THE FIRM: OPTIMISATION

Size: px
Start display at page:

Download "THE FIRM: OPTIMISATION"

Transcription

1 Prerequisites Almost essential Firm: Basics THE FIRM: OPTIMISATION MICROECONOMICS Principles and Analysis Frank Cowell Note: the detail in slides marked * can only be seen if you run the slideshow July 2017 Frank Cowell: Firm Optimization 1

2 Overview Firm: Optimisation The setting Approaches to the firm s optimisation problem Stage 1: Cost Minimisation Stage 2: Profit maximisation July 2017 Frank Cowell: Firm Optimization 2

3 The optimisation problem We set up and solve a standard optimisation problem make a quick list of its components look ahead to the way we will do it for the firm Objectives - Profit maximisation? Constraints - Technology; other Method - 2-stage optimisation July 2017 Frank Cowell: Firm Optimization 3

4 Construct the objective function Use info on prices and on quantities to build objective function w i price of input i z i amount of input i p price of output q amount of output Cost of inputs: mm ii=1 Revenue: pppp ww ii zz ii summed over all m inputs Profits: pppp mm ii=1 ww ii zz ii subtract Cost from Revenue to get July 2017 Frank Cowell: Firm Optimization 4

5 Optimisation: the standard approach Choose q and z to maximise Π := pq m Σ w i z i i=1...subject to the production constraint... q φ (z) Could also write this as z Z(q)..and some obvious constraints: q 0 z 0 You can t have negative output or negative inputs July 2017 Frank Cowell: Firm Optimization 5

6 A standard optimisation method If φ is differentiable Set up a Lagrangian to take care of the constraints Write down the First Order Conditions (FOC) Check out second-order conditions necessity sufficiency Use FOC to characterise solution L (... ) L (... ) = 0 z 2 L (... ) z 2 z * = July 2017 Frank Cowell: Firm Optimization 6

7 Uses of FOC First order conditions are crucial They are used over and over again in optimisation problems For example: characterising efficiency analysing Black box problems describing the firm's reactions to its environment More of that in the next presentation Right now a word of caution... July 2017 Frank Cowell: Firm Optimization 7

8 A word of warning We ve just argued that using FOC is useful But sometimes it will yield ambiguous results Sometimes it is undefined Depends on the shape of the production function φ You have to check whether it s appropriate to apply the Lagrangian method You may need to use other ways of finding an optimum July 2017 Frank Cowell: Firm Optimization 8

9 A way forward We could just go ahead and solve the maximisation problem But it makes sense to break it down into two stages The analysis is a bit easier You see how to apply optimisation techniques It gives some important concepts that we can re-use later First stage is minimise cost for a given output level If you have fixed the output level q then profit max is equivalent to cost min Second stage is find the output level to maximise profits Follows the first stage naturally Uses the results from the first stage We deal with stage each in turn July 2017 Frank Cowell: Firm Optimization 9

10 Overview Firm: Optimisation The setting A fundamental multivariable problem with a brilliant solution Stage 1: Cost Minimisation Stage 2: Profit maximisation July 2017 Frank Cowell: Firm Optimization 10

11 Stage 1 optimisation Pick a target output level q Take as given the market prices of inputs w Maximise profits......by minimising costs m Σ w i z i i=1 July 2017 Frank Cowell: Firm Optimization 11

12 A useful tool For a given set of input prices w... the isocost is the set of points z in input space......that yield a given level of factor cost These form a hyperplane (straight line)......because of the simple expression for factor-cost structure July 2017 Frank Cowell: Firm Optimization 12

13 Iso-cost lines z 2 w 1 z 1 + w 2 z 2 = c" Draw set of points where cost of input is c, a constant Repeat for a higher value of the constant Imposes direction on the diagram... w 1 z 1 + w 2 z 2 = c' w 1 z 1 + w 2 z 2 = c z 1 Use this to derive optimum July 2017 Frank Cowell: Firm Optimization 13

14 Cost-minimisation z 2 q The firm minimises cost... Subject to output constraint Defines the stage 1 problem Solution to the problem minimise z* z 1 m Σ w i z i i=1 subject to φ(z) q But the solution depends on the shape of the input-requirement set Ζ What would happen in other cases? July 2017 Frank Cowell: Firm Optimization 14

15 Convex, but not strictly convex Z z 2 Any z in this set is cost-minimising z 1 An interval of solutions July 2017 Frank Cowell: Firm Optimization 15

16 Convex Z, touching axis z 2 z 1 Here MRTS 21 > w 1 / w 2 at the solution z* Input 2 is too expensive and so isn t used: z 2 * = 0 July 2017 Frank Cowell: Firm Optimization 16

17 Non-convex Z z 2 z* There could be multiple solutions z** But note that there s no solution point between z* and z** z 1 July 2017 Frank Cowell: Firm Optimization 17

18 * Non-smooth Z z 2 z* MRTS 21 is undefined at z* z* is unique costminimising point for q z 1 True for all positive finite values of w 1, w 2 July 2017 Frank Cowell: Firm Optimization 18

19 Cost-minimisation: strictly convex Z Minimise m Σ w i z i i=1 * * λ φ 1 (z ) = w 1 * * λ φ 2 (z ) = w 2 * * λ φ m (z ) = w m q = φ(z *) Lagrange multiplier + λ[q q φ(z)] φ Because of strict convexity we have an interior solution A set of m+1 First-Order Conditions output constraint one for each input Use the objective function...and output constraint...to build the Lagrangian Differentiate w.r.t. z 1,..., z m ; set equal to 0... and w.r.t λ Denote cost minimising values by * July 2017 Frank Cowell: Firm Optimization 19

20 If isoquants can touch the axes... Minimise m Σw i z i i=1 + λ [q φ(z)] Now there is the possibility of corner solutions A set of m+1 First-Order Conditions λ * φ 1 (z * ) w 1 λ * φ 2 (z * ) w 2 λ * φ m (z * ) w m q = φ(z * ) Can get < if optimal value of this input is 0 Interpretation July 2017 Frank Cowell: Firm Optimization 20

21 From the FOC If both inputs i and j are used and MRTS is defined then... φ i (z ) w = i φ j (z ) w j MRTS = input price ratio implicit price = market price If input i could be zero then... φ i (z ) w i φ j (z ) w j MRTS ji input price ratio implicit price market price Solution July 2017 Frank Cowell: Firm Optimization 21

22 The solution... Solving the FOC, you get a cost-minimising value for each input... z i* = H i (w, q)...for the Lagrange multiplier λ * = λ * (w, q)...and for the minimised value of cost itself. The cost function is defined as C(w, q) := min Σ w i z i vector of input prices {φ(z) q} Specified output level July 2017 Frank Cowell: Firm Optimization 22

23 Interpreting the Lagrange multiplier The solution function: C(w, q) = Σ i w i z i * = Σ i w i z i* λ * [φ(z * ) q] Differentiate with respect to q: C q (w, q) = Σ i w i H i q(w, q) λ * [Σ i φ i (z * ) H i q(w, q) 1] Vanishes because of FOC λ *φ i (z*) = w i Rearrange: C q (w, q) = Σ i [w i λ * φ i (z * )] H i q(w, q) + λ * At the optimum, either the constraint binds or the Lagrange multiplier is zero Express demands in terms of (w,q) Lagrange multiplier in the stage 1 problem is just marginal cost C q (w, q) = λ * Result is just an applications of a general envelope theorem It holds for the untransformed, original version of the problem If we use a transformed version of the constraint (for example log q logφ (z)) we get a different Lagrange multiplier) July 2017 Frank Cowell: Firm Optimization 23

24 The cost function is an amazingly useful concept Because it is a solution function......it automatically has very nice properties These are true for all production functions And they carry over to applications other than the firm We ll investigate these graphically July 2017 Frank Cowell: Firm Optimization 24

25 Properties of C C z 1 * C(w, q+ q) C(w, q) Draw cost as function of w 1 Cost is non-decreasing in input prices Increasing in output, if φ continuous Concave in input prices Shephard s Lemma C(tw+[1 t]w,q) tc(w,q) + [1 t]c(w,q) w 1 C(w,q) = z j * w j July 2017 Frank Cowell: Firm Optimization 25

26 What happens to cost if w changes to tw z 2q Find cost-minimising inputs for w, given q Find cost-minimising inputs for tw, given q So we have: z* C(tw,q) = Σ i t w i z i* = t Σ i w i z i* = tc(w,q) The cost function is homogeneous of degree 1 in prices z 1 July 2017 Frank Cowell: Firm Optimization 26

27 Cost Function: 5 things to remember Non-decreasing in every input price Increasing in at least one input price Increasing in output Concave in prices Homogeneous of degree 1 in prices Shephard's Lemma July 2017 Frank Cowell: Firm Optimization 27

28 Example Production function: q z z Equivalent form: log q 0.1 log z log z 2 Lagrangian: w 1 z 1 + w 2 z 2 + λ [log q 0.1 log z log z 2 ] FOCs for an interior solution: w λ / z 1 = 0 w λ / z 2 = 0 log q = 0.1 log z log z 2 From the FOCs: log q = 0.1 log (0.1 λ / w 1 ) log (0.4 λ / w 2 ) λ = w w q 2 Therefore, from this and the FOCs: w 1 z 1 + w 2 z 2 = 0.5 λ = w w q 2 July 2017 Frank Cowell: Firm Optimization 28

29 Overview Firm: Optimisation The setting using the results of stage 1 Stage 1: Cost Minimisation Stage 2: Profit maximisation July 2017 Frank Cowell: Firm Optimization 29

30 Stage 2 optimisation Take the cost-minimisation problem as solved Take output price p as given Use minimised costs C(w,q) Set up a 1-variable maximisation problem Choose q to maximise profits First analyse components of the solution graphically Tie-in with properties of the firm (in the previous presentation) Then we come back to the formal solution July 2017 Frank Cowell: Firm Optimization 30

31 Average and marginal cost p increasing returns to scale decreasing returns to scale The average cost curve Slope of AC depends on RTS Marginal cost cuts AC at its minimum C q C/q q q July 2017 Frank Cowell: Firm Optimization 31

32 * Revenue and profits C q C/q A given market price p Revenue if output is q Cost if output is q Profits if output is q Profits vary with q Maximum profits p Π price = marginal cost q q q q* q q July 2017 Frank Cowell: Firm Optimization 32

33 What happens if price is low... C q C/q p price < average cost q* = 0 q July 2017 Frank Cowell: Firm Optimization 33

34 Profit maximisation Objective is to choose q to max: pq C (w, q) From the First-Order Conditions if q* > 0: p = C q (w, q*) C(w, q*) p q* In general: pq* C(w, q*) Revenue minus minimised cost Price equals marginal cost Price covers average cost covers both the cases: q* > 0 and q* = 0 July 2017 Frank Cowell: Firm Optimization 34

35 Example (continued) Production function: q z z Resulting cost function: C(w, q) = w w q 2 Profits: pq C(w, q) = pq A q 2 where A:= w w FOC: p 2 Aq = 0 Result: q = p / 2A = w w p July 2017 Frank Cowell: Firm Optimization 35

36 Summary Key point: Profit maximisation can be viewed in two stages: Stage 1: choose inputs to minimise cost Stage 2: choose output to maximise profit What next? Use these to predict firm's reactions July 2017 Frank Cowell: Firm Optimization 36

The Firm: Optimisation

The Firm: Optimisation Almost essential Firm: Basics The Firm: Optimisation MICROECONOMICS Principles and Analysis Frank Cowell October 2005 Overview... Firm: Optimisation The setting Approaches to the firm s optimisation problem

More information

THE FIRM: DEMAND AND SUPPLY

THE FIRM: DEMAND AND SUPPLY Prerequisites Almost essential Firm: Optimisation THE FIRM: DEMAND AND SUPPLY MICROECONOMICS Principles and Analysis Frank Cowell July 2017 1 Moving on from the optimum We derive the firm's reactions to

More information

The Multi-Output Firm

The Multi-Output Firm Prerequisites Almost essential Firm: Optimisation Useful, but optional Firm: Demand and Supply The Multi-Output Firm MICROECONOMICS Principles and Analysis Frank Cowell October 2006 Introduction This presentation

More information

The Firm: Demand and Supply

The Firm: Demand and Supply Almost essential Firm: Optimisation The Firm: Demand and Supply MICROECONOMICS Principles and Analysis Frank Cowell October 2005 Moving on from the optimum... We derive the firm's reactions to changes

More information

Moving on from the optimum... The Firm: Demand and Supply. The firm as a black box. Overview...

Moving on from the optimum... The Firm: Demand and Supply. The firm as a black box. Overview... Prereuisites Almost essential Firm: Optimisation Frank Cowell: Microeconomics The Firm: Demand and Supply MICROECONOMICS Principles and Analysis Frank Cowell Moving on from the optimum... We derive the

More information

Technology 1. that describes the (net) output of the L goods of the production process of the firm. By convention,

Technology 1. that describes the (net) output of the L goods of the production process of the firm. By convention, Production Theory Technology 1 Consider an economy with L goods. A firm is seen as a black box which uses these goods to serve as inputs and/or outputs. The production plan is a vector y = (y 1,..., y

More information

1 Theory of the Firm: Topics and Exercises

1 Theory of the Firm: Topics and Exercises 1 Theory of the Firm: Topics and Exercises Firms maximize profits, i.e. the difference between revenues and costs, subject to technological and other, here not considered) constraints. 1.1 Technology Technology

More information

The Envelope Theorem

The Envelope Theorem The Envelope Theorem In an optimization problem we often want to know how the value of the objective function will change if one or more of the parameter values changes. Let s consider a simple example:

More information

Chapter 4: Production Theory

Chapter 4: Production Theory Chapter 4: Production Theory Need to complete: Proposition 48, Proposition 52, Problem 4, Problem 5, Problem 6, Problem 7, Problem 10. In this chapter we study production theory in a commodity space. First,

More information

Week 10: Theory of the Firm (Jehle and Reny, Chapter 3)

Week 10: Theory of the Firm (Jehle and Reny, Chapter 3) Week 10: Theory of the Firm (Jehle and Reny, Chapter 3) Tsun-Feng Chiang* *School of Economics, Henan University, Kaifeng, China November 22, 2015 First Last (shortinst) Short title November 22, 2015 1

More information

Mathematical Foundations II

Mathematical Foundations II Mathematical Foundations 2-1- Mathematical Foundations II A. Level and superlevel sets 2 B. Convex sets and concave functions 4 C. Parameter changes: Envelope Theorem I 17 D. Envelope Theorem II 41 48

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

Microeconomics CHAPTER 2. THE FIRM

Microeconomics CHAPTER 2. THE FIRM Chapter The Firm Exercise. Suppose that a unit of output can be produced by any of the following combinations of inputs z = 0: 0:5 ; z 0:3 = 0:. Construct the isouant for =. ; z 3 0:5 = 0:. Assuming constant

More information

EC487 Advanced Microeconomics, Part I: Lecture 2

EC487 Advanced Microeconomics, Part I: Lecture 2 EC487 Advanced Microeconomics, Part I: Lecture 2 Leonardo Felli 32L.LG.04 6 October, 2017 Properties of the Profit Function Recall the following property of the profit function π(p, w) = max x p f (x)

More information

CHAPTER 1-2: SHADOW PRICES

CHAPTER 1-2: SHADOW PRICES Essential Microeconomics -- CHAPTER -: SHADOW PRICES An intuitive approach: profit maimizing firm with a fied supply of an input Shadow prices 5 Concave maimization problem 7 Constraint qualifications

More information

a = (a 1; :::a i )

a = (a 1; :::a  i ) 1 Pro t maximization Behavioral assumption: an optimal set of actions is characterized by the conditions: max R(a 1 ; a ; :::a n ) C(a 1 ; a ; :::a n ) a = (a 1; :::a n) @R(a ) @a i = @C(a ) @a i The rm

More information

= 2 = 1.5. Figure 4.1: WARP violated

= 2 = 1.5. Figure 4.1: WARP violated Chapter 4 The Consumer Exercise 4.1 You observe a consumer in two situations: with an income of $100 he buys 5 units of good 1 at a price of $10 per unit and 10 units of good 2 at a price of $5 per unit.

More information

WELFARE: THE SOCIAL- WELFARE FUNCTION

WELFARE: THE SOCIAL- WELFARE FUNCTION Prerequisites Almost essential Welfare: Basics Welfare: Efficiency WELFARE: THE SOCIAL- WELFARE FUNCTION MICROECONOMICS Principles and Analysis Frank Cowell July 2017 1 Social Welfare Function Limitations

More information

Bi-Variate Functions - ACTIVITES

Bi-Variate Functions - ACTIVITES Bi-Variate Functions - ACTIVITES LO1. Students to consolidate basic meaning of bi-variate functions LO2. Students to learn how to confidently use bi-variate functions in economics Students are given the

More information

Hicksian Demand and Expenditure Function Duality, Slutsky Equation

Hicksian Demand and Expenditure Function Duality, Slutsky Equation Hicksian Demand and Expenditure Function Duality, Slutsky Equation Econ 2100 Fall 2017 Lecture 6, September 14 Outline 1 Applications of Envelope Theorem 2 Hicksian Demand 3 Duality 4 Connections between

More information

GARP and Afriat s Theorem Production

GARP and Afriat s Theorem Production GARP and Afriat s Theorem Production Econ 2100 Fall 2017 Lecture 8, September 21 Outline 1 Generalized Axiom of Revealed Preferences 2 Afriat s Theorem 3 Production Sets and Production Functions 4 Profits

More information

Topic 6: Optimization I. Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7

Topic 6: Optimization I. Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7 Topic 6: Optimization I Maximisation and Minimisation Jacques (4th Edition): Chapter 4.6 & 4.7 1 For a straight line Y=a+bX Y= f (X) = a + bx First Derivative dy/dx = f = b constant slope b Second Derivative

More information

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL.

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. SEPTEMBER 2009. 3.1 Functions of more than one variable.

More information

GENERAL EQUILIBRIUM: EXCESS DEMAND AND THE RÔLE OF PRICES

GENERAL EQUILIBRIUM: EXCESS DEMAND AND THE RÔLE OF PRICES Prerequisites Almost essential General equilibrium: Basics Useful, but optional General Equilibrium: Price Taking GENERAL EQUILIBRIUM: EXCESS DEMAND AND THE RÔLE OF PRICES MICROECONOMICS Principles and

More information

Comparative Statics Overview: I

Comparative Statics Overview: I Comparative Statics Overview: I 1 Implicit function theorem: used to compute relationship between endogenous and exogenous variables. 1 Context: First order conditions of an optimization problem. Examples

More information

Advanced Microeconomic Analysis, Lecture 6

Advanced Microeconomic Analysis, Lecture 6 Advanced Microeconomic Analysis, Lecture 6 Prof. Ronaldo CARPIO April 10, 017 Administrative Stuff Homework # is due at the end of class. I will post the solutions on the website later today. The midterm

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

Mathematical Foundations -1- Supporting hyperplanes. SUPPORTING HYPERPLANES Key Ideas: Bounding hyperplane for a convex set, supporting hyperplane

Mathematical Foundations -1- Supporting hyperplanes. SUPPORTING HYPERPLANES Key Ideas: Bounding hyperplane for a convex set, supporting hyperplane Mathematical Foundations -1- Supporting hyperplanes SUPPORTING HYPERPLANES Key Ideas: Bounding hyperplane for a convex set, supporting hyperplane Supporting Prices 2 Production efficient plans and transfer

More information

GAMES: MIXED STRATEGIES

GAMES: MIXED STRATEGIES Prerequisites Almost essential Game Theory: Strategy and Equilibrium GAMES: MIXED STRATEGIES MICROECONOMICS Principles and Analysis Frank Cowell April 2018 Frank Cowell: Mixed Strategy Games 1 Introduction

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Economics 101A (Lecture 3) Stefano DellaVigna

Economics 101A (Lecture 3) Stefano DellaVigna Economics 101A (Lecture 3) Stefano DellaVigna January 24, 2017 Outline 1. Implicit Function Theorem 2. Envelope Theorem 3. Convexity and concavity 4. Constrained Maximization 1 Implicit function theorem

More information

Notice in equation (1) that the objective function modified by the Lagrangian multiplier times the constraint is relabeled.

Notice in equation (1) that the objective function modified by the Lagrangian multiplier times the constraint is relabeled. 9 Notes 4.DOC Department of Economics A PROBLEM OF CONSTRAINED MAXIMIZATION Consider the problem of keeping bees. Bees provide pollination services and they make honey. For decades economists used the

More information

Long-run Analysis of Production. Theory of Production

Long-run Analysis of Production. Theory of Production ong-run Analysis of Production Theory of Production ong-run Production Analysis ong-run production analysis concerned about the producers behavior in the long-run. In the long-run, expansion of output

More information

EconS Microeconomic Theory I Recitation #5 - Production Theory-I 1

EconS Microeconomic Theory I Recitation #5 - Production Theory-I 1 EconS 50 - Microeconomic Theory I Recitation #5 - Production Theory-I Exercise. Exercise 5.B.2 (MWG): Suppose that f () is the production function associated with a single-output technology, and let Y

More information

Econ Slides from Lecture 10

Econ Slides from Lecture 10 Econ 205 Sobel Econ 205 - Slides from Lecture 10 Joel Sobel September 2, 2010 Example Find the tangent plane to {x x 1 x 2 x 2 3 = 6} R3 at x = (2, 5, 2). If you let f (x) = x 1 x 2 x3 2, then this is

More information

ECON5110: Microeconomics

ECON5110: Microeconomics ECON5110: Microeconomics Lecture 2: Sept, 2017 Contents 1 Overview 1 2 Production Technology 2 3 Profit Maximization 5 4 Properties of Profit Maximization 7 5 Cost Minimization 10 6 Duality 12 1 Overview

More information

ECON 255 Introduction to Mathematical Economics

ECON 255 Introduction to Mathematical Economics Page 1 of 5 FINAL EXAMINATION Winter 2017 Introduction to Mathematical Economics April 20, 2017 TIME ALLOWED: 3 HOURS NUMBER IN THE LIST: STUDENT NUMBER: NAME: SIGNATURE: INSTRUCTIONS 1. This examination

More information

The Kuhn-Tucker and Envelope Theorems

The Kuhn-Tucker and Envelope Theorems The Kuhn-Tucker and Envelope Theorems Peter Ireland EC720.01 - Math for Economists Boston College, Department of Economics Fall 2010 The Kuhn-Tucker and envelope theorems can be used to characterize the

More information

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers.

1 + x 1/2. b) For what values of k is g a quasi-concave function? For what values of k is g a concave function? Explain your answers. Questions and Answers from Econ 0A Final: Fall 008 I have gone to some trouble to explain the answers to all of these questions, because I think that there is much to be learned b working through them

More information

Lecture 4: Optimization. Maximizing a function of a single variable

Lecture 4: Optimization. Maximizing a function of a single variable Lecture 4: Optimization Maximizing or Minimizing a Function of a Single Variable Maximizing or Minimizing a Function of Many Variables Constrained Optimization Maximizing a function of a single variable

More information

Mathematical Preliminaries for Microeconomics: Exercises

Mathematical Preliminaries for Microeconomics: Exercises Mathematical Preliminaries for Microeconomics: Exercises Igor Letina 1 Universität Zürich Fall 2013 1 Based on exercises by Dennis Gärtner, Andreas Hefti and Nick Netzer. How to prove A B Direct proof

More information

Perloff (2014, 3e, GE), Section

Perloff (2014, 3e, GE), Section Part 3B. Cost Minimization 3. Cost Minimization Problem 成本最小化問題 C: Input Choice Cost Minimization Problem Output Maximization Problem (Optional) Perloff (2014, 3e, GE), Section 7.3 2015.2.26 1 C: Input

More information

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2

EC /11. Math for Microeconomics September Course, Part II Problem Set 1 with Solutions. a11 a 12. x 2 LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 2010/11 Math for Microeconomics September Course, Part II Problem Set 1 with Solutions 1. Show that the general

More information

Advanced Microeconomics

Advanced Microeconomics Example November 20, 2012 Cost minimization Derive the cost function and conditional factor demands for the Cobb-Douglas utility function of the form: The cost minimization problem is: q = f (z 1, z 2

More information

Microeconomic Theory -1- Introduction

Microeconomic Theory -1- Introduction Microeconomic Theory -- Introduction. Introduction. Profit maximizing firm with monopoly power 6 3. General results on maximizing with two variables 8 4. Model of a private ownership economy 5. Consumer

More information

Firms and returns to scale -1- John Riley

Firms and returns to scale -1- John Riley Firms and returns to scale -1- John Riley Firms and returns to scale. Increasing returns to scale and monopoly pricing 2. Natural monopoly 1 C. Constant returns to scale 21 D. The CRS economy 26 E. pplication

More information

Differentiable Welfare Theorems Existence of a Competitive Equilibrium: Preliminaries

Differentiable Welfare Theorems Existence of a Competitive Equilibrium: Preliminaries Differentiable Welfare Theorems Existence of a Competitive Equilibrium: Preliminaries Econ 2100 Fall 2017 Lecture 19, November 7 Outline 1 Welfare Theorems in the differentiable case. 2 Aggregate excess

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

Homework 3 Suggested Answers

Homework 3 Suggested Answers Homework 3 Suggested Answers Answers from Simon and Blume are on the back of the book. Answers to questions from Dixit s book: 2.1. We are to solve the following budget problem, where α, β, p, q, I are

More information

Microeconomics I. September, c Leopold Sögner

Microeconomics I. September, c Leopold Sögner Microeconomics I c Leopold Sögner Department of Economics and Finance Institute for Advanced Studies Stumpergasse 56 1060 Wien Tel: +43-1-59991 182 soegner@ihs.ac.at http://www.ihs.ac.at/ soegner September,

More information

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y))

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y)) Anwers for Review Quiz #1. Material Covered. Klein 1, 2; Schaums 1, 2 1. Solve the following system of equations for x, y and z: x + y = 2 2x + 2y + z = 5 7x + y + z = 9 Answers: x = 1, y = 1, z = 1. 2.

More information

Chapter 1 Linear Equations and Graphs

Chapter 1 Linear Equations and Graphs Chapter 1 Linear Equations and Graphs Section R Linear Equations and Inequalities Important Terms, Symbols, Concepts 1.1. Linear Equations and Inequalities A first degree, or linear, equation in one variable

More information

Textbook Producer Theory: a Behavioral Version

Textbook Producer Theory: a Behavioral Version Textbook Producer Theory: a Behavioral Version Xavier Gabaix NYU Stern, CEPR and NBER November 22, 2013 Preliminary and incomplete Abstract This note develops a behavioral version of textbook producer

More information

The Kuhn-Tucker and Envelope Theorems

The Kuhn-Tucker and Envelope Theorems The Kuhn-Tucker and Envelope Theorems Peter Ireland ECON 77200 - Math for Economists Boston College, Department of Economics Fall 207 The Kuhn-Tucker and envelope theorems can be used to characterize the

More information

Firms and returns to scale -1- Firms and returns to scale

Firms and returns to scale -1- Firms and returns to scale Firms and returns to scale -1- Firms and returns to scale. Increasing returns to scale and monopoly pricing 2. Constant returns to scale 19 C. The CRS economy 25 D. pplication to trade 47 E. Decreasing

More information

Lecture 05 Cost Concepts for Decision Making. C r = MRTS LK, w MPL

Lecture 05 Cost Concepts for Decision Making. C r = MRTS LK, w MPL Lecture 05 Cost Concepts for Decision Making 1. Costs a) Explicit costs which involve a direct monetary outlay. Indirect costs that do not involve outlays of cash. b) Accounting Costs (total sum of explicit

More information

9.5 Radical Equations

9.5 Radical Equations Section 9.5 Radical Equations 945 9.5 Radical Equations In this section we are going to solve equations that contain one or more radical expressions. In the case where we can isolate the radical expression

More information

Tutorial 3: Optimisation

Tutorial 3: Optimisation Tutorial : Optimisation ECO411F 011 1. Find and classify the extrema of the cubic cost function C = C (Q) = Q 5Q +.. Find and classify the extreme values of the following functions (a) y = x 1 + x x 1x

More information

II. An Application of Derivatives: Optimization

II. An Application of Derivatives: Optimization Anne Sibert Autumn 2013 II. An Application of Derivatives: Optimization In this section we consider an important application of derivatives: finding the minimum and maximum points. This has important applications

More information

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them.

Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. What is market design? Increasingly, economists are asked not just to study or explain or interpret markets, but to design them. This requires different tools and ideas than neoclassical economics, which

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Econ 11: Intermediate Microeconomics. Preliminaries

Econ 11: Intermediate Microeconomics. Preliminaries Professor Jay Bhattacharya Spring 1 Econ 11: Intermediate Microeconomics Professor Jay Bhattacharya Office: Phone: (31) 393-411 x6396 email: jay@rand.org Office Hours Tuesday, 11am-1:3pm or by appointment

More information

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES

OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES General: OPTIMISATION 2007/8 EXAM PREPARATION GUIDELINES This points out some important directions for your revision. The exam is fully based on what was taught in class: lecture notes, handouts and homework.

More information

Properties of Walrasian Demand

Properties of Walrasian Demand Properties of Walrasian Demand Econ 2100 Fall 2017 Lecture 5, September 12 Problem Set 2 is due in Kelly s mailbox by 5pm today Outline 1 Properties of Walrasian Demand 2 Indirect Utility Function 3 Envelope

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

Differentiation. 1. What is a Derivative? CHAPTER 5

Differentiation. 1. What is a Derivative? CHAPTER 5 CHAPTER 5 Differentiation Differentiation is a technique that enables us to find out how a function changes when its argument changes It is an essential tool in economics If you have done A-level maths,

More information

1.4 FOUNDATIONS OF CONSTRAINED OPTIMIZATION

1.4 FOUNDATIONS OF CONSTRAINED OPTIMIZATION Essential Microeconomics -- 4 FOUNDATIONS OF CONSTRAINED OPTIMIZATION Fundamental Theorem of linear Programming 3 Non-linear optimization problems 6 Kuhn-Tucker necessary conditions Sufficient conditions

More information

Microeconomics. Joana Pais. Fall Joana Pais

Microeconomics. Joana Pais. Fall Joana Pais Microeconomics Fall 2016 Primitive notions There are four building blocks in any model of consumer choice. They are the consumption set, the feasible set, the preference relation, and the behavioural assumption.

More information

School of Business. Blank Page

School of Business. Blank Page Maxima and Minima 9 This unit is designed to introduce the learners to the basic concepts associated with Optimization. The readers will learn about different types of functions that are closely related

More information

Lecture 2 The Centralized Economy

Lecture 2 The Centralized Economy Lecture 2 The Centralized Economy Economics 5118 Macroeconomic Theory Kam Yu Winter 2013 Outline 1 Introduction 2 The Basic DGE Closed Economy 3 Golden Rule Solution 4 Optimal Solution The Euler Equation

More information

Answer Key: Problem Set 3

Answer Key: Problem Set 3 Answer Key: Problem Set Econ 409 018 Fall Question 1 a This is a standard monopoly problem; using MR = a 4Q, let MR = MC and solve: Q M = a c 4, P M = a + c, πm = (a c) 8 The Lerner index is then L M P

More information

Optimization. A first course on mathematics for economists

Optimization. A first course on mathematics for economists Optimization. A first course on mathematics for economists Xavier Martinez-Giralt Universitat Autònoma de Barcelona xavier.martinez.giralt@uab.eu II.3 Static optimization - Non-Linear programming OPT p.1/45

More information

CHAPTER 3: OPTIMIZATION

CHAPTER 3: OPTIMIZATION John Riley 8 February 7 CHAPTER 3: OPTIMIZATION 3. TWO VARIABLES 8 Second Order Conditions Implicit Function Theorem 3. UNCONSTRAINED OPTIMIZATION 4 Necessary and Sufficient Conditions 3.3 CONSTRAINED

More information

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation

Second Order Derivatives. Background to Topic 6 Maximisation and Minimisation Second Order Derivatives Course Manual Background to Topic 6 Maximisation and Minimisation Jacques (4 th Edition): Chapter 4.6 & 4.7 Y Y=a+bX a X Y= f (X) = a + bx First Derivative dy/dx = f = b constant

More information

Index. Cambridge University Press An Introduction to Mathematics for Economics Akihito Asano. Index.

Index. Cambridge University Press An Introduction to Mathematics for Economics Akihito Asano. Index. , see Q.E.D. ln, see natural logarithmic function e, see Euler s e i, see imaginary number log 10, see common logarithm ceteris paribus, 4 quod erat demonstrandum, see Q.E.D. reductio ad absurdum, see

More information

Unit 3: Producer Theory

Unit 3: Producer Theory Unit 3: Producer Theory Prof. Antonio Rangel December 13, 2013 1 Model of the firm 1.1 Key properties of the model Key assumption: firms maximize profits subject to Technological constraints: natural limits

More information

Chapter 4 Differentiation

Chapter 4 Differentiation Chapter 4 Differentiation 08 Section 4. The derivative of a function Practice Problems (a) (b) (c) 3 8 3 ( ) 4 3 5 4 ( ) 5 3 3 0 0 49 ( ) 50 Using a calculator, the values of the cube function, correct

More information

Mathematical Foundations -1- Convexity and quasi-convexity. Convex set Convex function Concave function Quasi-concave function Supporting hyperplane

Mathematical Foundations -1- Convexity and quasi-convexity. Convex set Convex function Concave function Quasi-concave function Supporting hyperplane Mathematical Foundations -1- Convexity and quasi-convexity Convex set Convex function Concave function Quasi-concave function Supporting hyperplane Mathematical Foundations -2- Convexity and quasi-convexity

More information

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control

Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control Nonlinear Programming (Hillier, Lieberman Chapter 13) CHEM-E7155 Production Planning and Control 19/4/2012 Lecture content Problem formulation and sample examples (ch 13.1) Theoretical background Graphical

More information

Microeconomics II. MOSEC, LUISS Guido Carli Problem Set n 3

Microeconomics II. MOSEC, LUISS Guido Carli Problem Set n 3 Microeconomics II MOSEC, LUISS Guido Carli Problem Set n 3 Problem 1 Consider an economy 1 1, with one firm (or technology and one consumer (firm owner, as in the textbook (MWG section 15.C. The set of

More information

To Find the Product of Monomials. ax m bx n abx m n. Let s look at an example in which we multiply two monomials. (3x 2 y)(2x 3 y 5 )

To Find the Product of Monomials. ax m bx n abx m n. Let s look at an example in which we multiply two monomials. (3x 2 y)(2x 3 y 5 ) 5.4 E x a m p l e 1 362SECTION 5.4 OBJECTIVES 1. Find the product of a monomial and a polynomial 2. Find the product of two polynomials 3. Square a polynomial 4. Find the product of two binomials that

More information

22: Applications of Differential Calculus

22: Applications of Differential Calculus 22: Applications of Differential Calculus A: Time Rate of Change The most common use of calculus (the one that motivated our discussions of the previous chapter) are those that involve change in some quantity

More information

Consumer Theory. Ichiro Obara. October 8, 2012 UCLA. Obara (UCLA) Consumer Theory October 8, / 51

Consumer Theory. Ichiro Obara. October 8, 2012 UCLA. Obara (UCLA) Consumer Theory October 8, / 51 Consumer Theory Ichiro Obara UCLA October 8, 2012 Obara (UCLA) Consumer Theory October 8, 2012 1 / 51 Utility Maximization Utility Maximization Obara (UCLA) Consumer Theory October 8, 2012 2 / 51 Utility

More information

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function).

y = F (x) = x n + c dy/dx = F`(x) = f(x) = n x n-1 Given the derivative f(x), what is F(x)? (Integral, Anti-derivative or the Primitive function). Integration Course Manual Indefinite Integration 7.-7. Definite Integration 7.-7.4 Jacques ( rd Edition) Indefinite Integration 6. Definite Integration 6. y F (x) x n + c dy/dx F`(x) f(x) n x n- Given

More information

Oligopoly Notes. Simona Montagnana

Oligopoly Notes. Simona Montagnana Oligopoly Notes Simona Montagnana Question 1. Write down a homogeneous good duopoly model of quantity competition. Using your model, explain the following: (a) the reaction function of the Stackelberg

More information

Supermodular Games. Ichiro Obara. February 6, 2012 UCLA. Obara (UCLA) Supermodular Games February 6, / 21

Supermodular Games. Ichiro Obara. February 6, 2012 UCLA. Obara (UCLA) Supermodular Games February 6, / 21 Supermodular Games Ichiro Obara UCLA February 6, 2012 Obara (UCLA) Supermodular Games February 6, 2012 1 / 21 We study a class of strategic games called supermodular game, which is useful in many applications

More information

Rules of Differentiation

Rules of Differentiation Rules of Differentiation The process of finding the derivative of a function is called Differentiation. 1 In the previous chapter, the required derivative of a function is worked out by taking the limit

More information

OPTIMISATION /09 EXAM PREPARATION GUIDELINES

OPTIMISATION /09 EXAM PREPARATION GUIDELINES General: OPTIMISATION 2 2008/09 EXAM PREPARATION GUIDELINES This points out some important directions for your revision. The exam is fully based on what was taught in class: lecture notes, handouts and

More information

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October 23 2011 1 Scores The exam was long. I know this. Final grades will definitely be curved. Here is a rough

More information

Assumption 5. The technology is represented by a production function, F : R 3 + R +, F (K t, N t, A t )

Assumption 5. The technology is represented by a production function, F : R 3 + R +, F (K t, N t, A t ) 6. Economic growth Let us recall the main facts on growth examined in the first chapter and add some additional ones. (1) Real output (per-worker) roughly grows at a constant rate (i.e. labor productivity

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

PRESENTATION OF MATHEMATICAL ECONOMICS SYLLABUS FOR ECONOMICS HONOURS UNDER CBCS, UNIVERSITY OF CALCUTTA

PRESENTATION OF MATHEMATICAL ECONOMICS SYLLABUS FOR ECONOMICS HONOURS UNDER CBCS, UNIVERSITY OF CALCUTTA PRESENTATION OF MATHEMATICAL ECONOMICS SYLLABUS FOR ECONOMICS HONOURS UNDER CBCS, UNIVERSITY OF CALCUTTA Kausik Gupta Professor of Economics, University of Calcutta Introductory Remarks The paper/course

More information

Lecture Notes for Chapter 12

Lecture Notes for Chapter 12 Lecture Notes for Chapter 12 Kevin Wainwright April 26, 2014 1 Constrained Optimization Consider the following Utility Max problem: Max x 1, x 2 U = U(x 1, x 2 ) (1) Subject to: Re-write Eq. 2 B = P 1

More information

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1 Bertrand Model of Price Competition Advanced Microeconomic Theory 1 ҧ Bertrand Model of Price Competition Consider: An industry with two firms, 1 and 2, selling a homogeneous product Firms face market

More information

Maximum Theorem, Implicit Function Theorem and Envelope Theorem

Maximum Theorem, Implicit Function Theorem and Envelope Theorem Maximum Theorem, Implicit Function Theorem and Envelope Theorem Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) MIFE 1 / 25 1 The Maximum Theorem 2 The Implicit Function Theorem 3

More information

Analysis of Functions

Analysis of Functions Lecture for Week 11 (Secs. 5.1 3) Analysis of Functions (We used to call this topic curve sketching, before students could sketch curves by typing formulas into their calculators. It is still important

More information

Lecture Notes October 18, Reading assignment for this lecture: Syllabus, section I.

Lecture Notes October 18, Reading assignment for this lecture: Syllabus, section I. Lecture Notes October 18, 2012 Reading assignment for this lecture: Syllabus, section I. Economic General Equilibrium Partial and General Economic Equilibrium PARTIAL EQUILIBRIUM S k (p o ) = D k k (po

More information

Nonlinear Programming and the Kuhn-Tucker Conditions

Nonlinear Programming and the Kuhn-Tucker Conditions Nonlinear Programming and the Kuhn-Tucker Conditions The Kuhn-Tucker (KT) conditions are first-order conditions for constrained optimization problems, a generalization of the first-order conditions we

More information

Duality. for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume

Duality. for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume Duality for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume Headwords: CONVEXITY, DUALITY, LAGRANGE MULTIPLIERS, PARETO EFFICIENCY, QUASI-CONCAVITY 1 Introduction The word duality is

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 The time limit for this exam is 4 hours. It has four sections. Each section includes two questions. You are

More information