Functions of Several Variables

Size: px
Start display at page:

Download "Functions of Several Variables"

Transcription

1 Functions of Several Variables The Unconstrained Minimization Problem where In n dimensions the unconstrained problem is stated as f() x variables. minimize f()x x, is a scalar objective function of vector argument x, and s a column vector of n real R n We can take the gradient of f() x, as f which is a column vector of n functions. f f , ,, f x x n T The n x n matrix of second derivatives is called the Hessian matrix and can be found by taking the gradient again, thus Hx (,, x n ) T f f or more specifically, the operator can be written as.. x n. x j... x n.. x n x j n n where the subscript i denotes the row and j denotes the column. The Hessian matris symmetric because of the properties of the second derivatives of continuous functions. x j fx () x j fx ()

2 Some Definitions Definition a point x ** is said to be the strong global minimum of a function f() f for all x R n, f() x fx ( ** ) > 0. Definition a point is said to be a strong local minimum of a function f() f there exists a δ > 0 x * such that f() x fx ( * ) > 0 for all x such that x x * < δ. If the inequalities in f() x fx ( ** ) > 0 and f() x fx ( * ) > 0 are replaced by < then we have strong global and local maxima. If the inequalities in f() x fx ( ** ) > 0 and f() x fx ( * ) > 0 are replaced by then the minima are called weak global and weak local minima. Taylor Expansion We can expand f() n a Taylor expansion about x as fx ( + x) fx () x T + fx () + -- x T fx () x + O( x 3 ) where the notation O( x 3 ) represents terms of order x 3 and these can be neglected for x sufficiently small. From the definition of local minimum, for f( x * + x) fx ( * ) > 0 for x > 0. x * to be a local minimum this implies that From the Taylor expansion f( x * + x) fx ( * ) x T fx * ( ) + -- x T fx ( * ) x must be greater than 0, where we have neglected O( x 3 ) terms. For this to be true it is obvious that f( x * ) 0 otherwise we could pick x appropriately so that x T fx ( * ) < 0.

3 Necessary Conditions A necessary condition for a local minimum is the analogue of a one dimensional function having a stationary point. Thus we can state the following definition and theorem. Definition If f( x * ) 0 then x * is called a stationary point of f() x. Theorem necessary condition for local minimum based on f() x x * is a local minimum of f() x only if x * is a stationary point of f() x, that is f( x * ) 0. Sufficient Conditions In order to obtain sufficient conditions from the Taylor expansion we need to study the second term: Qx ( ) -- x T fx ( * ) x This is called a quadratic form which can be written more generally as Qz () z T Az where z is an arbitrary column vector, A R n n is an arbitrary matrix and R n the quadratic form is a scalar. The properties of the quadratic form are governed by the properties of the matrix A. Definition The matrix A is called:. positive definite if Qz () > 0, z, z 0,. positive semidefinite if Qz () 0, z, z 0, 3. negative definite if Qz () < 0, z, z 0, 4. negative semidefinite if Qz () 0, z, z 0,and 5. indefinite if the sign of Qz () depends on z. Theorem Sufficient condition based on ( f, f) if f( x * ) 0 and fx ( * ) is positive definite then x * is a strong local minimum of f( x).

4 Note this is not a necessary condition since if fx ( * ) 0 and the O( x 3 ) terms are positive then x * is still a strong local minimum. Therefore a necessary condition involving fx ( * ) can be stated as follows: Theorem Necessary condition based on ( f, f) x * is a local minimum only if fx ( * ) 0 and fx ( * ) is positive semidefinite. Definition a stationary point which is not a local minimum or local maximum is called a saddle point. Example: Consider the function the gradient is easily found as f() x x + x f() x x x T and thus f( x * ) 0 x* x* 0 x * 00 T is a stationary point. The Hessian is independent of x since f(x) is a quadratic function. We now determine whether the Hessian is positive definite by looking at the quadratic form which can easily be written as fx ( * ) z Hx ( * ) H z T Hz z z z z z + z z z z z z + z z z z T Hz [ ( z z ) + z z ] [ ( z + z ) 3z z ]. Now we note that the first form is positive for z and z both negative or positive and that the second form is always positive for z and z of opposite sign. Thus z T Hz > 0, z, z 0 and thus Hx ( * ) H is positive definite x * is a local minimum. z

5 Examples of quadratic forms A quadratic form can always be made so that the matris symmetric, for consider the following examples: a) + x + 3x.5 x.5 3 x b).5 + x + 4 x 3 + x 3 x x x x 3 c) 00 + x + 3x 3 x x x x 3 d) consider the general two dimensional case, Q can always be chosen symmetric: + x + 3x Q b a 3 such that a + b, or the symmetric form Q c c 3 such that c ( a + b) 0.5.

6 Tests for Definiteness Definition the principal minors of a matrix a a a 3 a n A a a a 3 a n a 3 a 3 a 33 a n a n a n a n3 a nn a a a 3 a are written as a, a, 3 a a a 3, n A. a a a 3 a 3 a 33 Definition the eigenvalues of a matrix A are defined as all the scalars, which satisfy the characteristic equation A λ i I 0. λ i An nxn real symmetric matrix will have n real eigenvalues. Theorem Sylvester s Theorem A quadratic form z T Qz is positive definite if and only if all the leading principle determinants of the matrix Q are positive. Table : Tests for Definiteness definiteness eigenvalues principal minors. positive definite all λ i > 0 i > 0, i n. positive semidefinite all λ i 0 i 0, i n 3. negative definite all λ i < 0 < 0, > 0, 3 < 0 4. negative semidefinite all λ i 0 0, 0, indefinite some λ i 0, some λ i 0 none of the above It is also obvious from the definition of positive definite that: Theorem the matrix A is negative definite if A is positive definite.

7 Examples Determine the sign definiteness of the following:. A 30; we have, 5, and therefore since all leading principal determinants are positive definite. A is positive. A 3 0 ; we have, 7 and A is indefinite Example: Static Linear Springs K B A K P x System of linear springs in equilibrium The blocks A and B are two frictionless bodies connected to 3 linear elastic springs having spring constants K, K,. When the force P 0, 0, x 0 defines the natural position. We want to find new positions, x when a nonzero force P is applied. Solution: Recall that for a linear spring Hooke s Law says that F Kd where K is the spring constant and d is the displacement of the spring from equilibrium. The strain energy of a spring is the work done in stretching it, that is x E Kxdx --Kx. 0

8 The work put into the system by the constant force P is given by Px energy of the system is and thus the potential U --K. --K 3 ( x ) --K + + x Px We want to minimize this potential energy U according to the principle of minimum potential energy. Thus we have U * * * K x ( x ) 0 or U * * * K x 3 ( x ) + K x P 0 K + K + * x * 0 P which gives * PK ( K K + K + K ) * PK ( x + ) ( K K + K + K ) as the only stationary point. We now determine the Hessian as Hx () U U x x U x U x K + K + and need to know whether Hx () positive definite? The principal minors are given as K K + > 0, + K + ( K K + K + K ) > 0 and therefore x * *, x is the minimum. The value of the potential at this minimum is given as P ( K + ) U min K + K K + K

9 Quadratic Functions In general we write a scalar quadratic function of n variables, x qx () c b T + x + --x T Ax where c R, b R n, and the matrix A R n n. R n, in matrix notation as We note that from Taylor s expansion any function can be approximated by a quadratic function f( x + x) fx () x T + fx () + -- x T fx () x + O( x 3 ) in a small enough region. Therefore what we now say about quadratic functions qx () can be used later in approximations. In algebraic form we write b T qx () as n qx () c+ b i + -- x j a ij i j i where [ b b n ], and A [ a ij ] n n. Since x T As a quadratic form we can always assume it to be symmetric. n n Definition If A is positive definite then qx ( ) is called a positive definite quadratic function. Question Show that the gradient vector of a quadratic function by q() x Ax + b. qx () c b T + x + --x T Ax is given q Solution: To find the gradient vector we require:, k,, n. Writing qx () algebraically x k and rearranging we have: qx () c+ b i + -- x a x k + kj j Now since A is symmetric i i c+ b i + -- a kk x k a ij a ji j x k j k and we have i k j a ij x j + a kj x j + x k a ik + i k i k j k a ij x j

10 and therefore qx () c + b i + -- a kk x k + x k a kj x j + i j k i k j k a ij x j This result can be written in vactor notation as b k + -- a. kk x k + a kj b k + a kj x j Thus we see that the gradient of a quadratic is easily found by a matrix multiplication and vector addition. q x k j k q() x b + Ax j Question Show that the Hessian matrix of the quadratic function equal to A. qx () c b T + x + --x T Ax is Solution: We know that the Hessian matris given as and from the above we see that Hx () qx ( ()) T qx () x j n n Therefore q x j b j + a jk x k. k qx () a x ji a ij j and in matrix form Hx () H A and the Hessian of a quadratic function is a constant matrix. Thus we see that if qx () is a positive definite quadratic function then H is positive definite at all points which implies that x * will be a minimum. In fact since

11 is the unique minimum of a positive definite quadratic function. Example q( x * ) b + Ax * 0 x * A b Consider the following quadratic function in two variables: f(, x ) K + d + ex + cx + b x + a where: a, b, c, d, e, K. Determine the conditions under which f() s positive definite. Solution: Rewriting f() x in matrix form as f() x K de a b x x x b c x we see that the Hessian is given by A a b. b c Therefore by Sylvester s theorem A is positive definite if and only if: a > 0, 4ac b > 0 c > 0. From geometry we know that if 4ac b > 0 then the contour plots f() x const. define concentric ellipses. unique minimum Concentric ellipses define shape of quadratic function in -D

12 As a specific example if a d K, e, b 0andc,, we have f() x + x + + x f() x x x x 04 x and therefore A 0, b 04 A x * A b is the unique minimum.

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

Performance Surfaces and Optimum Points

Performance Surfaces and Optimum Points CSC 302 1.5 Neural Networks Performance Surfaces and Optimum Points 1 Entrance Performance learning is another important class of learning law. Network parameters are adjusted to optimize the performance

More information

Math 5BI: Problem Set 6 Gradient dynamical systems

Math 5BI: Problem Set 6 Gradient dynamical systems Math 5BI: Problem Set 6 Gradient dynamical systems April 25, 2007 Recall that if f(x) = f(x 1, x 2,..., x n ) is a smooth function of n variables, the gradient of f is the vector field f(x) = ( f)(x 1,

More information

Linear Algebra Solutions 1

Linear Algebra Solutions 1 Math Camp 1 Do the following: Linear Algebra Solutions 1 1. Let A = and B = 3 8 5 A B = 3 5 9 A + B = 9 11 14 4 AB = 69 3 16 BA = 1 4 ( 1 3. Let v = and u = 5 uv = 13 u v = 13 v u = 13 Math Camp 1 ( 7

More information

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions CE 191: Civil and Environmental Engineering Systems Analysis LEC : Optimality Conditions Professor Scott Moura Civil & Environmental Engineering University of California, Berkeley Fall 214 Prof. Moura

More information

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix

Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix Linear Algebra And Its Applications Chapter 6. Positive Definite Matrix KAIST wit Lab 2012. 07. 10 남성호 Introduction The signs of the eigenvalues can be important. The signs can also be related to the minima,

More information

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2

HW3 - Due 02/06. Each answer must be mathematically justified. Don t forget your name. 1 2, A = 2 2 HW3 - Due 02/06 Each answer must be mathematically justified Don t forget your name Problem 1 Find a 2 2 matrix B such that B 3 = A, where A = 2 2 If A was diagonal, it would be easy: we would just take

More information

REVIEW OF DIFFERENTIAL CALCULUS

REVIEW OF DIFFERENTIAL CALCULUS REVIEW OF DIFFERENTIAL CALCULUS DONU ARAPURA 1. Limits and continuity To simplify the statements, we will often stick to two variables, but everything holds with any number of variables. Let f(x, y) be

More information

Chapter 2: Unconstrained Extrema

Chapter 2: Unconstrained Extrema Chapter 2: Unconstrained Extrema Math 368 c Copyright 2012, 2013 R Clark Robinson May 22, 2013 Chapter 2: Unconstrained Extrema 1 Types of Sets Definition For p R n and r > 0, the open ball about p of

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as

Here each term has degree 2 (the sum of exponents is 2 for all summands). A quadratic form of three variables looks as Reading [SB], Ch. 16.1-16.3, p. 375-393 1 Quadratic Forms A quadratic function f : R R has the form f(x) = a x. Generalization of this notion to two variables is the quadratic form Q(x 1, x ) = a 11 x

More information

Differentiable Functions

Differentiable Functions Differentiable Functions Let S R n be open and let f : R n R. We recall that, for x o = (x o 1, x o,, x o n S the partial derivative of f at the point x o with respect to the component x j is defined as

More information

Math Matrix Algebra

Math Matrix Algebra Math 44 - Matrix Algebra Review notes - (Alberto Bressan, Spring 7) sec: Orthogonal diagonalization of symmetric matrices When we seek to diagonalize a general n n matrix A, two difficulties may arise:

More information

Gradient Descent. Dr. Xiaowei Huang

Gradient Descent. Dr. Xiaowei Huang Gradient Descent Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Three machine learning algorithms: decision tree learning k-nn linear regression only optimization objectives are discussed,

More information

Intro to Nonlinear Optimization

Intro to Nonlinear Optimization Intro to Nonlinear Optimization We now rela the proportionality and additivity assumptions of LP What are the challenges of nonlinear programs NLP s? Objectives and constraints can use any function: ma

More information

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018

MATH 5720: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 2018 MATH 57: Unconstrained Optimization Hung Phan, UMass Lowell September 13, 18 1 Global and Local Optima Let a function f : S R be defined on a set S R n Definition 1 (minimizers and maximizers) (i) x S

More information

Optimality Conditions

Optimality Conditions Chapter 2 Optimality Conditions 2.1 Global and Local Minima for Unconstrained Problems When a minimization problem does not have any constraints, the problem is to find the minimum of the objective function.

More information

Nonlinear equations and optimization

Nonlinear equations and optimization Notes for 2017-03-29 Nonlinear equations and optimization For the next month or so, we will be discussing methods for solving nonlinear systems of equations and multivariate optimization problems. We will

More information

Review of Vectors and Matrices

Review of Vectors and Matrices A P P E N D I X D Review of Vectors and Matrices D. VECTORS D.. Definition of a Vector Let p, p, Á, p n be any n real numbers and P an ordered set of these real numbers that is, P = p, p, Á, p n Then P

More information

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor

Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Symmetry and Properties of Crystals (MSE638) Stress and Strain Tensor Somnath Bhowmick Materials Science and Engineering, IIT Kanpur April 6, 2018 Tensile test and Hooke s Law Upto certain strain (0.75),

More information

Lecture Notes: Geometric Considerations in Unconstrained Optimization

Lecture Notes: Geometric Considerations in Unconstrained Optimization Lecture Notes: Geometric Considerations in Unconstrained Optimization James T. Allison February 15, 2006 The primary objectives of this lecture on unconstrained optimization are to: Establish connections

More information

8 Extremal Values & Higher Derivatives

8 Extremal Values & Higher Derivatives 8 Extremal Values & Higher Derivatives Not covered in 2016\17 81 Higher Partial Derivatives For functions of one variable there is a well-known test for the nature of a critical point given by the sign

More information

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints.

The general programming problem is the nonlinear programming problem where a given function is maximized subject to a set of inequality constraints. 1 Optimization Mathematical programming refers to the basic mathematical problem of finding a maximum to a function, f, subject to some constraints. 1 In other words, the objective is to find a point,

More information

5 More on Linear Algebra

5 More on Linear Algebra 14.102, Math for Economists Fall 2004 Lecture Notes, 9/23/2004 These notes are primarily based on those written by George Marios Angeletos for the Harvard Math Camp in 1999 and 2000, and updated by Stavros

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function:

Optimal Control. Quadratic Functions. Single variable quadratic function: Multi-variable quadratic function: Optimal Control Control design based on pole-placement has non unique solutions Best locations for eigenvalues are sometimes difficult to determine Linear Quadratic LQ) Optimal control minimizes a quadratic

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema

Chapter 7. Extremal Problems. 7.1 Extrema and Local Extrema Chapter 7 Extremal Problems No matter in theoretical context or in applications many problems can be formulated as problems of finding the maximum or minimum of a function. Whenever this is the case, advanced

More information

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised)

Computational Optimization. Mathematical Programming Fundamentals 1/25 (revised) Computational Optimization Mathematical Programming Fundamentals 1/5 (revised) If you don t know where you are going, you probably won t get there. -from some book I read in eight grade If you do get there,

More information

Lecture 6 Positive Definite Matrices

Lecture 6 Positive Definite Matrices Linear Algebra Lecture 6 Positive Definite Matrices Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 2017/6/8 Lecture 6: Positive Definite Matrices

More information

8. Diagonalization.

8. Diagonalization. 8. Diagonalization 8.1. Matrix Representations of Linear Transformations Matrix of A Linear Operator with Respect to A Basis We know that every linear transformation T: R n R m has an associated standard

More information

Paul Schrimpf. October 18, UBC Economics 526. Unconstrained optimization. Paul Schrimpf. Notation and definitions. First order conditions

Paul Schrimpf. October 18, UBC Economics 526. Unconstrained optimization. Paul Schrimpf. Notation and definitions. First order conditions Unconstrained UBC Economics 526 October 18, 2013 .1.2.3.4.5 Section 1 Unconstrained problem x U R n F : U R. max F (x) x U Definition F = max x U F (x) is the maximum of F on U if F (x) F for all x U and

More information

Vector Derivatives and the Gradient

Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 10 ECE 275A Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego

More information

Appendix A Taylor Approximations and Definite Matrices

Appendix A Taylor Approximations and Definite Matrices Appendix A Taylor Approximations and Definite Matrices Taylor approximations provide an easy way to approximate a function as a polynomial, using the derivatives of the function. We know, from elementary

More information

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016

Math 291-2: Final Exam Solutions Northwestern University, Winter 2016 Math 29-2: Final Exam Solutions Northwestern University, Winter 206 Determine whether each of the following statements is true or false f it is true, explain why; if it is false, give a counterexample

More information

Roots and Coefficients Polynomials Preliminary Maths Extension 1

Roots and Coefficients Polynomials Preliminary Maths Extension 1 Preliminary Maths Extension Question If, and are the roots of x 5x x 0, find the following. (d) (e) Question If p, q and r are the roots of x x x 4 0, evaluate the following. pq r pq qr rp p q q r r p

More information

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR Appendix B The Derivative B.1 The Derivative of f In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how the derivative appears for functions whose domain

More information

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima Calculus 50A - Advanced Calculus I Fall 014 14.7: Local minima and maxima Martin Frankland November 17, 014 In these notes, we discuss the problem of finding the local minima and maxima of a function.

More information

Chapter 2 BASIC PRINCIPLES. 2.1 Introduction. 2.2 Gradient Information

Chapter 2 BASIC PRINCIPLES. 2.1 Introduction. 2.2 Gradient Information Chapter 2 BASIC PRINCIPLES 2.1 Introduction Nonlinear programming is based on a collection of definitions, theorems, and principles that must be clearly understood if the available nonlinear programming

More information

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation.

In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation. 1 2 Linear Systems In these chapter 2A notes write vectors in boldface to reduce the ambiguity of the notation 21 Matrix ODEs Let and is a scalar A linear function satisfies Linear superposition ) Linear

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form:

N. L. P. NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP. Optimization. Models of following form: 0.1 N. L. P. Katta G. Murty, IOE 611 Lecture slides Introductory Lecture NONLINEAR PROGRAMMING (NLP) deals with optimization models with at least one nonlinear function. NLP does not include everything

More information

Convex Functions and Optimization

Convex Functions and Optimization Chapter 5 Convex Functions and Optimization 5.1 Convex Functions Our next topic is that of convex functions. Again, we will concentrate on the context of a map f : R n R although the situation can be generalized

More information

Positive Definite Matrix

Positive Definite Matrix 1/29 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Positive Definite, Negative Definite, Indefinite 2/29 Pure Quadratic Function

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 A Characterization of Convex Functions. 2.1 First-order Taylor approximation. AM 221: Advanced Optimization Spring 2016 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 8 February 22nd 1 Overview In the previous lecture we saw characterizations of optimality in linear optimization, and we reviewed the

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2.

APPENDIX A. Background Mathematics. A.1 Linear Algebra. Vector algebra. Let x denote the n-dimensional column vector with components x 1 x 2. APPENDIX A Background Mathematics A. Linear Algebra A.. Vector algebra Let x denote the n-dimensional column vector with components 0 x x 2 B C @. A x n Definition 6 (scalar product). The scalar product

More information

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and

A A x i x j i j (i, j) (j, i) Let. Compute the value of for and 7.2 - Quadratic Forms quadratic form on is a function defined on whose value at a vector in can be computed by an expression of the form, where is an symmetric matrix. The matrix R n Q R n x R n Q(x) =

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Multivariate Newton Minimanization

Multivariate Newton Minimanization Multivariate Newton Minimanization Optymalizacja syntezy biosurfaktantu Rhamnolipid Rhamnolipids are naturally occuring glycolipid produced commercially by the Pseudomonas aeruginosa species of bacteria.

More information

Lecture Unconstrained optimization. In this lecture we will study the unconstrained problem. minimize f(x), (2.1)

Lecture Unconstrained optimization. In this lecture we will study the unconstrained problem. minimize f(x), (2.1) Lecture 2 In this lecture we will study the unconstrained problem minimize f(x), (2.1) where x R n. Optimality conditions aim to identify properties that potential minimizers need to satisfy in relation

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

MATH529 Fundamentals of Optimization Unconstrained Optimization II

MATH529 Fundamentals of Optimization Unconstrained Optimization II MATH529 Fundamentals of Optimization Unconstrained Optimization II Marco A. Montes de Oca Mathematical Sciences, University of Delaware, USA 1 / 31 Recap 2 / 31 Example Find the local and global minimizers

More information

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x =

Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1. x 2. x = Linear Algebra Review Vectors To begin, let us describe an element of the state space as a point with numerical coordinates, that is x 1 x x = 2. x n Vectors of up to three dimensions are easy to diagram.

More information

Max-Min Problems in R n Matrix

Max-Min Problems in R n Matrix Max-Min Problems in R n Matrix 1 and the essian Prerequisite: Section 6., Orthogonal Diagonalization n this section, we study the problem of nding local maxima and minima for realvalued functions on R

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks

Vasil Khalidov & Miles Hansard. C.M. Bishop s PRML: Chapter 5; Neural Networks C.M. Bishop s PRML: Chapter 5; Neural Networks Introduction The aim is, as before, to find useful decompositions of the target variable; t(x) = y(x, w) + ɛ(x) (3.7) t(x n ) and x n are the observations,

More information

STAT200C: Review of Linear Algebra

STAT200C: Review of Linear Algebra Stat200C Instructor: Zhaoxia Yu STAT200C: Review of Linear Algebra 1 Review of Linear Algebra 1.1 Vector Spaces, Rank, Trace, and Linear Equations 1.1.1 Rank and Vector Spaces Definition A vector whose

More information

Linear Algebra: Linear Systems and Matrices - Quadratic Forms and Deniteness - Eigenvalues and Markov Chains

Linear Algebra: Linear Systems and Matrices - Quadratic Forms and Deniteness - Eigenvalues and Markov Chains Linear Algebra: Linear Systems and Matrices - Quadratic Forms and Deniteness - Eigenvalues and Markov Chains Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 3, 3 Systems

More information

Basics of Calculus and Algebra

Basics of Calculus and Algebra Monika Department of Economics ISCTE-IUL September 2012 Basics of linear algebra Real valued Functions Differential Calculus Integral Calculus Optimization Introduction I A matrix is a rectangular array

More information

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy.

CHAPTER 4: HIGHER ORDER DERIVATIVES. Likewise, we may define the higher order derivatives. f(x, y, z) = xy 2 + e zx. y = 2xy. April 15, 2009 CHAPTER 4: HIGHER ORDER DERIVATIVES In this chapter D denotes an open subset of R n. 1. Introduction Definition 1.1. Given a function f : D R we define the second partial derivatives as

More information

UNCONSTRAINED OPTIMIZATION PAUL SCHRIMPF OCTOBER 24, 2013

UNCONSTRAINED OPTIMIZATION PAUL SCHRIMPF OCTOBER 24, 2013 PAUL SCHRIMPF OCTOBER 24, 213 UNIVERSITY OF BRITISH COLUMBIA ECONOMICS 26 Today s lecture is about unconstrained optimization. If you re following along in the syllabus, you ll notice that we ve skipped

More information

1 Convexity, concavity and quasi-concavity. (SB )

1 Convexity, concavity and quasi-concavity. (SB ) UNIVERSITY OF MARYLAND ECON 600 Summer 2010 Lecture Two: Unconstrained Optimization 1 Convexity, concavity and quasi-concavity. (SB 21.1-21.3.) For any two points, x, y R n, we can trace out the line of

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline

EC /11. Math for Microeconomics September Course, Part II Lecture Notes. Course Outline LONDON SCHOOL OF ECONOMICS Professor Leonardo Felli Department of Economics S.478; x7525 EC400 20010/11 Math for Microeconomics September Course, Part II Lecture Notes Course Outline Lecture 1: Tools for

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004

Elements of Continuum Elasticity. David M. Parks Mechanics and Materials II February 25, 2004 Elements of Continuum Elasticity David M. Parks Mechanics and Materials II 2.002 February 25, 2004 Solid Mechanics in 3 Dimensions: stress/equilibrium, strain/displacement, and intro to linear elastic

More information

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion:

4 Newton Method. Unconstrained Convex Optimization 21. H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: Unconstrained Convex Optimization 21 4 Newton Method H(x)p = f(x). Newton direction. Why? Recall second-order staylor series expansion: f(x + p) f(x)+p T f(x)+ 1 2 pt H(x)p ˆf(p) In general, ˆf(p) won

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations

Chapter 1: Systems of linear equations and matrices. Section 1.1: Introduction to systems of linear equations Chapter 1: Systems of linear equations and matrices Section 1.1: Introduction to systems of linear equations Definition: A linear equation in n variables can be expressed in the form a 1 x 1 + a 2 x 2

More information

Math Camp Notes: Linear Algebra I

Math Camp Notes: Linear Algebra I Math Camp Notes: Linear Algebra I Basic Matrix Operations and Properties Consider two n m matrices: a a m A = a n a nm Then the basic matrix operations are as follows: a + b a m + b m A + B = a n + b n

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

1 Kernel methods & optimization

1 Kernel methods & optimization Machine Learning Class Notes 9-26-13 Prof. David Sontag 1 Kernel methods & optimization One eample of a kernel that is frequently used in practice and which allows for highly non-linear discriminant functions

More information

Matrices and Deformation

Matrices and Deformation ES 111 Mathematical Methods in the Earth Sciences Matrices and Deformation Lecture Outline 13 - Thurs 9th Nov 2017 Strain Ellipse and Eigenvectors One way of thinking about a matrix is that it operates

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Unconstrained optimization

Unconstrained optimization Chapter 4 Unconstrained optimization An unconstrained optimization problem takes the form min x Rnf(x) (4.1) for a target functional (also called objective function) f : R n R. In this chapter and throughout

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Lecture 8: Maxima and Minima

Lecture 8: Maxima and Minima Lecture 8: Maxima and Minima Rafikul Alam Department of Mathematics IIT Guwahati Local extremum of f : R n R Let f : U R n R be continuous, where U is open. Then f has a local maximum at p if there exists

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Parameter Estimation, Correlations, and Error Bars. Department of Physics and Astronomy University of Rochester Physics 403 Parameter Estimation, Correlations, and Error Bars Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Review of Last Class Best Estimates and Reliability

More information

Mathematical Economics: Lecture 16

Mathematical Economics: Lecture 16 Mathematical Economics: Lecture 16 Yu Ren WISE, Xiamen University November 26, 2012 Outline 1 Chapter 21: Concave and Quasiconcave Functions New Section Chapter 21: Concave and Quasiconcave Functions Concave

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

More information

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks)

(a) Write down the value of q and of r. (2) Write down the equation of the axis of symmetry. (1) (c) Find the value of p. (3) (Total 6 marks) 1. Let f(x) = p(x q)(x r). Part of the graph of f is shown below. The graph passes through the points ( 2, 0), (0, 4) and (4, 0). (a) Write down the value of q and of r. (b) Write down the equation of

More information

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition Applied mathematics PhD candidate, physics MA UC Berkeley April 26, 2013 UCB 1/19 Symmetric positive-definite I Definition A symmetric matrix A R n n is positive definite iff x T Ax > 0 holds x 0 R n.

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

Appendix 3. Derivatives of Vectors and Vector-Valued Functions DERIVATIVES OF VECTORS AND VECTOR-VALUED FUNCTIONS

Appendix 3. Derivatives of Vectors and Vector-Valued Functions DERIVATIVES OF VECTORS AND VECTOR-VALUED FUNCTIONS Appendix 3 Derivatives of Vectors and Vector-Valued Functions Draft Version 1 December 2000, c Dec. 2000, B. Walsh and M. Lynch Please email any comments/corrections to: jbwalsh@u.arizona.edu DERIVATIVES

More information

General Physics I Spring Oscillations

General Physics I Spring Oscillations General Physics I Spring 2011 Oscillations 1 Oscillations A quantity is said to exhibit oscillations if it varies with time about an equilibrium or reference value in a repetitive fashion. Oscillations

More information

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey

Linear Algebra. Linear Equations and Matrices. Copyright 2005, W.R. Winfrey Copyright 2005, W.R. Winfrey Topics Preliminaries Systems of Linear Equations Matrices Algebraic Properties of Matrix Operations Special Types of Matrices and Partitioned Matrices Matrix Transformations

More information

Principal Components Theory Notes

Principal Components Theory Notes Principal Components Theory Notes Charles J. Geyer August 29, 2007 1 Introduction These are class notes for Stat 5601 (nonparametrics) taught at the University of Minnesota, Spring 2006. This not a theory

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

3 (Maths) Linear Algebra

3 (Maths) Linear Algebra 3 (Maths) Linear Algebra References: Simon and Blume, chapters 6 to 11, 16 and 23; Pemberton and Rau, chapters 11 to 13 and 25; Sundaram, sections 1.3 and 1.5. The methods and concepts of linear algebra

More information