EE C128 / ME C134 Final Exam Fall 2014


 Cordelia Alexander
 2 years ago
 Views:
Transcription
1 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator allowed. 3. Closed book, closed notes, closed internet. 4. Allowed: 2 sheets (each double sided) Chi Chi. 5. Additional sheets are available and may be submitted (e.g. for graphs). 6. Write your name below, and your SID on the top right corner of every page (including this one). 7. If you turn in additional sheets: ˆ Write your name and/or SID on every sheet, and ˆ Write the number of additional sheets you are turning in above where indicated. 8. Do not write on the back of any page. Part Score 1
2 1. Laplace transform, controllable canonical form (a) Derive the following Laplace property for convolution integrals L {g 1 (t)} = G 1 (s) L {g 2 (t)} = G 2 (s) { t } L g 1 (τ)g 2 (t τ)dτ = G 1 (s)g 2 (s) 0 (b) Find the solution to the following ODE with the given initial conditions: d 2 x dt 2 dx dt + 2x = t ẋ(0) = 2, x(0) = 1 0 δ(τ) sin (t τ)dτ UC Berkeley, 12/19/ of 22
3 UC Berkeley, 12/19/ of 22
4 2. Bode Plotting and Nyquist Stability Consider the following transfer function: G(s) = 100(s + 4) (s s + 20)(s + 2) (a) Sketch a Bode plot of the system (magnitude and phase). Label all slopes and points on the graph. UC Berkeley, 12/19/ of 22
5 (b) Using the Bode plots you created in Part (a), calculate the phase margin and gain margin for G(s). (c) Draw a Nyquist plot of the system and use the Nyquist stability criterion to determine if the closed loop system under unity feedback is stable. UC Berkeley, 12/19/ of 22
6 (d) Assume we have a closed loop system below where G(s) is given in Part (a) and C(s) = K. For what values of K is the system stable? UC Berkeley, 12/19/ of 22
7 3. Solution in time domain, stability (a) For the following system, explicitly determine the timedomain solution x(t) ẋ = where u(t) is a unit step function. [ ] x + [ 1 0 ] [ y = 1 0 u, x(0) = ] x [ 1 1 ] UC Berkeley, 12/19/ of 22
8 (b) Determine the transfer function G(s) for the zero initial state response, given the system in Part (a). (c) BONUS: Does the degree of your state space model and transfer function match? Why or why not? UC Berkeley, 12/19/ of 22
9 4. Electrical Circuit and Root Locus (a) For the above circuit derive the transfer function C(s) = V out V in. UC Berkeley, 12/19/ of 22
10 (b) Assume the system below, G(s), is in unity negative feedback. Determine the value of K such that the steady state error to a step response is Also determine the percent overshoot and settling time of the feedback system at this K. G(s) = K (s + 5)(s + 15) (c) Now assume that the system is described by the figure below, where C(s) and G(s) are obtained from parts (a) and (b) respectively. Draw the root locus given R 1 = 125 MΩ, C 1 = 15 µf, R 2 = 625 MΩ and C 2 = 0.1 µf. Watch your signs! UC Berkeley, 12/19/ of 22
11 (d) Label on the root locus a suitable region if the goal is to achieve a settling time (T s ) 0.4 sec and percent overshoot (%OS) 20%. UC Berkeley, 12/19/ of 22
12 5. Controller design using Statefeedback Consider the mechanical system shown above. Here, V denotes the voltage applied to the motor (control input) and x(t) is the position of the mass. You may assume the back emf from the motor is negligible (EMF = 0) and the torque supplied by the motor is equal to T = IK m J m θ where, K m : Constant relating T and I J m : Inertia of the motor (a) Show that G(s) is the transfer function from V to x. To do this, you MUST derive the governing equations for the mechanical/electrical system. [( G(s) = X(s) V (s) = N ( ) ) ] 2 K m r 2 1 N2 J 1 + J 2 + J m s 2 + r 2 (Ms 2 + f v s + k) N 1 R + Ls N 1 UC Berkeley, 12/19/ of 22
13 [ T (b) Choosing x = x ẋ] as the state vector and x as the output, derive a state space model (matrices A, B, C and D) for the above system. Use the following parameters: R = 1, K m = 0.1, L = 0, N 2 /N 1 = 10, r = 1, J 1 = J 2 = 1, J m = 0, M = 1, k = 1, f v = 1. Note your input to the system should be V. (c) Explicitly write the observability and controllability matrices. Is the system controllable? Is it observable? (Use parameters from Part (b)) UC Berkeley, 12/19/ of 22
14 (d) Determine the eigenvalues of matrix A you found in Part (b). (e) We will now control the system[ using ] a state feedback controller as shown in the diagram below ] r 1 where K = [k 1, k 2 and r =. r 2 Write the dynamics of the closedloop system as ẋ = Ãx + Br. That is, find both Ã and B in terms of the system parameters given in Part (b) and the elements of the controller gain matrix K. UC Berkeley, 12/19/ of 22
15 6. Statefeedback and observer design Consider the following system: ẋ = Ax + Bu, y = Cx with A = [ (a) Compute the eigenvalues and eigenvectors for A. ], B = [ 0 1 ] [, C = 0 1 ] (b) Use statefeedback of the form of u = Kx. Determine the gain K = [k 1 k 2 ] such that the poles of the closed loop system are located at s 1,2 = 2 ± 5j. UC Berkeley, 12/19/ of 22
16 (c) Unfortunately for this system we are unable to measure all the states. In order to do state feedback we must use a Luenberger observer of the form: ˆx = Aˆx + Bu + L(y ŷ) ŷ = C ˆx and the system is controlled using state feedback, given by u = K ˆx Determine the error dynamics of the system, ė, where e = ˆx x. The result must be in terms of e only. (d) Determine the observer matrix L = [l 1 l 2 ] T such that the error dynamics have poles at s 1,2 = 2 ± 5j. UC Berkeley, 12/19/ of 22
17 (e) Comment on the performance of the state observer given the previously placed poles. What are we interested in when designing an observer and how could we improve the observer? (f) Complete the following block diagram of the system described in part(c). Plant Controller u y Observer ˆx UC Berkeley, 12/19/ of 22
18 7. Linear Quadratic Regulator Consider the LTI system ẋ = Ax + Bu x = [x 1, x 2 ] T where A = [ ] [ ] 1 1 1, B = We would like to solve an LQR problem for the system. control u (t) that minimizes the cost functional That is, we want to find the optimal J = t=0 (x 2 1(t) + u 2 (t)) dt (a) Solve the Algebraic Riccati Equation for the infinite horizon LQR. Hint: the solution of the Algebraic Riccati equation is a positive semidefinite matrix. A (2 2) matrix P is positive semidefinite everywhere when: [ ] p 11 0 p 22 0 p 2 p 11 p p 11 p 22 for P = p 12 p 22 UC Berkeley, 12/19/ of 22
19 (b) Determine the optimal feedback matrix K 1 such that the optimal control is u (t) = K 1 x(t). UC Berkeley, 12/19/ of 22
20 8. Linear Quadratic Regulator Consider the system where the dynamics are scalar: ẋ = ax + bu x is a scalar We want to create a finite horizon optimal controller given the cost function: J = tf t=0 (qx 2 (t) + ru 2 (t))dt (a) Write the Ricatti Equation for this system as well as the terminal condition. (b) Find P for the static case where t f =. Your answer should be in terms of q, r, a, and b. Note the P should be positive semidefinite everywhere. UC Berkeley, 12/19/ of 22
21 (c) For this scalar system, given any t f, the Riccati equation can be analytically solved: P (τ) = (ap (t f ) + q) sinh(βτ) + βp (t f ) cosh(βτ) ) a sinh(βτ) + β cosh(βτ) ( b 2 P (t f ) r where τ = t f t, β = a 2 + b2 q and sinh(.) and cosh(.) are the hyperbolic trigonometric r functions. Taking the limit as t f, the solution becomes: P (τ) = q a + β Show that this is equivalent to your solution from Part (b). UC Berkeley, 12/19/ of 22
22 f(t) F (s) δ(t) 1 1 u(t) s 1 tu(t) s 2 t n n! u(t) s n+1 ω sin(ωt)u(t) cos(ωt)u(t) e αt sin(ωt)u(t) e αt cos(ωt)u(t) s 2 +ω 2 s s 2 +ω 2 ω (s+α) 2 +ω 2 s+α (s+α) 2 +ω 2 Table 1: Laplace transforms of common functions sinh(θ) cosh(θ) tanh(θ) e θ e θ 2 e θ + e θ 2 sinh(θ) cosh θ = 1 e 2θ 1 + e 2θ Table 2: Trigonometric functions UC Berkeley, 12/19/ of 22
EE C128 / ME C134 Midterm Fall 2014
EE C128 / ME C134 Midterm Fall 2014 October 16, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket calculator
More informationEECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 8111 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12
More informationEE221A Linear System Theory Final Exam
EE221A Linear System Theory Final Exam Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2016 12/16/16, 811am Your answers must be supported by analysis,
More informationEECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8 am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationEECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.
Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 58 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationState Regulator. Advanced Control. design of controllers using pole placement and LQ design rules
Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30Apr14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationCourse Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)
Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the splane
More information6 OUTPUT FEEDBACK DESIGN
6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationSuppose that we have a specific single stage dynamic system governed by the following equation:
Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where
More informationLinear Systems Theory
ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system?  Time domain  Frequency domain (Laplace
More informationControl Systems. University Questions
University Questions UNIT1 1. Distinguish between open loop and closed loop control system. Describe two examples for each. (10 Marks), Jan 2009, June 12, Dec 11,July 08, July 2009, Dec 2010 2. Write
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationEE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO
EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationChapter 3. State Feedback  Pole Placement. Motivation
Chapter 3 State Feedback  Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This modelbased
More informationModule 02 CPS Background: Linear Systems Preliminaries
Module 02 CPS Background: Linear Systems Preliminaries Ahmad F. Taha EE 5243: Introduction to CyberPhysical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html August
More informationTopic # Feedback Control. StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback
Topic #17 16.31 Feedback Control StateSpace Systems Closedloop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall
More informationSubject: Optimal Control Assignment1 (Related to Lecture notes 110)
Subject: Optimal Control Assignment (Related to Lecture notes ). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must
More informationOPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, UrbanaChampaign. Fall S. Bolouki (UIUC) 1 / 28
OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, UrbanaChampaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from
More informationProfessor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the
More informationTopic # Feedback Control Systems
Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the
More informationLinear State Feedback Controller Design
Assignment For EE5101  Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University
More informationHomework Solution # 3
ECSE 644 Optimal Control Feb, 4 Due: Feb 17, 4 (Tuesday) Homework Solution # 3 1 (5%) Consider the discrete nonlinear control system in Homework # For the optimal control and trajectory that you have found
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationCONTROL DESIGN FOR SET POINT TRACKING
Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observerbased output feedback design to solve tracking problems. By tracking we mean that the output is commanded
More informationAutomatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...
Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: 29..23 Given and family names......................solutions...................... Student ID number..........................
More informationCHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION
CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION Objectives Students should be able to: Draw the bode plots for first order and second order system. Determine the stability through the bode plots.
More informationEE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =
1. Pole Placement Given the following openloop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the statevariable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback
More informationReview: control, feedback, etc. Today s topic: statespace models of systems; linearization
Plan of the Lecture Review: control, feedback, etc Today s topic: statespace models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationHomework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationCourse Summary. The course cannot be summarized in one lecture.
Course Summary Unit 1: Introduction Unit 2: Modeling in the Frequency Domain Unit 3: Time Response Unit 4: Block Diagram Reduction Unit 5: Stability Unit 6: SteadyState Error Unit 7: Root Locus Techniques
More informationSchool of Engineering Faculty of Built Environment, Engineering, Technology & Design
Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Coordinator/Tutor : Dr. Phang
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationEE 16B Final, December 13, Name: SID #:
EE 16B Final, December 13, 2016 Name: SID #: Important Instructions: Show your work. An answer without explanation is not acceptable and does not guarantee any credit. Only the front pages will be scanned
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationIntroduction to Controls
EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essaytype answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.
More information5. Observerbased Controller Design
EE635  Control System Theory 5. Observerbased Controller Design Jitkomut Songsiri state feedback poleplacement design regulation and tracking state observer feedback observer design LQR and LQG 51
More information9 Controller Discretization
9 Controller Discretization In most applications, a control system is implemented in a digital fashion on a computer. This implies that the measurements that are supplied to the control system must be
More informationUniversity of Toronto Faculty of Applied Science and Engineering. ECE212H1F  Circuit Analysis. Final Examination December 16, :30am  noon
, LAST name: First name: Student ID: University of Toronto Faculty of Applied Science and Engineering ECE212H1F  Circuit Analysis Final Examination December 16, 2017 9:30am  noon Guidelines: Exam type:
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationVALLIAMMAI ENGINEERING COLLEGE
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK V SEMESTER IC650 CONTROL SYSTEMS Regulation 203 Academic Year 207 8 Prepared
More informationME 132, Fall 2015, Quiz # 2
ME 132, Fall 2015, Quiz # 2 # 1 # 2 # 3 # 4 # 5 # 6 Total NAME 14 10 8 6 14 8 60 Rules: 1. 2 sheets of notes allowed, 8.5 11 inches. Both sides can be used. 2. Calculator is allowed. Keep it in plain view
More informationLecture 4 Continuous time linear quadratic regulator
EE363 Winter 200809 Lecture 4 Continuous time linear quadratic regulator continuoustime LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationLecture 2: Discretetime Linear Quadratic Optimal Control
ME 33, U Berkeley, Spring 04 Xu hen Lecture : Discretetime Linear Quadratic Optimal ontrol Big picture Example onvergence of finitetime LQ solutions Big picture previously: dynamic programming and finitehorizon
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More informationTest 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
More informationLECTURE NOTES ON CONTROL
Department of Control for Transportation and Vehicle Systems Faculty of Transportation Engineering and Vehicle Engineering Budapest University of Technology and Economics Tamás Tettamanti PhD., Qiong Lu
More informationRobust Control 5 Nominal Controller Design Continued
Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR MinMax
More information1 (30 pts) Dominant Pole
EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +
More informationLecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.
ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition
More informationContents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42
Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 OpenLoop
More information10ES43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A
10ES43 CONTROL SYSTEMS ( ECE A B&C Section) Faculty : Shreyus G & Prashanth V Chapter Title/ Class # Reference Literature Topic to be covered Part A No of Hours:52 % of Portions covered Reference Cumulative
More information1. Find the solution of the following uncontrolled linear system. 2 α 1 1
Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationECE Circuit Theory. Final Examination. December 5, 2008
ECE 212 H1F Pg 1 of 12 ECE 212  Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016
TW2 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSc SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2015/2016 ADVANCED CONTROL TECHNOLOGY MODULE NO: EEM7015 Date: Monday 16 May 2016
More informationConventional PaperI2011 PARTA
Conventional PaperI0 PARTA.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral
More informationECE557 Systems Control
ECE557 Systems Control Bruce Francis Course notes, Version.0, September 008 Preface This is the second Engineering Science course on control. It assumes ECE56 as a prerequisite. If you didn t take ECE56,
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09Dec13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationControl Systems. Design of State Feedback Control.
Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closedloop
More informationLQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin
LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system
More informationECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 119 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages 9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
More informationME 375 EXAM #1 Friday, March 13, 2015 SOLUTION
ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2018 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationECE : Linear Circuit Analysis II
Purdue University School of Electrical and Computer Engineering ECE 20200 : Linear Circuit Analysis II Summer 2014 Instructor: Aung Kyi San Instructions: Midterm Examination I July 2, 2014 1. Wait for
More informationChapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steadystate error, and transient response for computercontrolled systems. Transfer functions,
More informationECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University
ECEn 483 / ME 431 Case Studies Randal W. Beard Brigham Young University Updated: December 2, 2014 ii Contents 1 Single Link Robot Arm 1 2 Pendulum on a Cart 9 3 Satellite Attitude Control 17 4 UUV Roll
More information1 Steady State Error (30 pts)
Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)
More informationLecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004
MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 89am I will be present in all practical
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationÜbersetzungshilfe / Translation aid (English) To be returned at the end of the exam!
Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid 
More informationCYBER EXPLORATION LABORATORY EXPERIMENTS
CYBER EXPLORATION LABORATORY EXPERIMENTS 1 2 Cyber Exploration oratory Experiments Chapter 2 Experiment 1 Objectives To learn to use MATLAB to: (1) generate polynomial, (2) manipulate polynomials, (3)
More information'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ. EGR 224 Spring Test II. Michael R. Gustafson II
'XNH8QLYHUVLW\ (GPXQG73UDWWU6FKRRORI(QJLQHHULQJ EGR 224 Spring 2017 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any
More informationLecture 9: DiscreteTime Linear Quadratic Regulator FiniteHorizon Case
Lecture 9: DiscreteTime Linear Quadratic Regulator FiniteHorizon Case Dr. Burak Demirel Faculty of Electrical Engineering and Information Technology, University of Paderborn December 15, 2015 2 Previous
More informationOutline. Classical Control. Lecture 5
Outline Outline Outline 1 What is 2 Outline What is Why use? Sketching a 1 What is Why use? Sketching a 2 Gain Controller Lead Compensation Lag Compensation What is Properties of a General System Why use?
More informationDepartment of Electronics and Instrumentation Engineering M. E CONTROL AND INSTRUMENTATION ENGINEERING CL7101 CONTROL SYSTEM DESIGN Unit I BASICS AND ROOTLOCUS DESIGN PARTA (2 marks) 1. What are the
More informationIntroduction to Modern Control MT 2016
CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 Firstorder ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear
More informationDynamic Compensation using root locus method
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 9 Dynamic Compensation using root locus method [] (Final00)For the system shown in the
More informationẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)
EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 9653712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and
More informationQuadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University
.. Quadratic Stability of Dynamical Systems Raktim Bhattacharya Aerospace Engineering, Texas A&M University Quadratic Lyapunov Functions Quadratic Stability Dynamical system is quadratically stable if
More informationEEE 184 Project: Option 1
EEE 184 Project: Option 1 Date: November 16th 2012 Due: December 3rd 2012 Work Alone, show your work, and comment your results. Comments, clarity, and organization are important. Same wrong result or same
More informationME 475/591 Control Systems Final Exam Fall '99
ME 475/591 Control Systems Final Exam Fall '99 Closed book closed notes portion of exam. Answer 5 of the 6 questions below (20 points total) 1) What is a phase margin? Under ideal circumstances, what does
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
More informationTopic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis
Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of
More informationAdvanced Mechatronics Engineering
Advanced Mechatronics Engineering German University in Cairo 21 December, 2013 Outline Necessary conditions for optimal input Example Linear regulator problem Example Necessary conditions for optimal input
More informationLecture 10 Linear Quadratic Stochastic Control with Partial State Observation
EE363 Winter 200809 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linearquadratic stochastic control problem estimationcontrol separation principle
More informationProblem Value Score Total 100/105
RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first
More information