Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:

Size: px
Start display at page:

Download "Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:"

Transcription

1 Optimal Control Control design based on pole-placement has non unique solutions Best locations for eigenvalues are sometimes difficult to determine Linear Quadratic LQ) Optimal control minimizes a quadratic performance index based on time response A state feedback control law results from solving an LQ optimal control problem Quadratic Functions Single variable quadratic function: f x) = q bx c Multi-variable quadratic function: f x) = x T Qx b T x c Where Q is a symmetric Q T =Q) nxn matrix and b is an nx1 vector It can be shown that the Jacobian of f is "f "x = # "f "f L "f & % = 2x T Q b T $ "x 1 " "x n '

2 2-Variable Quadratic Example f x) = x 1 2 2x2 2 " 2x1 " 2x 1 [ ] 1 "1 f x) = x 1 # &# % x 1& # % "2 0 % $ "1 2 ' $ ' $ [ ] x 1 & ' Quadratic Optimization To get x that minimizes fx) {x * } set "f "x = 2xT Q b T = 0 # 2Qx b = 0 or equivalently H = " "x x " =! 1 Q 2 Provided that the Hessian of f, ) " 2 f 2 "x 1 " 2 f L "2 f. "x 1 " "x 1 "x n. T #"f & " 2 f " 2 f % = L "2. f. $ "x ' "x 1 " 2 " " "x n. = 2Q M M O M. " 2 f " 2 f L "2. f. "x 1 "x n " " * n "x n -. is positive definite!1 b,

3 Positive Definite Matrixes Definition: A symmetric matrix H is said to be positive definite denoted by H>0) if x T Hx>0 for any non zero vector x. Positive definiteness Sylvester) test: H is positive definite iff all the principal minors of H are positive: h 11 h 12 L h 1n h 11 > 0, h 11 h 12 > 0,K, h 21 h 22 h 21 h 22 L h 2n M M O M > 0 h n1 h n2 L h nn 2-Variable Quadratic Optimization Example [ ] 1 "1 f x) = x 1 Optimal solution: # H = 2Q = 2 "2 & % > 0 $ "2 4 ' # &# % % $ " ' $ Q x " = # 1 2 Q#1 b = # 1 $ 1 #1' & ) 2 %#1 2 Thus x * minimizes fx) x 1 #1 $ #2 & # "2 0 % ' $ ' & % 0 ) = $ 2 ' & % 1 ) [ ] x 1 & '

4 Continuous-Time Linear Quadratic LQ) Optimal Control Given continuous-time state equation x = Ax Bu Find the control function ut) to minimize t f" Jx,t 0 ) = 1 2 xt t f )Sxt f ) 1 2 S,Q # 0, R > 0 and symmetric [ x T t)qxt) u T t)rut)] t 0 dt Comments on Performance Index PI) Control objective is to make x small by penalizing large inputs and states PI makes a compromise between performance and control action u T Ru x T Qx t

5 1 Principle of Optimality Bellman s Principle of Optimality: At any intermediate state x i in an optimal path from x 0 to x f, the path from x i to goal x f must itself constitute optimal path Optimal Cost-To-Go The optimal cost-to-go at x,t) is the optimal value of the cost function starting the state x at time t given by J " x,t) = 1 2 x"t t f )Sx " t f ) 1 t f$ x "T #)Qx " #) u "T #)Ru " #) 2 [ ] d# t where u * denotes the optimal input and x * t) the resulting optimal state trajectory.

6 LQ Optimization Formulation Let J * x,t) denote optimal cost-to-go, then by principle of optimality [ ] & 1 t$t J " x T #)Qx#) u T * % #)Ru#) d# xt),t) = min' 2 t ut) ) J " xt $t),t $t), where!t is an infinitesimal change in time t. By Taylor series expansion J " xt #t),t #t) = J " % xt),t) $J" ' & $t $J" $x dx dt * #t h.o.t ) Hamilton-Jacobi-Bellman HJB) Equation The HJB Eq. Results by letting!t "0: "J # "t 1 $ & 2 xt 1 t)qxt) min% ut) 2 ut t)rut) "J# '& "x & Axt) But) )) *& = 0 Set derivative w.r.t ut) to 0 to obtain optimal ut) u T t)r "J# "x B = 0 $ u t ) = %R %1 B T & "J # ) ' "x * The solution can be found by noting that cost-to-go is quadratic in x: ) = 1 2 xt Pt)x J " x,t for some symmetric matrix Pt)#0. T

7 Continuous-Time LQ Solution Using optimal u and " "x J# x,t) = x T Pt), " "t J# x,t) = 1 2 xt P t)x in HJB Eq. gives # % $ &% u = R "1 B T Px x T P x x T Qx u T Ru 2x T P Ax Bu) = 0 or x T P Q " PBR "1 B T P 2PA) x = 0 For all x. Note: 2x T PAx= x T PAxx T A T Px Summary of Continuous-Time LQ Solution Control law: u t) = K t)x t), K t) = "R "1 B T P t) Ricatti Equation P PA A T P Q " PBR "1 B T P = 0, Pt f ) = S Cost-to-go: J " x,t) = 1 2 xt Pt)x

8 Comments on Continuous-Time LQ Solution Control law is a time varying state feedback law Matrix Pt) can be found by integrating the Ricatti equation backward in time starting with Pt f )=S. In most cases Pt) and Kt) have steadystate solutions as t f approaches infinity Matlab Example Find the optimal controller that minimizes y J = 5y10) 2 10 " [y 2 t) u 2 t)]dt 0 u M=1 Solution: State Equation x 1 = position, = velocity, u = force " x 1 = # % d & $ x 2 = u dt ' x 1 ) & = 0 1 )& x 1) * ' 0 0* ' * & 0 ) ' 1 u * Performance Index weighting Matrices: J = 1 " 2 xt 10) 10 0 % $ ' x10) 1 10 x T " t) 2 0 % $ ' xt) 2u 2 t) dt # 0 0& 2 # 0 0& S 0 Q R

9 Backward Integration of Ricatti Eq. Ricatti Equation P PA A T P Q " PBR "1 B T P = 0, Pt f ) = S Let P b t)=pt f -t). Then P b 0)=Pt f )=S and P b t f )=P0). Moreover since dp b /dt=-dp/dt P b = P b A A T P p Q " P b BR "1 B T P b, P b 0) = S The above matrix differential equation can be solved numerically using standard ode solvers. Matlab Solution %System Matrices A=[0 1;0 0]; B=[0;1]; tf=10; %Performance Index Matrices S=[10 0;0 0]; Q=[2 0;0 0]; R=2; %Call ode45 to solve for P b T=[0:0.1:10] ; XP0=S:); [T,XPb]=ode45 ricfun,t,xp0,[],a,b,q,r); XP=flipudXPb); for k=1:lengtht) Pk=reshapeXPk,:)',2,2); Kk,:)=-invR)*B'*Pk; end %Call ode45 to simulate the system response [T,X]=ode45 sysfun,t,[1;0],[],a,b,k,t);

10 Functions of State Equations function dx=ricfunt,x,flag,a,b,q,r); %Ricatti Eq. Function to be called by ode45 Pb=reshapex,2,2); dpb=pb*aa'*pbq-pb*b*invr)*b'*pb; dx=dpb:); function dx=sysfunt,x,flag,a,b,k,t) %System Function to be called by ode45 k=maxfindt>=t)); %determine the index k Kk=Kk,:); dx=ab*kk)*x; P Matrix Entries P Values Time sec)

11 K Values 1 K Values K 1 K Time sec) Closed-Loop Response Response X 1 X Time sec)

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018

EN Applied Optimal Control Lecture 8: Dynamic Programming October 10, 2018 EN530.603 Applied Optimal Control Lecture 8: Dynamic Programming October 0, 08 Lecturer: Marin Kobilarov Dynamic Programming (DP) is conerned with the computation of an optimal policy, i.e. an optimal

More information

Hamilton-Jacobi-Bellman Equation Feb 25, 2008

Hamilton-Jacobi-Bellman Equation Feb 25, 2008 Hamilton-Jacobi-Bellman Equation Feb 25, 2008 What is it? The Hamilton-Jacobi-Bellman (HJB) equation is the continuous-time analog to the discrete deterministic dynamic programming algorithm Discrete VS

More information

Advanced Mechatronics Engineering

Advanced Mechatronics Engineering Advanced Mechatronics Engineering German University in Cairo 21 December, 2013 Outline Necessary conditions for optimal input Example Linear regulator problem Example Necessary conditions for optimal input

More information

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters

Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Linear-Quadratic-Gaussian (LQG) Controllers and Kalman Filters Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 204 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage:

Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: http://wcms.inf.ed.ac.uk/ipab/rss Control Theory Concerns controlled systems of the form: and a controller of the

More information

Linear Quadratic Optimal Control Topics

Linear Quadratic Optimal Control Topics Linear Quadratic Optimal Control Topics Finite time LQR problem for time varying systems Open loop solution via Lagrange multiplier Closed loop solution Dynamic programming (DP) principle Cost-to-go function

More information

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Infinite Horizon LQ. Given continuous-time state equation. Find the control function u(t) to minimize

Infinite Horizon LQ. Given continuous-time state equation. Find the control function u(t) to minimize Infinite Horizon LQ Given continuous-time state equation x = Ax + Bu Find the control function ut) to minimize J = 1 " # [ x T t)qxt) + u T t)rut)] dt 2 0 Q $ 0, R > 0 and symmetric Solution is obtained

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

Lecture 4 Continuous time linear quadratic regulator

Lecture 4 Continuous time linear quadratic regulator EE363 Winter 2008-09 Lecture 4 Continuous time linear quadratic regulator continuous-time LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon

More information

Continuous Time Finance

Continuous Time Finance Continuous Time Finance Lisbon 2013 Tomas Björk Stockholm School of Economics Tomas Björk, 2013 Contents Stochastic Calculus (Ch 4-5). Black-Scholes (Ch 6-7. Completeness and hedging (Ch 8-9. The martingale

More information

Stochastic and Adaptive Optimal Control

Stochastic and Adaptive Optimal Control Stochastic and Adaptive Optimal Control Robert Stengel Optimal Control and Estimation, MAE 546 Princeton University, 2018! Nonlinear systems with random inputs and perfect measurements! Stochastic neighboring-optimal

More information

Time-Invariant Linear Quadratic Regulators!

Time-Invariant Linear Quadratic Regulators! Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 17 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University .. Quadratic Stability of Dynamical Systems Raktim Bhattacharya Aerospace Engineering, Texas A&M University Quadratic Lyapunov Functions Quadratic Stability Dynamical system is quadratically stable if

More information

Lecture 9: Discrete-Time Linear Quadratic Regulator Finite-Horizon Case

Lecture 9: Discrete-Time Linear Quadratic Regulator Finite-Horizon Case Lecture 9: Discrete-Time Linear Quadratic Regulator Finite-Horizon Case Dr. Burak Demirel Faculty of Electrical Engineering and Information Technology, University of Paderborn December 15, 2015 2 Previous

More information

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-Time Nonlinear Quadratic Optimal Control V. Manousiouthakis D. Chmielewski Chemical Engineering Department UCLA 1998 AIChE Annual Meeting Outline Unconstrained Innite-Time Nonlinear

More information

Sec. 7.4: Basic Theory of Systems of First Order Linear Equations

Sec. 7.4: Basic Theory of Systems of First Order Linear Equations Sec. 7.4: Basic Theory of Systems of First Order Linear Equations MATH 351 California State University, Northridge April 2, 214 MATH 351 (Differential Equations) Sec. 7.4 April 2, 214 1 / 12 System of

More information

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016

ACM/CMS 107 Linear Analysis & Applications Fall 2016 Assignment 4: Linear ODEs and Control Theory Due: 5th December 2016 ACM/CMS 17 Linear Analysis & Applications Fall 216 Assignment 4: Linear ODEs and Control Theory Due: 5th December 216 Introduction Systems of ordinary differential equations (ODEs) can be used to describe

More information

1 Linear Quadratic Control Problem

1 Linear Quadratic Control Problem 1 Linear Quadratic Control Problem Suppose we have a problem of the following form: { vx 0 ) = max β t ) } x {a t,x t+1 } t Qx t +a t Ra t +2a t Wx t 1) x t is a vector of states and a t is a vector of

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Lecture 5 Linear Quadratic Stochastic Control

Lecture 5 Linear Quadratic Stochastic Control EE363 Winter 2008-09 Lecture 5 Linear Quadratic Stochastic Control linear-quadratic stochastic control problem solution via dynamic programming 5 1 Linear stochastic system linear dynamical system, over

More information

Linear Quadratic Regulator (LQR) Design II

Linear Quadratic Regulator (LQR) Design II Lecture 8 Linear Quadratic Regulator LQR) Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Stability and Robustness properties

More information

Numerical Optimal Control Overview. Moritz Diehl

Numerical Optimal Control Overview. Moritz Diehl Numerical Optimal Control Overview Moritz Diehl Simplified Optimal Control Problem in ODE path constraints h(x, u) 0 initial value x0 states x(t) terminal constraint r(x(t )) 0 controls u(t) 0 t T minimize

More information

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4. Optimal Control Lecture 18 Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen Ref: Bryson & Ho Chapter 4. March 29, 2004 Outline Hamilton-Jacobi-Bellman (HJB) Equation Iterative solution of HJB Equation

More information

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP)

Chapter 5. Pontryagin s Minimum Principle (Constrained OCP) Chapter 5 Pontryagin s Minimum Principle (Constrained OCP) 1 Pontryagin s Minimum Principle Plant: (5-1) u () t U PI: (5-2) Boundary condition: The goal is to find Optimal Control. 2 Pontryagin s Minimum

More information

6. Linear Quadratic Regulator Control

6. Linear Quadratic Regulator Control EE635 - Control System Theory 6. Linear Quadratic Regulator Control Jitkomut Songsiri algebraic Riccati Equation (ARE) infinite-time LQR (continuous) Hamiltonian matrix gain margin of LQR 6-1 Algebraic

More information

ME 233, UC Berkeley, Spring Background Parseval s Theorem Frequency-shaped LQ cost function Transformation to a standard LQ

ME 233, UC Berkeley, Spring Background Parseval s Theorem Frequency-shaped LQ cost function Transformation to a standard LQ ME 233, UC Berkeley, Spring 214 Xu Chen Lecture 1: LQ with Frequency Shaped Cost Function FSLQ Background Parseval s Theorem Frequency-shaped LQ cost function Transformation to a standard LQ Big picture

More information

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory

UCLA Chemical Engineering. Process & Control Systems Engineering Laboratory Constrained Innite-time Optimal Control Donald J. Chmielewski Chemical Engineering Department University of California Los Angeles February 23, 2000 Stochastic Formulation - Min Max Formulation - UCLA

More information

CHAPTER 2 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME. Chapter2 p. 1/67

CHAPTER 2 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME. Chapter2 p. 1/67 CHAPTER 2 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME Chapter2 p. 1/67 THE MAXIMUM PRINCIPLE: CONTINUOUS TIME Main Purpose: Introduce the maximum principle as a necessary condition to be satisfied by any optimal

More information

Elementary ODE Review

Elementary ODE Review Elementary ODE Review First Order ODEs First Order Equations Ordinary differential equations of the fm y F(x, y) () are called first der dinary differential equations. There are a variety of techniques

More information

Module 02 CPS Background: Linear Systems Preliminaries

Module 02 CPS Background: Linear Systems Preliminaries Module 02 CPS Background: Linear Systems Preliminaries Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html August

More information

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly. C PROPERTIES OF MATRICES 697 to whether the permutation i 1 i 2 i N is even or odd, respectively Note that I =1 Thus, for a 2 2 matrix, the determinant takes the form A = a 11 a 12 = a a 21 a 11 a 22 a

More information

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System Australian Journal of Basic and Applied Sciences, 3(4): 4267-4273, 29 ISSN 99-878 Modern Control Design of Power System Atef Saleh Othman Al-Mashakbeh Tafila Technical University, Electrical Engineering

More information

Math 4381 / 6378 Symmetry Analysis

Math 4381 / 6378 Symmetry Analysis Math 438 / 6378 Smmetr Analsis Elementar ODE Review First Order Equations Ordinar differential equations of the form = F(x, ( are called first order ordinar differential equations. There are a variet of

More information

Pontryagin s maximum principle

Pontryagin s maximum principle Pontryagin s maximum principle Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2012 Emo Todorov (UW) AMATH/CSE 579, Winter 2012 Lecture 5 1 / 9 Pontryagin

More information

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation

Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation EE363 Winter 2008-09 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linear-quadratic stochastic control problem estimation-control separation principle

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

9 Controller Discretization

9 Controller Discretization 9 Controller Discretization In most applications, a control system is implemented in a digital fashion on a computer. This implies that the measurements that are supplied to the control system must be

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field

Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field Vol. 4, No. 4, 23 Feedback Optimal Control of Low-thrust Orbit Transfer in Central Gravity Field Ashraf H. Owis Department of Astronomy, Space and Meteorology, Faculty of Science, Cairo University Department

More information

First-Order Low-Pass Filter!

First-Order Low-Pass Filter! Filters, Cost Functions, and Controller Structures! Robert Stengel! Optimal Control and Estimation MAE 546! Princeton University, 217!! Dynamic systems as low-pass filters!! Frequency response of dynamic

More information

Chapter 2 Optimal Control Problem

Chapter 2 Optimal Control Problem Chapter 2 Optimal Control Problem Optimal control of any process can be achieved either in open or closed loop. In the following two chapters we concentrate mainly on the first class. The first chapter

More information

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015 Time-Invariant Linear Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 15 Asymptotic approach from time-varying to constant gains Elimination of cross weighting

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Stochastic optimal control theory

Stochastic optimal control theory Stochastic optimal control theory Bert Kappen SNN Radboud University Nijmegen the Netherlands July 5, 2008 Bert Kappen Introduction Optimal control theory: Optimize sum of a path cost and end cost. Result

More information

Steady State Kalman Filter

Steady State Kalman Filter Steady State Kalman Filter Infinite Horizon LQ Control: ẋ = Ax + Bu R positive definite, Q = Q T 2Q 1 2. (A, B) stabilizable, (A, Q 1 2) detectable. Solve for the positive (semi-) definite P in the ARE:

More information

Extensions and applications of LQ

Extensions and applications of LQ Extensions and applications of LQ 1 Discrete time systems 2 Assigning closed loop pole location 3 Frequency shaping LQ Regulator for Discrete Time Systems Consider the discrete time system: x(k + 1) =

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

Intro. Computer Control Systems: F8

Intro. Computer Control Systems: F8 Intro. Computer Control Systems: F8 Properties of state-space descriptions and feedback Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 22 dave.zachariah@it.uu.se F7: Quiz! 2

More information

Linear Quadratic Regulator (LQR) Design I

Linear Quadratic Regulator (LQR) Design I Lecture 7 Linear Quadratic Regulator LQR) Design I Dr. Radhakant Padhi Asst. Proessor Dept. o Aerospace Engineering Indian Institute o Science - Bangalore LQR Design: Problem Objective o drive the state

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Nonlinear MPC Analysis : Part 1 Reference: Nonlinear Model Predictive Control (Ch.3), Grüne and Pannek Hanz Richter, Professor Mechanical Engineering Department

More information

ECSE.6440 MIDTERM EXAM Solution Optimal Control. Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004

ECSE.6440 MIDTERM EXAM Solution Optimal Control. Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004 ECSE.6440 MIDTERM EXAM Solution Optimal Control Assigned: February 26, 2004 Due: 12:00 pm, March 4, 2004 This is a take home exam. It is essential to SHOW ALL STEPS IN YOUR WORK. In NO circumstance is

More information

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem

MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear

More information

Formula Sheet for Optimal Control

Formula Sheet for Optimal Control Formula Sheet for Optimal Control Division of Optimization and Systems Theory Royal Institute of Technology 144 Stockholm, Sweden 23 December 1, 29 1 Dynamic Programming 11 Discrete Dynamic Programming

More information

OPTIMAL control of a discrete-time dynamic system is

OPTIMAL control of a discrete-time dynamic system is JOURNAL OF GUIDANCE, CONTROL, AND DYNAMIC Vol. 31, No. 6, November December 28 Discrete-Time ynergetic Optimal Control of Nonlinear ystems Nusawardhana,. H. Żak, and W. A. Crossley Purdue University, West

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

LINEAR QUADRATIC GAUSSIAN

LINEAR QUADRATIC GAUSSIAN ECE553: Multivariable Control Systems II. LINEAR QUADRATIC GAUSSIAN.: Deriving LQG via separation principle We will now start to look at the design of controllers for systems Px.t/ D A.t/x.t/ C B u.t/u.t/

More information

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley

A Tour of Reinforcement Learning The View from Continuous Control. Benjamin Recht University of California, Berkeley A Tour of Reinforcement Learning The View from Continuous Control Benjamin Recht University of California, Berkeley trustable, scalable, predictable Control Theory! Reinforcement Learning is the study

More information

Dynamical Systems & Lyapunov Stability

Dynamical Systems & Lyapunov Stability Dynamical Systems & Lyapunov Stability Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Ordinary Differential Equations Existence & uniqueness Continuous dependence

More information

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2 HW3 - Due 02/06 Each answer must be mathematically justified Don t forget your name Problem 1 Find a 2 2 matrix B such that B 3 = A, where A = 2 2 If A was diagonal, it would be easy: we would just take

More information

Static and Dynamic Optimization (42111)

Static and Dynamic Optimization (42111) Static and Dynamic Optimization (42111) Niels Kjølstad Poulsen Build. 303b, room 016 Section for Dynamical Systems Dept. of Applied Mathematics and Computer Science The Technical University of Denmark

More information

DECENTRALIZED CONTROL OF INTERCONNECTED SINGULARLY PERTURBED SYSTEMS. A Dissertation by. Walid Sulaiman Alfuhaid

DECENTRALIZED CONTROL OF INTERCONNECTED SINGULARLY PERTURBED SYSTEMS. A Dissertation by. Walid Sulaiman Alfuhaid DECENTRALIZED CONTROL OF INTERCONNECTED SINGULARLY PERTURBED SYSTEMS A Dissertation by Walid Sulaiman Alfuhaid Master of Engineering, Arkansas State University, 2011 Bachelor of Engineering, King Fahd

More information

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another.

Linear algebra I Homework #1 due Thursday, Oct Show that the diagonals of a square are orthogonal to one another. Homework # due Thursday, Oct. 0. Show that the diagonals of a square are orthogonal to one another. Hint: Place the vertices of the square along the axes and then introduce coordinates. 2. Find the equation

More information

Optimization Theory. Linear Operators and Adjoints

Optimization Theory. Linear Operators and Adjoints Optimization Theory Linear Operators and Adjoints A transformation T. : X Y y Linear Operators y T( x), x X, yy is the image of x under T The domain of T on which T can be defined : D X The range of T

More information

Linear-Quadratic Stochastic Differential Games with General Noise Processes

Linear-Quadratic Stochastic Differential Games with General Noise Processes Linear-Quadratic Stochastic Differential Games with General Noise Processes Tyrone E. Duncan Abstract In this paper a noncooperative, two person, zero sum, stochastic differential game is formulated and

More information

EE363 homework 2 solutions

EE363 homework 2 solutions EE363 Prof. S. Boyd EE363 homework 2 solutions. Derivative of matrix inverse. Suppose that X : R R n n, and that X(t is invertible. Show that ( d d dt X(t = X(t dt X(t X(t. Hint: differentiate X(tX(t =

More information

Lecture 6. Foundations of LMIs in System and Control Theory

Lecture 6. Foundations of LMIs in System and Control Theory Lecture 6. Foundations of LMIs in System and Control Theory Ivan Papusha CDS270 2: Mathematical Methods in Control and System Engineering May 4, 2015 1 / 22 Logistics hw5 due this Wed, May 6 do an easy

More information

The Inverted Pendulum

The Inverted Pendulum Lab 1 The Inverted Pendulum Lab Objective: We will set up the LQR optimal control problem for the inverted pendulum and compute the solution numerically. Think back to your childhood days when, for entertainment

More information

Linear Quadratic Optimal Control

Linear Quadratic Optimal Control 156 c Perry Y.Li Chapter 6 Linear Quadratic Optimal Control 6.1 Introduction In previous lectures, we discussed the design of state feedback controllers using using eigenvalue (pole) placement algorithms.

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Static and Dynamic Optimization (42111)

Static and Dynamic Optimization (42111) Static and Dynamic Optimization (421) Niels Kjølstad Poulsen Build. 0b, room 01 Section for Dynamical Systems Dept. of Applied Mathematics and Computer Science The Technical University of Denmark Email:

More information

EIGENVALUES AND EIGENVECTORS 3

EIGENVALUES AND EIGENVECTORS 3 EIGENVALUES AND EIGENVECTORS 3 1. Motivation 1.1. Diagonal matrices. Perhaps the simplest type of linear transformations are those whose matrix is diagonal (in some basis). Consider for example the matrices

More information

Chapter 2: Unconstrained Extrema

Chapter 2: Unconstrained Extrema Chapter 2: Unconstrained Extrema Math 368 c Copyright 2012, 2013 R Clark Robinson May 22, 2013 Chapter 2: Unconstrained Extrema 1 Types of Sets Definition For p R n and r > 0, the open ball about p of

More information

Homework Solution # 3

Homework Solution # 3 ECSE 644 Optimal Control Feb, 4 Due: Feb 17, 4 (Tuesday) Homework Solution # 3 1 (5%) Consider the discrete nonlinear control system in Homework # For the optimal control and trajectory that you have found

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

More information

Optimization of Linear Systems of Constrained Configuration

Optimization of Linear Systems of Constrained Configuration Optimization of Linear Systems of Constrained Configuration Antony Jameson 1 October 1968 1 Abstract For the sake of simplicity it is often desirable to restrict the number of feedbacks in a controller.

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Matrices A brief introduction

Matrices A brief introduction Matrices A brief introduction Basilio Bona DAUIN Politecnico di Torino Semester 1, 2014-15 B. Bona (DAUIN) Matrices Semester 1, 2014-15 1 / 44 Definitions Definition A matrix is a set of N real or complex

More information

The Linear Quadratic Regulator

The Linear Quadratic Regulator 10 The Linear Qadratic Reglator 10.1 Problem formlation This chapter concerns optimal control of dynamical systems. Most of this development concerns linear models with a particlarly simple notion of optimality.

More information

Linearly-Solvable Stochastic Optimal Control Problems

Linearly-Solvable Stochastic Optimal Control Problems Linearly-Solvable Stochastic Optimal Control Problems Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter 2014

More information

Lecture Note 1: Background

Lecture Note 1: Background ECE5463: Introduction to Robotics Lecture Note 1: Background Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 1 (ECE5463 Sp18)

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

b n x n + b n 1 x n b 1 x + b 0

b n x n + b n 1 x n b 1 x + b 0 Math Partial Fractions Stewart 7.4 Integrating basic rational functions. For a function f(x), we have examined several algebraic methods for finding its indefinite integral (antiderivative) F (x) = f(x)

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

11.2 Basic First-order System Methods

11.2 Basic First-order System Methods 112 Basic First-order System Methods 797 112 Basic First-order System Methods Solving 2 2 Systems It is shown here that any constant linear system u a b = A u, A = c d can be solved by one of the following

More information

Module 03 Linear Systems Theory: Necessary Background

Module 03 Linear Systems Theory: Necessary Background Module 03 Linear Systems Theory: Necessary Background Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Math 3313: Differential Equations Second-order ordinary differential equations

Math 3313: Differential Equations Second-order ordinary differential equations Math 3313: Differential Equations Second-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Mass-spring & Newton s 2nd law Properties

More information

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu SUCCESSIVE POLE SHIFING USING SAMPLED-DAA LQ REGULAORS oru Fujinaka Sigeru Omatu Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan Abstract: Design of sampled-data

More information

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS

Math 250B Final Exam Review Session Spring 2015 SOLUTIONS Math 5B Final Exam Review Session Spring 5 SOLUTIONS Problem Solve x x + y + 54te 3t and y x + 4y + 9e 3t λ SOLUTION: We have det(a λi) if and only if if and 4 λ only if λ 3λ This means that the eigenvalues

More information

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands

An efficient approach to stochastic optimal control. Bert Kappen SNN Radboud University Nijmegen the Netherlands An efficient approach to stochastic optimal control Bert Kappen SNN Radboud University Nijmegen the Netherlands Bert Kappen Examples of control tasks Motor control Bert Kappen Pascal workshop, 27-29 May

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information