Mth 241 Test 2 Extra Practice: ARC and IRC Name: This is not a practice exam. This is a supplement to the activities v\/e do in class and the homework. 1. Use the graph to answer the following questions.

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

The Firm: Demand and Supply

The Firm: Demand and Supply Almost essential Firm: Optimisation The Firm: Demand and Supply MICROECONOMICS Principles and Analysis Frank Cowell October 2005 Moving on from the optimum... We derive the firm's reactions to changes

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

Section 2.1 : Solution Curves without a Solution. - allow us to sketch solution curves to first-order ODEs. dy dx. = f (x, y) (1)

Section 2.1 : Solution Curves without a Solution. - allow us to sketch solution curves to first-order ODEs. dy dx. = f (x, y) (1) Section 2.1 : Solution Curves without a Solution Direction Fields (Slope Fields) - allow us to sketch solution curves to first-order ODEs. General first-order ODE: dy dx = f (x, y) (1) Let y = y(x) be

More information

THE FIRM: OPTIMISATION

THE FIRM: OPTIMISATION Prerequisites Almost essential Firm: Basics THE FIRM: OPTIMISATION MICROECONOMICS Principles and Analysis Frank Cowell Note: the detail in slides marked * can only be seen if you run the slideshow July

More information

Lecture Notes for Chapter 9

Lecture Notes for Chapter 9 Lecture Notes for Chapter 9 Kevin Wainwright April 26, 2014 1 Optimization of One Variable 1.1 Critical Points A critical point occurs whenever the firest derivative of a function is equal to zero. ie.

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Oligopoly Notes. Simona Montagnana

Oligopoly Notes. Simona Montagnana Oligopoly Notes Simona Montagnana Question 1. Write down a homogeneous good duopoly model of quantity competition. Using your model, explain the following: (a) the reaction function of the Stackelberg

More information

Differentiation-JAKE DEACON

Differentiation-JAKE DEACON Differentiation-JAKE DEACON Differentiation is the method of finding the gradient formulae (or the derivative). When we are given any equation we can differentiate said equation and find the gradient formulae

More information

Bi-Variate Functions - ACTIVITES

Bi-Variate Functions - ACTIVITES Bi-Variate Functions - ACTIVITES LO1. Students to consolidate basic meaning of bi-variate functions LO2. Students to learn how to confidently use bi-variate functions in economics Students are given the

More information

UNIVERSITY OF KWA-ZULU NATAL

UNIVERSITY OF KWA-ZULU NATAL UNIVERSITY OF KWA-ZULU NATAL EXAMINATIONS: June 006 Solutions Subject, course and code: Mathematics 34 MATH34P Multiple Choice Answers. B. B 3. E 4. E 5. C 6. A 7. A 8. C 9. A 0. D. C. A 3. D 4. E 5. B

More information

The Firm: Optimisation

The Firm: Optimisation Almost essential Firm: Basics The Firm: Optimisation MICROECONOMICS Principles and Analysis Frank Cowell October 2005 Overview... Firm: Optimisation The setting Approaches to the firm s optimisation problem

More information

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x.

Economics 203: Intermediate Microeconomics. Calculus Review. A function f, is a rule assigning a value y for each value x. Economics 203: Intermediate Microeconomics Calculus Review Functions, Graphs and Coordinates Econ 203 Calculus Review p. 1 Functions: A function f, is a rule assigning a value y for each value x. The following

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MATH 236 ELAC FALL 207 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) 27 p 3 27 p 3 ) 2) If 9 t 3 4t 9-2t = 3, find t. 2) Solve the equation.

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders.

Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics. Building Competence. Crossing Borders. Mathematics 2 for Business Schools Topic 7: Application of Integration to Economics Building Competence. Crossing Borders. Spring Semester 2017 Learning objectives After finishing this section you should

More information

MA 151, Applied Calculus, Fall 2017, Final Exam Preview Identify each of the graphs below as one of the following functions:

MA 151, Applied Calculus, Fall 2017, Final Exam Preview Identify each of the graphs below as one of the following functions: MA 5, Applie Calculus, Fall 207, Final Exam Preview Basic Functions. Ientify each of the graphs below as one of the following functions: x 3 4x 2 + x x 2 e x x 3 ln(x) (/2) x 2 x 4 + 4x 2 + 0 5x + 0 5x

More information

Math 110 Final Exam General Review. Edward Yu

Math 110 Final Exam General Review. Edward Yu Math 110 Final Exam General Review Edward Yu Da Game Plan Solving Limits Regular limits Indeterminate Form Approach Infinities One sided limits/discontinuity Derivatives Power Rule Product/Quotient Rule

More information

SECTION 5.1: Polynomials

SECTION 5.1: Polynomials 1 SECTION 5.1: Polynomials Functions Definitions: Function, Independent Variable, Dependent Variable, Domain, and Range A function is a rule that assigns to each input value x exactly output value y =

More information

Part 6A. 4. Tax and Monopoly Taxes in Monopoly vs Taxes

Part 6A. 4. Tax and Monopoly Taxes in Monopoly vs Taxes Part 6A. Monooly 4. Tax and Monooly 租稅與獨佔 Taxes in Monooly vs. Cometitive Markets Lum-Sum Tax Secific Taxes Ad Valorem Taxes Proortional Profit Taxes 2015.5.21 1 Taxes in Monooly vs. Cometitive Markets

More information

Unit 3: Producer Theory

Unit 3: Producer Theory Unit 3: Producer Theory Prof. Antonio Rangel December 13, 2013 1 Model of the firm 1.1 Key properties of the model Key assumption: firms maximize profits subject to Technological constraints: natural limits

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

The TransPacific agreement A good thing for VietNam?

The TransPacific agreement A good thing for VietNam? The TransPacific agreement A good thing for VietNam? Jean Louis Brillet, France For presentation at the LINK 2014 Conference New York, 22nd 24th October, 2014 Advertisement!!! The model uses EViews The

More information

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives Big Picture I MATH 1003 Review: Part 3. The Derivatives of Functions Maosheng Xiong Department of Mathematics, HKUST What would the following questions remind you? 1. Concepts: limit, one-sided limit,

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo Economics, HKU September 17, 2018 Luo, Y. (Economics, HKU) ME September 17, 2018 1 / 46 Static Optimization and Extreme Values In this topic, we will study goal

More information

Increasing or Decreasing Nature of a Function

Increasing or Decreasing Nature of a Function Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 46 Increasing or Decreasing Nature of a Function Examining the graphical behavior of functions is a basic part of mathematics and has applications to many areas

More information

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives

Big Picture I. MATH 1003 Review: Part 3. The Derivatives of Functions. Big Picture I. Introduction to Derivatives Big Picture I MATH 1003 Review: Part 3. The Derivatives of Functions Maosheng Xiong Department of Mathematics, HKUST What would the following questions remind you? 1. Concepts: limit, one-sided limit,

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

Advanced Microeconomic Analysis, Lecture 6

Advanced Microeconomic Analysis, Lecture 6 Advanced Microeconomic Analysis, Lecture 6 Prof. Ronaldo CARPIO April 10, 017 Administrative Stuff Homework # is due at the end of class. I will post the solutions on the website later today. The midterm

More information

Systems of Equations and Inequalities. College Algebra

Systems of Equations and Inequalities. College Algebra Systems of Equations and Inequalities College Algebra System of Linear Equations There are three types of systems of linear equations in two variables, and three types of solutions. 1. An independent system

More information

Study Unit 3 : Linear algebra

Study Unit 3 : Linear algebra 1 Study Unit 3 : Linear algebra Chapter 3 : Sections 3.1, 3.2.1, 3.2.5, 3.3 Study guide C.2, C.3 and C.4 Chapter 9 : Section 9.1 1. Two equations in two unknowns Algebraically Method 1: Elimination Step

More information

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x? . What are the domain and range of the function Fall 9 Math 3 Final Exam Solutions f(x) = + ex e x? Answer: The function is well-defined everywhere except when the denominator is zero, which happens when

More information

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue.

Systems of Linear Equations in Two Variables. Break Even. Example. 240x x This is when total cost equals total revenue. Systems of Linear Equations in Two Variables 1 Break Even This is when total cost equals total revenue C(x) = R(x) A company breaks even when the profit is zero P(x) = R(x) C(x) = 0 2 R x 565x C x 6000

More information

Lesson 6: Switching Between Forms of Quadratic Equations Unit 5 Quadratic Functions

Lesson 6: Switching Between Forms of Quadratic Equations Unit 5 Quadratic Functions (A) Lesson Context BIG PICTURE of this UNIT: CONTEXT of this LESSON: How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they

More information

2009 A-level Maths Tutor All Rights Reserved

2009 A-level Maths Tutor All Rights Reserved 2 This book is under copyright to A-level Maths Tutor. However, it may be distributed freely provided it is not sold for profit. Contents the derivative formula 3 tangents & normals 7 maxima & minima 10

More information

Lecture 1: Introduction to IO Tom Holden

Lecture 1: Introduction to IO Tom Holden Lecture 1: Introduction to IO Tom Holden http://io.tholden.org/ Email: t.holden@surrey.ac.uk Standard office hours: Thursday, 12-1PM + 3-4PM, 29AD00 However, during term: CLASSES will be run in the first

More information

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt).

D. Correct! This is the correct answer. It is found by dy/dx = (dy/dt)/(dx/dt). Calculus II - Problem Solving Drill 4: Calculus for Parametric Equations Question No. of 0 Instructions: () Read the problem and answer choices carefully () Work the problems on paper as. Find dy/dx where

More information

2.3 Maxima, minima and second derivatives

2.3 Maxima, minima and second derivatives CHAPTER 2. DIFFERENTIATION 39 2.3 Maxima, minima and second derivatives Consider the following question: given some function f, where does it achieve its maximum or minimum values? First let us examine

More information

AP Calculus Multiple Choice Questions - Chapter 5

AP Calculus Multiple Choice Questions - Chapter 5 1 If f'(x) = (x - 2)(x - 3) 2 (x - 4) 3, then f has which of the following relative extrema? I. A relative maximum at x = 2 II. A relative minimum at x = 3 III. A relative maximum at x = 4 a I only b III

More information

Problem Set 1: Tariffs and Quotas (Solutions) Universidad Carlos III de Madrid Economics of European Integration TA: Victor Troster Fall 2012

Problem Set 1: Tariffs and Quotas (Solutions) Universidad Carlos III de Madrid Economics of European Integration TA: Victor Troster Fall 2012 Problem Set 1: Tariffs and Quotas (Solutions) Universidad Carlos III de Madrid Economics of European Integration TA: Victor Troster Fall 2012 Problem 1 Suppose there are only two countries in the world

More information

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Math 180, Final Exam, Fall 2007 Problem 1 Solution Problem Solution. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify. (a) x 27 x 2/3 (b) (x 2 2x + 2)e x (c) ln(x 2 + 4) (a) Use the Power

More information

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 3 NON-LINEAR FUNCTIONS

DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 102 LECTURE 3 NON-LINEAR FUNCTIONS DCDM BUSINESS SCHOOL FACULTY OF MANAGEMENT ECONOMIC TECHNIQUES 10 LECTURE NON-LINEAR FUNCTIONS 0. Preliminaries The following functions will be discussed briefly first: Quadratic functions and their solutions

More information

Study Skills in Mathematics. Edited by D. Burkhardt and D. Rutherford. Nottingham: Shell Centre for Mathematical Education (Revised edn 1981).

Study Skills in Mathematics. Edited by D. Burkhardt and D. Rutherford. Nottingham: Shell Centre for Mathematical Education (Revised edn 1981). Study Skills in Mathematics. Edited by D. Burkhardt and D. Rutherford. Nottingham: Shell Centre for Mathematical Education (Revised edn 1981). (Copies are available from the Shell Centre for Mathematical

More information

Calculus I Announcements

Calculus I Announcements Slide 1 Calculus I Announcements Read sections 4.2,4.3,4.4,4.1 and 5.3 Do the homework from sections 4.2,4.3,4.4,4.1 and 5.3 Exam 3 is Thursday, November 12th See inside for a possible exam question. Slide

More information

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7)

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7) Note: This review is intended to highlight the topics covered on the Final Exam (with emphasis on

More information

Workshop I The R n Vector Space. Linear Combinations

Workshop I The R n Vector Space. Linear Combinations Workshop I Workshop I The R n Vector Space. Linear Combinations Exercise 1. Given the vectors u = (1, 0, 3), v = ( 2, 1, 2), and w = (1, 2, 4) compute a) u + ( v + w) b) 2 u 3 v c) 2 v u + w Exercise 2.

More information

1 Cost, Revenue and Profit

1 Cost, Revenue and Profit MATH 104 - SECTION 101 FIN AL REVIEW 1 Cost, Revenue and Profit C(x), R(x), and P(x); marginal cost MC(x), marginal revenue MR(x), and marginal profit M P(x). 1. Profit is the difference between cost and

More information

BEEM103 UNIVERSITY OF EXETER. BUSINESS School. January 2009 Mock Exam, Part A. OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions

BEEM103 UNIVERSITY OF EXETER. BUSINESS School. January 2009 Mock Exam, Part A. OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions BEEM03 UNIVERSITY OF EXETER BUSINESS School January 009 Mock Exam, Part A OPTIMIZATION TECHNIQUES FOR ECONOMISTS solutions Duration : TWO HOURS The paper has 3 parts. Your marks on the rst part will be

More information

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study:

Review for Final. The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Review for Final The final will be about 20% from chapter 2, 30% from chapter 3, and 50% from chapter 4. Below are the topics to study: Chapter 2 Find the exact answer to a limit question by using the

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

MATH 112 Final Exam, Spring Honor Statement

MATH 112 Final Exam, Spring Honor Statement NAME: QUIZ Section: STUDENT ID: MATH 112 Final Exam, Spring 2013 Honor Statement I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and

More information

MATHEMATICS FOR ECONOMISTS. Course Convener. Contact: Office-Hours: X and Y. Teaching Assistant ATIYEH YEGANLOO

MATHEMATICS FOR ECONOMISTS. Course Convener. Contact: Office-Hours: X and Y. Teaching Assistant ATIYEH YEGANLOO INTRODUCTION TO QUANTITATIVE METHODS IN ECONOMICS MATHEMATICS FOR ECONOMISTS Course Convener DR. ALESSIA ISOPI Contact: alessia.isopi@manchester.ac.uk Office-Hours: X and Y Teaching Assistant ATIYEH YEGANLOO

More information

MTH Calculus with Analytic Geom I TEST 1

MTH Calculus with Analytic Geom I TEST 1 MTH 229-105 Calculus with Analytic Geom I TEST 1 Name Please write your solutions in a clear and precise manner. SHOW your work entirely. (1) Find the equation of a straight line perpendicular to the line

More information

ECONOMICS 207 SPRING 2008 PROBLEM SET 13

ECONOMICS 207 SPRING 2008 PROBLEM SET 13 ECONOMICS 207 SPRING 2008 PROBLEM SET 13 Problem 1. The cost function for a firm is a rule or mapping that tells the minimum total cost of production of any output level produced by the firm for a fixed

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

MAXIMA, MINIMA AND POINTS OF INFLEXION

MAXIMA, MINIMA AND POINTS OF INFLEXION Page of 8 MAXIMA, MINIMA AND POINTS OF INFLEXION Introduction 0 M Q S f( x) P I I R I I T 5 7 a 0 b x The diagram shows the graph of y domain a x b. The points Q and S are called local maxima. The points

More information

Homework 1 Solutions

Homework 1 Solutions Homework Solutions Econ 50 - Stanford University - Winter Quarter 204/5 January 6, 205 Exercise : Constrained Optimization with One Variable (a) For each function, write the optimal value(s) of x on the

More information

Index. Cambridge University Press An Introduction to Mathematics for Economics Akihito Asano. Index.

Index. Cambridge University Press An Introduction to Mathematics for Economics Akihito Asano. Index. , see Q.E.D. ln, see natural logarithmic function e, see Euler s e i, see imaginary number log 10, see common logarithm ceteris paribus, 4 quod erat demonstrandum, see Q.E.D. reductio ad absurdum, see

More information

Topic 7. Part I Partial Differentiation Part II Marginal Functions Part II Partial Elasticity Part III Total Differentiation Part IV Returns to scale

Topic 7. Part I Partial Differentiation Part II Marginal Functions Part II Partial Elasticity Part III Total Differentiation Part IV Returns to scale Topic 7 Part I Partial Differentiation Part II Marginal Functions Part II Partial Elasticity Part III Total Differentiation Part IV Returns to scale Jacques (4th Edition): 5.1-5.3 1 Functions of Several

More information

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods.

OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach OBJECTIVE Find limits of functions, if they exist, using numerical or graphical methods. 1.1 Limits: A Numerical and Graphical Approach DEFINITION: As x approaches

More information

The Envelope Theorem

The Envelope Theorem The Envelope Theorem In an optimization problem we often want to know how the value of the objective function will change if one or more of the parameter values changes. Let s consider a simple example:

More information

Solutions to Final Exam

Solutions to Final Exam Name: ID#: Solutions to Final Exam Math a Introduction to Calculus 2 January 2005 Show all of your work. Full credit may not be given for an answer alone. You may use the backs of the pages or the extra

More information

Industrial Organization

Industrial Organization Industrial Organization Lecture Notes Sérgio O. Parreiras Fall, 2017 Outline Mathematical Toolbox Intermediate Microeconomic Theory Revision Perfect Competition Monopoly Oligopoly Mathematical Toolbox

More information

ECON 255 Introduction to Mathematical Economics

ECON 255 Introduction to Mathematical Economics Page 1 of 5 FINAL EXAMINATION Winter 2017 Introduction to Mathematical Economics April 20, 2017 TIME ALLOWED: 3 HOURS NUMBER IN THE LIST: STUDENT NUMBER: NAME: SIGNATURE: INSTRUCTIONS 1. This examination

More information

Pure Mathematics P1

Pure Mathematics P1 1 Pure Mathematics P1 Rules of Indices x m * x n = x m+n eg. 2 3 * 2 2 = 2*2*2*2*2 = 2 5 x m / x n = x m-n eg. 2 3 / 2 2 = 2*2*2 = 2 1 = 2 2*2 (x m ) n =x mn eg. (2 3 ) 2 = (2*2*2)*(2*2*2) = 2 6 x 0 =

More information

TOPIC VI UNCONSTRAINED OPTIMIZATION I

TOPIC VI UNCONSTRAINED OPTIMIZATION I [1] Motivation TOPIC VI UNCONSTRAINED OPTIMIZATION I y 8 6 3 3 5 7 Consider Dom (f) = {0 7}. Global ma: y = 8 at = 7 gma Global min: y = 3 at = 5 gmin Local ma: y = 6 at = 3 lma Local min: y = 3 at = 5

More information

Tutorial letter 201/2/2018

Tutorial letter 201/2/2018 DSC1520/201/2/2018 Tutorial letter 201/2/2018 Quantitative Modelling 1 DSC1520 Semester 2 Department of Decision Sciences Solutions to Assignment 1 Bar code Dear Student This tutorial letter contains the

More information

MA 223 PRACTICE QUESTIONS FOR THE FINAL 3/97 A. B. C. D. E.

MA 223 PRACTICE QUESTIONS FOR THE FINAL 3/97 A. B. C. D. E. MA 223 PRACTICE QUESTIONS FOR THE FINAL 3/97 1. Which of the lines shown has slope 1/3? 2. Suppose 280 tons of corn were harvested in 5 days and 940 tons in 20 days. If the relationship between tons T

More information

6x 2 8x + 5 ) = 12x 8. f (x) ) = d (12x 8) = 12

6x 2 8x + 5 ) = 12x 8. f (x) ) = d (12x 8) = 12 AMS/ECON 11A Class Notes 11/6/17 UCSC *) Higher order derivatives Example. If f = x 3 x + 5x + 1, then f = 6x 8x + 5 Observation: f is also a differentiable function... d f ) = d 6x 8x + 5 ) = 1x 8 dx

More information