Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai

Size: px
Start display at page:

Download "Exponential and Logarithmic Functions. By Lauren Bae and Yamini Ramadurai"

Transcription

1 Exponential and Logarithmic Functions By Lauren Bae and Yamini Ramadurai

2 What is an Exponential Function? An exponential function any function where the variable is now the power, rather than the base. This means that x is the exponent of the function, and the base is an integer. To get any exponential expression, multiple the base by itself the number of times dictated by the exponent (also called the power).

3 Simplifying Exponents Division Rule: When solving problems, it may be best to simplify the exponents to make it easier to solve.

4 Example: y=2 x As you can see, the y values of exponential functions rapidly increase, which you can see in their graphs. All the points in an exponential graph can be created by hand, or by typing the equation into a calculator. To get all the points by hand, take the x value and substitute it into the equation. For instance: 2 0 =1 2 1 =2 2 2 =4 2 3 =8 2 4 = =32 x y Example: 2 3 = = 8

5 Exponential Function Graphs Positive Graph Negative Graph

6 Graphing Exponential Functions A basic positive exponential function (not transformed) has an asymptote of y=0, with end behaviors of: As x approaches positive infinity, y approaches positive infinity, and as x approaches negative infinity, y approaches 0. A basic negative exponential function (not transformed) has an asymptote of y=0, with end behaviors of: As x approaches positive infinity, y negative infinity, and as x approaches negative infinity, y approaches 0. An exponential graph has only a horizontal asymptote (y=0). The domain and range of an untransformed exponential function is: D: (-, ) R: (0, )

7 Transformations of Exponential Graphs Exponential graphs can be transformed like linear graphs, up and down or left and right. The basic form is y=a(b) x-h +k. The variable a is the vertical change, the variable h moves the graph from left to right, and the variable k moves the graph up and down. The asymptote of the graph shifts as well.

8 Example y=2 x As you can see, the graph was shifted down 10 units (k) and to the right by 5 units. Horizontal asymptote: y=-10 Domain: (-, ) Range: [-10, ) *Remember that when looking at a horizontal shift, a positive value is shifted to the left, and a negative value is shifted to the right.

9 Applications of Exponential Functions Examples of real life applications for exponential functions include: -Exponential Growth: y=ab x a=initial amount b=growth factor x=amount of time Appreciation Rate: y=a(1+r) x r: rate in decimal form -Exponential Decay: y=ab x Depreciation Rate: y=a(1-r) x 0<b<1 r: rate in decimal form -Half Life (amount of time it takes for initial quantity to reduce to half): y=a(½) x/h H: half life x/h: Number of half lives x: total time -Compound Interest (annually, semiannually, quarterly, monthly, daily): y=a(1+r/n) nt r: rate of interest per year n: # of times compounded in a year t: # of years a: initial deposit -Compounded Continuously: y=pe rt P: initial amount t: # of year r: rate annually

10 Logarithms Logarithms are the INVERSE of exponential functions. Log is used to represent very large or very small numbers. Exponential and logarithmic functions are related: log b y=x <---> y=b x The basic form of a logarithmic function is log b y=x. Base 10 logarithms are the most common, so the notation is simply log(y)=x. If a base is not explicitly written, it means that it is base 10. Log b x is the exponent to the base b that will give the value x. Change of Base log b (a) = log(a) log(b)

11 Log to Exponential Conversions When converting log to exponential form, follow these steps: 1. Move the base of the log to the left side of the equation so that it is now the base of the exponent. 2. The number that the log equation was equal to in the original equation (on the left side of the logarithmic function) is now the exponent 3. The y value (in the case of the example below 8) is now on the left side of the exponential equation. For example - log 2 8=3 -> log8=2 3 -> 8=2 3 or 2 3 =8

12 Solving Exponential Equations using Log To solve exponential equations, you can use log. In most cases, you would just take the log of both sides. Example: 7.5 x = 42.6 log(7.5 x )= log(42.6) x log(7.5) = log(42.6) x= (log(42.6) / log(7.5)) x = 1.88 Example: 3 ll 2x+5 = 20 ll 2x+5 = 20/3 (2x+5) log(11) = log(20/3) 2x+5 = log 11 (20/3) 2x = log 11 (20/3) -5 x = (log 11 (20/3) -5) 2 x = -2.1 Example: 6 2x+1 = 5 4x-5 (2x+1) log(6) = (4x+5) log(5) ((2x+1) / (4x-5)) = log 6 5 *Cross multiply* 2x+1 = 0.9(4x-5) 2x+! = 3.6x x = 5.5 x-3.44

13 Logarithm Graphs A positive logarithmic function with a base of 10 (not transformed) has an asymptote of x=0, with end behaviors of: As x approaches positive infinity, y approaches positive infinity, and as x approaches negative infinity, y approaches 0. A negative logarithmic function with a base of 10 (not transformed) has an asymptote of x=0, with end behaviors of: As x approaches positive infinity, y negative infinity, and as x approaches negative infinity, y approaches 0. A logarithmic graph has only a vertical asymptote (x=0). The domain and range of an untransformed graph is: D: (0, ) R: (-, )

14 Example The orange line is y=log(x), and the purple line is y=-log(x).

15 How to Manually Graph Log Steps to graphing log: 1. Convert the logarithmic function to an exponential function, getting 5 points (if possible, try to make both x and y integers). 2. Since log is the inverse of exponential functions, switch the x and y of the points for the exponential function. These will be your points for your log graph.

16 Example y=log 2 (x) Exponential form: y=2 x Points for Exponential Graph: x y

17 Example for Graphing Log Graph: y=log 2 (x) x y

18 Transformations of Logarithmic Functions Just like an exponential function, logarithmic functions can also be transformed. The basic form is y= a log b (x-h) + k. The variable a is the vertical change, the variable h moves the graph from left to right, and the variable k moves the graph up and down. *h>0, graph moves left. h<0, graph moved right* The asymptote of the graph shifts as well.

19 Example Graph: y = log 3 (x-1)+2 x y 1 N/A The graph moved right 1 unit, and up by 2 units.

20 Properties of Log There are 3 properties of log: Product Property: log(x y) = log(x) + log(y) Quotient Property: log(x/y) = log(x) - log(y) Power Property: log(x n ) = n(log(x)) These properties are used to expand and condense log.

21 Expanding and Condensing Log Examples Expand: log(xyz) = log(x) + log(y) + log(z) log 7 (5/9) = log 7 (5) - log 7 (9) log 5 (x) 4 = 4 log 5 (x) log 3 (x 3 /y 7 ) = 3 log 3 (x) - 7 log 3 (y) Condense: log 6 (10) + log 6 (x) + log 6 (7) = log 6 (70x) log 4 (10) - log 4 (x) = log 4 (10/x) 3 log 12 (x) = log 12 (x 3 ) 6 log 5 (a) - 9 log 5 (b) = log 5 (a 6 /b 9 )

22 Now you try! Expand - log[2(x+1)] 3 Answer: 3 log(2) + 3 log(x+1) Condense - 5 log 2 (x) + 7 log 2 (y) Answer: log 2 (x 5 y 2 )

23 Solving Log Equations One Log: Conversion (log -> exponent), Change of Base Two Logs: Cancel the Log (All bases must be the same), Condense the Logs No Logs: Add a Log, Similar Bases

24 Conversion Use when a variable is attached to the logarithm Example: log 2 (2x+1) = = 2x =2x+1 2x = 15 x=15/2 Example: log(2x-5) = =2x+5 2x-5=100 2x=105 x = 105/2

25 Change of Base Use when the variable is not attached to the logarithm Reminder: log b (a) = log(a) log(b) Example: log 2 (8) = 3x+3 3 = 3x+3 3x=0 x=0 Example: log 8 (25) = x 2 log(25) / log (8) = x 2 x= 1.71

26 Cancel the log *Can only be used if both sides have the same base, and if there is only one log per side Example: log 4 (3x-1) = log 4 (2x+3) 3x-1 = 2x+3 x=4 Now Try: log(x 2 )=log(-2x+15) x 2 = -2x + 15 x 2 +2x-15=0 (x+5)(x-3)=0 x=3, x=-5

27 Condense the Logs Condense the logs so that there is only one log that appears per side. Then, decide which of the other methods to use to finish solving the equation. Example: 3log 2 (x) + log 2 (5) = 7 log 2 (x 3 ) + log 2 (5) = 7 log 2 (5x 3 ) = = 5x 3 5x 3 = 128 x 3 =128/5 x=2.95

28 Add a Log Use this if you cannot get similar bases Move all other values so that it is just the exponent and base on one side, then convert the equation to exponential form and solve from there. Example: 7 x-3 +5 = 30 7 x-3 = 25 log 7 (25) = x-3 x= 4.65

29 Similar Bases Break each base down so that they are the same, cancel the bases, and work with only the exponents. Example: 25 2x = x = 5 3 4x =3 x= ¾ Example: 4 3x 4 2x = 1,048, x = x = 10 x=2

30 Verify Your Answers Any log equation can have an extraneous solution (when the answer is plugged back into the original equation but it doesn t match). To prevent this, always check your answer(s). Example: log 5 (n 2-20) = log 5 (-n) n 2-20= -n n 2 +n-20 = 0 (n-4)(n+5)= 0 n=-5, n=4 n=4 is extraneous, so the answer is n=-5 *Reminder: the log of a negative number does not exist

31 Natural Log A natural base exponential function is y=e x e is a mathematical constant equal to approximately To get e on a calculator, press [2nd] [ ]. Natural log is a normal log equation with a base of e. The notation for natural log is ln(x)=y.

32 Examples 1) e 0.5 = ) e -8 = ) e 2 = ) 3 ln(5) = ln(5 3 ) = ln(125) 5) ln24 - ln6 = ln(24/6) = ln(4) 6) ln(3) = ) ln(¼) = )ln(0.05) = -3 8) e x/4 +3 = 9 e x/4 = 6 ln(6) = x/4 x=7.17 9) e 3x+1 = e 13 3x+1 = 13 3x=12 x=4 10) ln((x-3)/4)=8 e 8 = (x-3)/4 x = 4e 8 +3 x=

33 Application of Log ph - ph = -log 10 [H + ] [H + ] = 10 -ph H + = positively charged hydrogen ion Richter scale- R= log (A/A 0 ) A the measure of the amplitude of the earthquake wave A 0 the amplitude of the smallest detectable wave (or standard wave) Decibels (most basic form)- N db = log 10 (P2 / P1) N db is the ratio of the two power expressed in decibels P2 is the output power level P1 is the input power level

34 Log and Exponential Functions Relation Exponential functions are the inverse of log, and vice versa. log b y=x <---> y=b x You can algebraically prove this or with a graph. An function and its inverse on a graph is identical, but the inverse is reflected over the line y=x. If you look at the points on an inverse graph, the x and y would be switched.

35 Example: Points y= 10 x y=log(x) x y x y

36 Example: Graph Red- y=10 x Blue- y=log(x) Green- y=x Can you see the relationship between the two graphs and their points?

37 Example: Algebra y = log(x) Switch x and y x =log(y) Solve for y y = 10 x f -1 (log(x)) = 10 x y = 10 x Switch x and y x = 10 y Solve for y log(x) = log(10 y ) log(x) = y (log(10)) log(x) = y y= log(x) f -1 (10 x ) = log(x) *Reminder: log 10 (10) is equal to 1. If the base (b) and y are equal, then the log expression is equal to one. *Reminder: To find an inverse, switch x and y, then solve for y

38 Solving Log Equations: Examples 1) log(20) - log(x) = log(5) log(20/x) = log(5) 20/x = 5 5x=20 x=4 2) ln(3x-8) = 2 e 2 = 3x-8 3x = e 2 +8 x = (e 2 +8) / 3 x= ) log(x) - log(4) = -1 log(x/4) = = x/4 1/10 = x/4 10x = 4 x=2/5

39 Try this last one! Equation log(x+21) +log(x) =2 Answer log(x(x+21)) = = x x x 2 +21x-100=0 (x+25)(x-4)=0 x=-25, x=4 x=-25 is extraneous x=4

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24)

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24) Math 5 Trigonometry Sec 9.: Exponential Functions Properties of Exponents a = b > 0, b the following statements are true: b x is a unique real number for all real numbers x f(x) = b x is a function with

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

A factor times a logarithm can be re-written as the argument of the logarithm raised to the power of that factor

A factor times a logarithm can be re-written as the argument of the logarithm raised to the power of that factor In this section we will be working with Properties of Logarithms in an attempt to take equations with more than one logarithm and condense them down into just a single logarithm. Properties of Logarithms:

More information

Math M111: Lecture Notes For Chapter 10

Math M111: Lecture Notes For Chapter 10 Math M: Lecture Notes For Chapter 0 Sections 0.: Inverse Function Inverse function (interchange and y): Find the equation of the inverses for: y = + 5 ; y = + 4 3 Function (from section 3.5): (Vertical

More information

4.1 Solutions to Exercises

4.1 Solutions to Exercises 4.1 Solutions to Exercises 1. Linear, because the average rate of change between any pair of points is constant. 3. Exponential, because the difference of consecutive inputs is constant and the ratio of

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Logarithmic Properties

Logarithmic Properties Logarithmic Properties By: OpenStaxCollege The ph of hydrochloric acid is tested with litmus paper. (credit: David Berardan) In chemistry, ph is used as a measure of the acidity or alkalinity of a substance.

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Logarithms involve the study of exponents so is it vital to know all the exponent laws.

Logarithms involve the study of exponents so is it vital to know all the exponent laws. Pre-Calculus Mathematics 12 4.1 Exponents Part 1 Goal: 1. Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2)

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Completely factor 2x 4 14x 2 36 2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Add and simplify Simplify as much as possible Subtract and simplify Determine the inverse of Multiply and simplify

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial

Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Polynomials and Rational Functions (2.1) The shape of the graph of a polynomial function is related to the degree of the polynomial Shapes of Polynomials Look at the shape of the odd degree polynomials

More information

, identify what the letters P, r, n and t stand for.

, identify what the letters P, r, n and t stand for. 1.In the formula At p 1 r n nt, identify what the letters P, r, n and t stand for. 2. Find the exponential function whose graph is given f(x) = a x 3. State the domain and range of the function (Enter

More information

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

PRECAL REVIEW DAY 11/14/17

PRECAL REVIEW DAY 11/14/17 PRECAL REVIEW DAY 11/14/17 COPY THE FOLLOWING INTO JOURNAL 1 of 3 Transformations of logs Vertical Transformation Horizontal Transformation g x = log b x + c g x = log b x c g x = log b (x + c) g x = log

More information

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x)

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x) M60 (Precalculus) ch5 practice test Evaluate the expression using the values given in the table. 1) (f g)(6) 1) x 1 4 8 1 f(x) -4 8 0 15 x -5-4 1 6 g(x) 1-5 4 8 For the given functions f and g, find the

More information

p351 Section 5.5: Bases Other than e and Applications

p351 Section 5.5: Bases Other than e and Applications p351 Section 5.5: Bases Other than e and Applications Definition of Exponential Function to Base a If a is a positive real number (a 1) and x is any real number, then the exponential function to the base

More information

Logarithmic Functions

Logarithmic Functions Logarithmic Functions Definition 1. For x > 0, a > 0, and a 1, y = log a x if and only if x = a y. The function f(x) = log a x is called the logarithmic function with base a. Example 1. Evaluate the following

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

Study Guide and Review - Chapter 7

Study Guide and Review - Chapter 7 Choose a word or term from the list above that best completes each statement or phrase. 1. A function of the form f (x) = b x where b > 1 is a(n) function. exponential growth 2. In x = b y, the variable

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

C log a? Definition Notes

C log a? Definition Notes Log Page C 8. log a? Definition Notes The Definition of a Logarithm: log 9? log 9? Think: What power do you have to raise 3 to, to equal 9? log 8? log 83? 3 8 equals to what power? b is the base. a is

More information

Goal: Simplify and solve exponential expressions and equations

Goal: Simplify and solve exponential expressions and equations Pre- Calculus Mathematics 12 4.1 Exponents Part 1 Goal: Simplify and solve exponential expressions and equations Logarithms involve the study of exponents so is it vital to know all the exponent laws.

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 112 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

CHAPTER 7. Logarithmic Functions

CHAPTER 7. Logarithmic Functions CHAPTER 7 Logarithmic Functions 7.1 CHARACTERISTICS OF LOGARITHMIC FUNCTIONS WITH BASE 10 AND BASE E Chapter 7 LOGARITHMS Logarithms are a new operation that we will learn. Similar to exponential functions,

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1 Name: Online ECh5 Prep Date: Scientific Calc ONLY! 4. Sketch the graph of the function. A) 9. Sketch the graph of the function. B) Ans B Version 1 Page 1 _ 10. Use a graphing utility to determine which

More information

Since the logs have the same base, I can set the arguments equal and solve: x 2 30 = x x 2 x 30 = 0

Since the logs have the same base, I can set the arguments equal and solve: x 2 30 = x x 2 x 30 = 0 LOGARITHMIC EQUATIONS (LOGS) 1 Type 1: The first type of logarithmic equation has two logs, each having the same base, set equal to each other, and you solve by setting the insides (the "arguments") equal

More information

5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS

5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS 5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS 1 What You Should Learn Recognize and evaluate exponential functions with base a. Graph exponential functions and use the One-to-One Property. Recognize, evaluate,

More information

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions Exponential Models Clues in the word problems tell you which formula to use. If there s no mention of compounding, use a growth or decay model. If your interest is compounded, check for the word continuous.

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Teacher: Mr. Chafayay. Name: Class & Block : Date: ID: A. 3 Which function is represented by the graph?

Teacher: Mr. Chafayay. Name: Class & Block : Date: ID: A. 3 Which function is represented by the graph? Teacher: Mr hafayay Name: lass & lock : ate: I: Midterm Exam Math III H Multiple hoice Identify the choice that best completes the statement or answers the question Which function is represented by the

More information

Chapter 6/7- Logarithmic and Exponential Functions

Chapter 6/7- Logarithmic and Exponential Functions Chapter 6/7- Logarithmic and Exponential Functions Lesson Package MHF4U Chapter 6/7 Outline Unit Goal: By the end of this unit, you will be able to demonstrate an understanding of the relationship between

More information

Chapter 6/7- Logarithmic and Exponential Functions

Chapter 6/7- Logarithmic and Exponential Functions Chapter 6/7- Logarithmic and Exponential Functions Lesson Package MHF4U Chapter 6/7 Outline Unit Goal: By the end of this unit, you will be able to demonstrate an understanding of the relationship between

More information

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents

Algebra II. Slide 1 / 261. Slide 2 / 261. Slide 3 / 261. Linear, Exponential and Logarithmic Functions. Table of Contents Slide 1 / 261 Algebra II Slide 2 / 261 Linear, Exponential and 2015-04-21 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 261 Linear Functions Exponential Functions Properties

More information

Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney

Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney Algebra 2: Semester 2 Practice Final Unofficial Worked Out Solutions by Earl Whitney 1. The key to this problem is recognizing cubes as factors in the radicands. 24 16 5 2. The key to this problem is recognizing

More information

25 = 2. Remember to put the base lower than the g of log so you don t get confused 2. Write the log equation in exponential form 2.

25 = 2. Remember to put the base lower than the g of log so you don t get confused 2. Write the log equation in exponential form 2. LOGARITHMS The logarithm of a number to a given base is the exponent to which that base must be raised in order to produce the number. For example: What is the exponent that must be raised to in order

More information

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success

College Algebra. Chapter 5 Review Created by: Lauren Atkinson. Math Coordinator, Mary Stangler Center for Academic Success College Algebra Chapter 5 Review Created by: Lauren Atkinson Math Coordinator, Mary Stangler Center for Academic Success Note: This review is composed of questions from the chapter review at the end of

More information

Algebra 2 Honors. Logs Test Review

Algebra 2 Honors. Logs Test Review Algebra 2 Honors Logs Test Review Name Date Let ( ) = ( ) = ( ) =. Perform the indicated operation and state the domain when necessary. 1. ( (6)) 2. ( ( 3)) 3. ( (6)) 4. ( ( )) 5. ( ( )) 6. ( ( )) 7. (

More information

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0.

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0. MAT 205-01C TEST 4 REVIEW (CHAP 13) NAME Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3 2) y = 2x, x = -3 3) y = 243x, x = 0.2 4) y = 16x, x = -0.25 Solve. 5) The number

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.1 Exponential Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions

Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions NAME : DATE: PERIOD: Algebra III: Blizzard Bag #1 Exponential and Logarithm Functions Students need to complete the following assignment, which will aid in review for the end of course exam. Look back

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

Review of Exponential Relations

Review of Exponential Relations Review of Exponential Relations Integrated Math 2 1 Concepts to Know From Video Notes/ HW & Lesson Notes Zero and Integer Exponents Exponent Laws Scientific Notation Analyzing Data Sets (M&M Lab & HW/video

More information

Exponential and Logarithmic Equations and Models. College Algebra

Exponential and Logarithmic Equations and Models. College Algebra Exponential and Logarithmic Equations and Models College Algebra Product Rule for Logarithms The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of

More information

1 Functions, Graphs and Limits

1 Functions, Graphs and Limits 1 Functions, Graphs and Limits 1.1 The Cartesian Plane In this course we will be dealing a lot with the Cartesian plane (also called the xy-plane), so this section should serve as a review of it and its

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday 1 Day Date Assignment Friday Monday /09/18 (A) /1/18 (B) 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday Tuesday Wednesday Thursday Friday Monday /1/18

More information

COLLEGE ALGEBRA FINAL REVIEW 9) 4 = 7. 13) 3log(4x 4) + 8 = ) Write as the sum of difference of logarithms; express powers as factors.

COLLEGE ALGEBRA FINAL REVIEW 9) 4 = 7. 13) 3log(4x 4) + 8 = ) Write as the sum of difference of logarithms; express powers as factors. Solve. 1) x 1 8 ) ( x ) x x 9 ) x 1 x 4) x + x 0 ) x + 9y 6) t t 4 7) y 8 4 x COLLEGE ALGEBRA FINAL REVIEW x 8) 81 x + 9) 4 7.07 x 10) 10 + 1e 10 11) solve for L P R K M + K L T 1) a) log x log( x+ 6)

More information

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas Math 80 Chapter 4 Lecture Notes Professor Miguel Ornelas M. Ornelas Math 80 Lecture Notes Section 4. Section 4. Inverse Functions Definition of One-to-One Function A function f with domain D and range

More information

Math Analysis - Chapter 5.4, 5.5, 5.6. (due the next day) 5.4 Properties of Logarithms P.413: 7,9,13,15,17,19,21,23,25,27,31,33,37,41,43,45

Math Analysis - Chapter 5.4, 5.5, 5.6. (due the next day) 5.4 Properties of Logarithms P.413: 7,9,13,15,17,19,21,23,25,27,31,33,37,41,43,45 Math Analysis - Chapter 5.4, 5.5, 5.6 Mathlete: Date Assigned Section Homework (due the next day) Mon 4/17 Tue 4/18 5.4 Properties of Logarithms P.413: 7,9,13,15,17,19,21,23,25,27,31,33,37,41,43,45 5.5

More information

9.7 Common Logarithms, Natural Logarithms, and Change of Base

9.7 Common Logarithms, Natural Logarithms, and Change of Base 580 CHAPTER 9 Exponential and Logarithmic Functions Graph each function. 6. y = a x 2 b 7. y = 2 x + 8. y = log x 9. y = log / x Solve. 20. 2 x = 8 2. 9 = x -5 22. 4 x - = 8 x +2 2. 25 x = 25 x - 24. log

More information

You identified, graphed, and described several parent functions. (Lesson 1-5)

You identified, graphed, and described several parent functions. (Lesson 1-5) You identified, graphed, and described several parent functions. (Lesson 1-5) Evaluate, analyze, and graph exponential functions. Solve problems involving exponential growth and decay. algebraic function

More information

MA 109 College Algebra EXAM 3 - REVIEW

MA 109 College Algebra EXAM 3 - REVIEW MA 109 College Algebra EXAM - REVIEW Name: Sec.: 1. In the picture below, the graph of y = f(x) is the solid graph, and the graph of y = g(x) is the dashed graph. Find a formula for g(x). y (a) g(x) =f(2x)

More information

Name Advanced Math Functions & Statistics. Non- Graphing Calculator Section A. B. C.

Name Advanced Math Functions & Statistics. Non- Graphing Calculator Section A. B. C. 1. Compare and contrast the following graphs. Non- Graphing Calculator Section A. B. C. 2. For R, S, and T as defined below, which of the following products is undefined? A. RT B. TR C. TS D. ST E. RS

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

Step 1: Greatest Common Factor Step 2: Count the number of terms If there are: 2 Terms: Difference of 2 Perfect Squares ( + )( - )

Step 1: Greatest Common Factor Step 2: Count the number of terms If there are: 2 Terms: Difference of 2 Perfect Squares ( + )( - ) Review for Algebra 2 CC Radicals: r x p 1 r x p p r = x p r = x Imaginary Numbers: i = 1 Polynomials (to Solve) Try Factoring: i 2 = 1 Step 1: Greatest Common Factor Step 2: Count the number of terms If

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

4.4 Graphs of Logarithmic Functions

4.4 Graphs of Logarithmic Functions 590 Chapter 4 Exponential and Logarithmic Functions 4.4 Graphs of Logarithmic Functions In this section, you will: Learning Objectives 4.4.1 Identify the domain of a logarithmic function. 4.4.2 Graph logarithmic

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions 6 Figure 1 Electron micrograph of E. Coli bacteria (credit: Mattosaurus, Wikimedia Commons) CHAPTER OUTLINE 6.1 Exponential Functions 6.5 Logarithmic Properties 6.2

More information

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Date: Objectives: SWBAT (Graph Exponential Functions) Main Ideas: Mother Function Exponential Assignment: Parent Function: f(x) = b

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

Algebra II: Chapter 4 Semester Review Multiple Choice: Select the letter that best answers the question. D. Vertex: ( 1, 3.5) Max. Value: 1.

Algebra II: Chapter 4 Semester Review Multiple Choice: Select the letter that best answers the question. D. Vertex: ( 1, 3.5) Max. Value: 1. Algebra II: Chapter Semester Review Name Multiple Choice: Select the letter that best answers the question. 1. Determine the vertex and axis of symmetry of the. Determine the vertex and the maximum or

More information

5.2 Exponential and Logarithmic Functions in Finance

5.2 Exponential and Logarithmic Functions in Finance 5. Exponential and Logarithmic Functions in Finance Question 1: How do you convert between the exponential and logarithmic forms of an equation? Question : How do you evaluate a logarithm? Question 3:

More information

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years. Exam 4 Review Approximate the number using a calculator. Round your answer to three decimal places. 1) 2 1.7 2) e -1.4 Use the compound interest formulas A = P 1 + r n nt and A = Pe rt to solve. 3) Find

More information

( ) ( ) x. The exponential function f(x) with base b is denoted by x

( ) ( ) x. The exponential function f(x) with base b is denoted by x Page of 7 Eponential and Logarithmic Functions Eponential Functions and Their Graphs: Section Objectives: Students will know how to recognize, graph, and evaluate eponential functions. The eponential function

More information

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 6 Logarithmic Functions Learning Objectives for Section 2.6 Logarithmic Functions The student will be able to use and apply inverse functions. The student will be

More information

Chapter 8. Exponential and Logarithmic Functions

Chapter 8. Exponential and Logarithmic Functions Chapter 8 Eponential and Logarithmic Functions Lesson 8-1 Eploring Eponential Models Eponential Function The general form of an eponential function is y = ab. Growth Factor When the value of b is greater

More information

44 Wyner PreCalculus Spring 2017

44 Wyner PreCalculus Spring 2017 44 Wyner PreCalculus Spring 207 CHAPTER FIVE: EXPONENTIAL AND LOGARITHMIC FUNCTIONS Review January 30 Test February 7 An exponential function is one with the independent variable in the exponent, such

More information

Section 4.4 Logarithmic and Exponential Equations

Section 4.4 Logarithmic and Exponential Equations Section 4.4 Logarithmic and Exponential Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation 2 x = 7. Solution 1: We

More information

5.6 Logarithmic and Exponential Equations

5.6 Logarithmic and Exponential Equations SECTION 5.6 Logarithmic and Exponential Equations 305 5.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solving Equations Using a Graphing

More information

3 Inequalities Absolute Values Inequalities and Intervals... 18

3 Inequalities Absolute Values Inequalities and Intervals... 18 Contents 1 Real Numbers, Exponents, and Radicals 1.1 Rationalizing the Denominator................................... 1. Factoring Polynomials........................................ 1. Algebraic and Fractional

More information

Objectives. Use the number e to write and graph exponential functions representing realworld

Objectives. Use the number e to write and graph exponential functions representing realworld Objectives Use the number e to write and graph exponential functions representing realworld situations. Solve equations and problems involving e or natural logarithms. natural logarithm Vocabulary natural

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

+ i sin. + i sin. = 2 cos

+ i sin. + i sin. = 2 cos Math 11 Lesieutre); Exam review I; December 4, 017 1. a) Find all complex numbers z for which z = 8. Write your answers in rectangular non-polar) form. We are going to use de Moivre s theorem. For 1, r

More information

Practice Calculus Test without Trig

Practice Calculus Test without Trig Practice Calculus Test without Trig The problems here are similar to those on the practice test Slight changes have been made 1 What is the domain of the function f (x) = 3x 1? Express the answer in interval

More information

Review Problems for the Final

Review Problems for the Final Review Problems for the Final Math 0-08 008 These problems are provided to help you study The presence of a problem on this handout does not imply that there will be a similar problem on the test And the

More information

9.1 Exponential Growth

9.1 Exponential Growth 9.1 Exponential Growth 1. Complete Activity 1 a. Complete the chart using the x formula y = 300 2 Advanced Algebra Chapter 9 - Note Taking Guidelines Complete each Now try problem after studying the previous

More information

z = log loglog

z = log loglog Name: Units do not have to be included. 2016 2017 Log1 Contest Round 2 Theta Logs and Exponents points each 1 Write in logarithmic form: 2 = 1 8 2 Evaluate: log 5 0 log 5 8 (log 2 log 6) Simplify the expression

More information

Math 121, Practice Questions for Final (Hints/Answers)

Math 121, Practice Questions for Final (Hints/Answers) Math 11, Practice Questions for Final Hints/Answers) 1. The graphs of the inverse functions are obtained by reflecting the graph of the original function over the line y = x. In each graph, the original

More information

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Chapter 4: 4.1: Exponential Functions Definition: Graphs of y = b x Exponential and Logarithmic Functions The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Graph:

More information

Exponential and Logarithmic Equations

Exponential and Logarithmic Equations OpenStax-CNX module: m49366 1 Exponential and Logarithmic Equations OpenStax College This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section,

More information

MATH 1113 Exam 2 Review. Spring 2018

MATH 1113 Exam 2 Review. Spring 2018 MATH 1113 Exam 2 Review Spring 2018 Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5:

More information

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved. 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 5.5 Bases Other Than e and Applications Copyright Cengage Learning. All rights reserved.

More information

Logarithms Dr. Laura J. Pyzdrowski

Logarithms Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory An exponential function of the form f(x) = a x, where a is a positive real number not equal to 1, is an example of a one-to-one function. This means

More information

Definition of a Logarithm

Definition of a Logarithm Chapter 17 Logarithms Sec. 1 Definition of a Logarithm In the last chapter we solved and graphed exponential equations. The strategy we used to solve those was to make the bases the same, set the exponents

More information

If a function has an inverse then we can determine the input if we know the output. For example if the function

If a function has an inverse then we can determine the input if we know the output. For example if the function 1 Inverse Functions We know what it means for a relation to be a function. Every input maps to only one output, it passes the vertical line test. But not every function has an inverse. A function has no

More information

MATH-1420 Review Concepts (Haugen)

MATH-1420 Review Concepts (Haugen) MATH-40 Review Concepts (Haugen) Unit : Equations, Inequalities, Functions, and Graphs Rational Expressions Determine the domain of a rational expression Simplify rational expressions -factor and then

More information

Summary sheet: Exponentials and logarithms

Summary sheet: Exponentials and logarithms F Know and use the function a and its graph, where a is positive Know and use the function e and its graph F2 Know that the gradient of e k is equal to ke k and hence understand why the eponential model

More information

Exponents and Logarithms Exam

Exponents and Logarithms Exam Name: Class: Date: Exponents and Logarithms Exam Multiple Choice Identify the choice that best completes the statement or answers the question.. The decay of a mass of a radioactive sample can be represented

More information