Supporting Information Computational Part

Size: px
Start display at page:

Download "Supporting Information Computational Part"

Transcription

1 Supporting Information Computational Part Ruthenium-Catalyzed Alkyne trans-hydrometalation: Mechanistic Insights and Preparative Implications Dragoş Adrian Roşca, Karin Radkowski, Larry M. Wolf, Minal Wagh, Richard Goddard, Walter Thiel, Alois Fürstner* Max-Planck-Institut für Kohlenforschung, D Mülheim/Ruhr, Germany Table of Contents 1. Computational Methods S2 2. Orbital Interaction Diagram Construction S3 3. Hydrostannation to Form the Minor Constitutional Isomer Z-prod 4. Energy Table for All Structures 5. Coordinates 6. References S7 S8 S9 S41 S1

2 1. Computational Methods All geometry optimizations were performed using the M06 1 functional. The def2-svp 2 basis set was used for all atoms. The 28 inner-shell core electrons of the ruthenium atom were described by the corresponding def2 effective core potential 3 accounting for scalar relativistic effects (def2- ecp). Stationary points were characterized by evaluating the harmonic vibrational frequencies at the optimized geometries. Zero-point vibrational energies (ZPVE) were computed from the corresponding harmonic vibrational frequencies without scaling. Relative free energies ( G) were determined at standard pressure (1 bar) and at room temperature (298 K). The thermal and entropic contributions were evaluated within the rigid-rotor harmonic-oscillator approximation. Solvation contributions were included for dichloromethane on the optimized gas-phase geometries employing the SMD solvation model 4 using the same functional and the def2-tzvp basis set. All calculations were performed using Gaussian09 with the ultrafine grid. 5 Decomposition analysis was performed on the M06/def2-TZVP optimized geometries of [Cp*Ru(Cl)(CH 3 C CCH 3 )] and [Cp*Ru(Cl)(E-2-butene)] using the ADF program package at the M06 level in conjunction with a triple-ζ-quality basis set using uncontracted Slater-type orbitals (STOs) 7 augmented with two sets of polarization functions for all atoms; all electrons were included (i.e., inner core electrons were not described by a frozen core). Scalar relativistic effects were accounted for using the zeroth-order regular approximation (ZORA). 8 S2

3 2. Orbital Interaction Diagram Construction (Figure 4). The orbital interaction diagram from Figure was constructed using perturbation theory (Eq. 1). The relevant fragment orbitals are shown (Figure S1 and S2). The overlap integrals and Fock interaction elements were used in the diagram construction. Figure S1. Fragment orbitals for the [Cp*Ru(Cl)(CH 3 C CCH 3 )] complex. Figure S2. Fragment orbitals for the [Cp*Ru(Cl)(E-2-butene)] complex. S3

4 Eq 1. Perturbation theory derived expression for determining the interaction between two orbitals. where S ij is the overlap integral between orbitals i and j, F ij is the Fock matrix element between orbitals i and j, and ε i is the orbital energy for i. Table S1. Fragment orbital energies for the [Cp*Ru(Cl)(CH 3 C CCH 3 )] complex. ε (ev) Ru_LUMO_a Ru_LUMO+1_a Ru_HOMO_a Ru_HOMO-1_a yne_lumo_a yne_lumo+1_a yne_homo_a yne_homo-1_a Table S2. Overlap integrals between the fragment orbitals for the [Cp*Ru(Cl)(CH 3 C CCH 3 )] complex. Overlap Matrix (S ij ) yne_lumo_a yne_lumo+1_a yne_homo_a yne_homo-1_a Ru_LUMO_a Ru_LUMO+1_a Ru_HOMO_a Ru_HOMO-1_a S4

5 Table S3. The corresponding Fock interaction matrix elements for the [Cp*Ru(Cl)(CH 3 C CCH 3 )] complex. Fock Matrix (F ij (ev)) yne_lumo_a yne_lumo+1_a yne_homo_a yne_homo-1_a Ru_LUMO_a Ru_LUMO+1_a Ru_HOMO_a Ru_HOMO-1_a Table S4. Orbital interaction matrix elements computed using eq. 1 for the [Cp*Ru(Cl)(CH 3 C CCH 3 )] complex. Interaction Energy ( ε ij ) yne_lumo_a yne_lumo+1_a yne_homo_a yne_homo-1_a Ru_LUMO_a Ru_LUMO+1_a Ru_HOMO_a Ru_HOMO-1_a Table S5. Fragment orbital energies for the [Cp*Ru(Cl)(E-2-butene)] complex. ε (ev) Ru_LUMO Ru_HOMO ene_lumo ene_homo Table S6. Overlap integrals between the fragment orbitals for the [Cp*Ru(Cl)(E-2-butene)] complex. Overlap Matrix (S ij ) ene_lumo ene_homo Ru_LUMO 0.21 Ru_HOMO 0.17 S5

6 Table S7. The corresponding Fock interaction matrix elements for the [Cp*Ru(Cl)(E-2-butene)] complex. Fock Matrix (F ij (ev)) ene_lumo ene_homo Ru_LUMO Ru_HOMO Table S8. Orbital interaction matric elements computed using eq. 1 for the [Cp*Ru(Cl)(E-2- butene)] complex. Interaction Energy ( ε ij ) ene_lumo ene_homo Ru_LUMO Ru_HOMO S6

7 3. Hydrostannation to Form the Minor Constitutional Isomer Z-prod The regioisomeric pathway leading to the constitutional isomer from addition of H and Sn on opposite carbon atoms was also investigated (Figure S3). The H---Cl hydrogen bond present in the complex of INT1 is not feasible in this pathway (INT1 ). In solution the hydrogen bond accounts for an additional 1.1 kcal/mol, while in the gas phase the interaction is ~2.8 kcal/mol. It is this interaction that accounts for the preference for the pathway from INT1. Figure S3. Gibbs free energy profile (in units of kcal mol -1 ) for the formation of the minor constitutional isomer Z-prod S7

8 4. Energy table for Hydrostannation. Table S9. Listed are the SCF energy, zero point vibrational energy (ZPVE), enthalpy correction (H corr ), and Gibbs free energy correction (G corr ) determined on the gas-phase geometries for all stationary points calculated. The single imaginary frequency (υ i cm -1 ) is also listed for all transition states. Single point solvent (DCM) corrected SCF energies on the gas phase geometries are also tabulated. All energies are in atomic units. SCF gas SCF DCM ZPVE H corr G corr υ i (cm -1 ) INT INT TS i50 INT TS i357 INT TS2-Z i60 Z-prod TS i19 INT TS i135 INT TS5-E i40 E-prod TS i139 TS i23 INT TS i36 INT-1` TS1-2` i358 INT-2` TS2-Z` i84 Z-prod` TS2-3` i42 INT-3` TS3-4` i36 INT-4` INT0-Si INT0 -Si HSnMe S8

9 5. Coordinates Cartesian coordinates (Å) INT0 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H O H H H H S9

10 INT0 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H O H H H H H S10

11 TS0-0 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H O H H H H S11

12 INT1 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H O H H Sn C H H H C H H H C H H H S12

13 TS1-2 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H Sn H C H H H C H H H C H H H H H O H S13

14 INT2 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H Sn C H H H C H H H C H H H H H O H S14

15 TS2-Z Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H O H Sn C H H H C H H H C H H H S15

16 Z-prod Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H Sn C H H H C H H H C H H H O H S16

17 TS2-3 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H Sn C H H H C H H H C H H H O H S17

18 INT-3 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H Sn O H C H H H C H H H C H H H H S18

19 TS3-5 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H O H Sn C H H H C H H H C H H H S19

20 INT-5 Ru Cl C C C H C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H O H Sn C H H H C H H H C H H H S20

21 TS5-E Ru Cl C C C H C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H O H Sn C H H H C H H H C H H H S21

22 E-prod Ru Cl C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H Sn O H C H H H C H H H C H H H C H H H H S22

23 TS2-5 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H O H Sn C H H H C H H H C H H H S23

24 TS3-4 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H Sn C H H H C H H H C H H H O H H S24

25 INT-4 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H Sn C H H H C H H H C H H H O H S25

26 TS4-5 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H Sn C H H H C H H H C H H H O H S26

27 INT1 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H Sn C H H H C H H H C H H H H H O H H S27

28 TS1-2 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H Sn H C H H H C H H H C H H H H H H O H S28

29 INT2 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H Sn C H H H C H H H C H H H H H O H H S29

30 TS2-Z Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H Sn C H H H C H H H C H H H H O H S30

31 Z-prod Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H Sn C H H H C H H H C H H H H O H S31

32 TS2-3 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H Sn C H H H C H H H C H H H H O H H S32

33 INT3 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H Sn C H H H C H H H C H H H H H O H H S33

34 TS3-4 Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H Sn C H H H C H H H C H H H H H O H S34

35 INT4 Ru Cl C C H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H Sn C H H H C H H H C H H H H H O H S35

36 INT0-Si Ru Cl C C Si C C C C C C C H H H C H H H C H H H C H H H C H H H H O C C C H H H H H H H H H H H S36

37 INT0 -Si Ru Cl C C C Si C C C C C C H H H C H H H C H H H C H H H C H H H C C H O H H H H H H H H C H H H S37

38 [Cp*Ru(Cl)(E-2-butene)] Ru Cl C C H H C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H H S38

39 [Cp*Ru(Cl)(CH 3 C CCH 3 )] Ru Cl C C C C C C C C C C H H H C H H H C H H H C H H H C H H H H H H H H H S39

40 Cp*RuCl Ru Cl C C C C C C H H H C H H H C H H H C H H H C H H H CH 3 C CCH 3 C C C C H H H H H H E-2-butene C C H H C C H H H H H H S40

Supporting Information

Supporting Information Supporting Information Formation of Ruthenium Carbenes by gem-hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-hydrogenation Markus Leutzsch, Larry M. Wolf, Puneet Gupta, Michael Fuchs,

More information

Supporting Information

Supporting Information Supporting Information α-dicationic Chelating Phosphines: Synthesis and Application to the Hydroarylation of Dienes Lianghu Gu, Lawrence M. Wolf, Adam Zieliński, Walter Thiel and Manuel Alcarazo e-mail:

More information

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol). Chemistry 380.37 Dr. Jean M. Standard Homework Problem Set 5 Solutions 1. Given below are the sum of electronic and thermal enthalpies, E e + H corr, from Hartree-Fock calculations using a 6-31G(d) basis

More information

Supporting Information. Computational Exploration of Concerted and Zwitterionic. Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and

Supporting Information. Computational Exploration of Concerted and Zwitterionic. Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and Supporting Information Computational Exploration of Concerted and Zwitterionic Mechanisms of Diels Alder Reactions between 1,2,3-Triazines and Enamines and Acceleration by Hydrogen-Bonding Solvents Yun-Fang

More information

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy

Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy Supporting Information: Dostie, Prévost and Guindon S-1 Diastereoselective Synthesis of C2 -Fluorinated Nucleoside Analogues using an Acyclic Strategy Starr Dostie,, Michel Prévost *,, Philippe Mochirian,

More information

Keto-Enol Thermodynamics of Breslow Intermediates

Keto-Enol Thermodynamics of Breslow Intermediates Keto-Enol Thermodynamics of Breslow Intermediates Mathias Paul, Martin Breugst, Jörg-Martin Neudörfl, Raghavan B. Sunoj, and Albrecht Berkessel Computational Section of the Supporting Information 1 Computational

More information

Chemistry 4560/5560 Molecular Modeling Fall 2014

Chemistry 4560/5560 Molecular Modeling Fall 2014 Final Exam Name:. User s guide: 1. Read questions carefully and make sure you understand them before answering (if not, ask). 2. Answer only the question that is asked, not a different question. 3. Unless

More information

Cethrene: The Chameleon of Woodward Hoffmann Rules

Cethrene: The Chameleon of Woodward Hoffmann Rules Supporting Information Cethrene: The Chameleon of Woodward Hoffmann Rules Tomáš Šolomek,*, Prince Ravat,, Zhongyu Mou, Miklos Kertesz, and Michal Juríček*,, Department of Chemistry, University of Basel,

More information

Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation

Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation Andreas Fromm, a Christoph van Wüllen, b Dagmar Hackenberger a and Lukas J. Gooßen* a a Fachbereich Chemie Organische Chemie

More information

Gherman Group Meeting. Thermodynamics and Kinetics and Applications. June 25, 2009

Gherman Group Meeting. Thermodynamics and Kinetics and Applications. June 25, 2009 Gherman Group Meeting Thermodynamics and Kinetics and Applications June 25, 2009 Outline Calculating H f, S, G f Components which contribute to H f, S, G f Calculating ΔH, ΔS, ΔG Calculating rate constants

More information

Electronic communication through molecular bridges Supporting Information

Electronic communication through molecular bridges Supporting Information Electronic communication through molecular bridges Supporting Information Carmen Herrmann and Jan Elmisz Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6,

More information

Supporting Information Computational Part

Supporting Information Computational Part Supporting Information Computational Part The Cinchona Primary Amine-Catalyzed Asymmetric Epoxidation and Hydroperoxidation of, -Unsaturated Carbonyl Compounds with Hydrogen Peroxide Olga Lifchits, Manuel

More information

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions

Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane. and Tandem Cross-Coupling Reactions Supporting Information (DFT Calculations) Pd-Catalyzed C-H Functionalization of Acyldiazomethane and Tandem Cross-Coupling Reactions Fei Ye,, Shuanglin Qu,, Lei Zhou,, Cheng Peng, Chengpeng Wang, Jiajia

More information

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Interligand Interactions Dictate the Regioselectivity of trans-hydrometallations and Related Reactions Catalyzed by [Cp*RuCl]. Hydrogen Bonding to a Chloride Ligand as a Steering

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

Modelling of Reaction Mechanisms KJE-3102

Modelling of Reaction Mechanisms KJE-3102 Modelling of Reaction Mechanisms KJE-3102 Kathrin H. Hopmann Kathrin.hopmann@uit.no Outline Potential energy surfaces Transition state optimization Reaction coordinates Imaginary frequencies Verification

More information

Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates

Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates Theoretical study of the BF 3-promoted rearrangement of oxiranyl N-methyliminodiacetic acid boronates Margarita M. Vallejos a* and Silvina C. Pellegrinet b* a Laboratorio de Química Orgánica, IQUIBA-NEA,

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation Mattia Riccardo Monaco, Daniele Fazzi, Nobuya Tsuji, Markus Leutzsch,

More information

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the

Supplementary Figure S1 Stable structures of I, I', II, and II' optimized at the H C Si 2.492 (2.348) 1.867 (2.005) Fe O 2.106 (2.077) 2.360 (2.497) N 1.126 (1.115) 2.105 (2.175) I quintet (triplet) 0.0 (+4.1) kcal/mol II triplet (quintet) 0.0 (+4.3) kcal/mol 1.857 (2.076) 2.536 (2.351)

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

Basis Set for Molecular Orbital Theory

Basis Set for Molecular Orbital Theory Basis Set for Molecular Orbital Theory! Different Types of Basis Functions! Different Types of Atom Center Basis Functions! Classifications of Gaussian Basis Sets! Pseudopotentials! Molecular Properties

More information

Semi-Empirical MO Methods

Semi-Empirical MO Methods Semi-Empirical MO Methods the high cost of ab initio MO calculations is largely due to the many integrals that need to be calculated (esp. two electron integrals) semi-empirical MO methods start with the

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

platinum and iridium complexes

platinum and iridium complexes SUPPORTING INFORMATION A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes Jan Vícha, Michael Patzschke, Radek Marek Figure

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Electronic Supplementary Information. for

Electronic Supplementary Information. for Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information for Two Chiral Catalysts in Action: Insights on Cooperativity

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

List of Figures Page Figure No. Figure Caption No. Figure 1.1.

List of Figures Page Figure No. Figure Caption No. Figure 1.1. List of Figures Figure No. Figure Caption Page No. Figure 1.1. Cation- interactions and their modulations. 4 Figure 1.2. Three conformations of benzene dimer, S is not a minimum on the potential energy

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

10/6/2010. Chapter 6 An Overview of Organic Reactions. Organic Chemical Reactions. 6.1 Kinds of Organic Reactions

10/6/2010. Chapter 6 An Overview of Organic Reactions. Organic Chemical Reactions. 6.1 Kinds of Organic Reactions John E. McMurry http://www.cengage.com/chemistry/mcmurry Chapter 6 An Overview of Organic Reactions Richard Morrison University of Georgia, Athens Organic Chemical Reactions Organic chemical reactions

More information

Supplementary Information

Supplementary Information Supplementary Information Cobalt analogues of Roussin's red salt esters: a density functional study Menyhárt B. Sárosi and R. Bruce King* Table S1. BP86/6-311G(d) electronic energies and thermodynamic

More information

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways

Supporting Information. Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Supporting Information for Nonclassical Single-State Reactivity of an Oxo- Iron(IV) Complex Confined to Triplet Pathways Claudia Kupper, ǁ Bhaskar Mondal, ǁ Joan Serrano-Plana, Iris Klawitter, Frank Neese,

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

A One-Slide Summary of Quantum Mechanics

A One-Slide Summary of Quantum Mechanics A One-Slide Summary of Quantum Mechanics Fundamental Postulate: O! = a! What is!?! is an oracle! operator wave function (scalar) observable Where does! come from?! is refined Variational Process H! = E!

More information

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2007 69451 Weinheim, Germany Synthesis and Properties of the THF Solvates of Extremely Soluble Bis(2,4,6-trimethylphenyl)calcium and Tris(2,6-dimethoxyphenyl)dicalcium

More information

Supporting Information

Supporting Information Supporting Information Conflict in the Mechanism and Kinetics of the Barrierless Reaction between SH and NO 2 Radicals Ramanpreet Kaur and Vikas * Quantum Chemistry Group, Department of Chemistry & Centre

More information

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy --- Influence of intramolecular interactions Minfu Zhao, Xu Shan, Shanshan Niu, Yaguo Tang, Zhaohui Liu,

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Oxygen Binding in Hemocyanin

Oxygen Binding in Hemocyanin Supporting Information for Quantum Mechanics/Molecular Mechanics Study of Oxygen Binding in Hemocyanin Toru Saito and Walter Thiel* Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470

More information

3. RATE LAW AND STOICHIOMETRY

3. RATE LAW AND STOICHIOMETRY Page 1 of 39 3. RATE LAW AND STOICHIOMETRY Professional Reference Shelf R3.2 Abbreviated Lecture Notes Full Lecture Notes I. Overview II. Introduction A. The Transition State B. Procedure to Calculate

More information

Supporting Information. First principles kinetic study on the effect of zeolite framework on 1-butanol dehydration

Supporting Information. First principles kinetic study on the effect of zeolite framework on 1-butanol dehydration Supporting Information First principles kinetic study on the effect of zeolite framework on 1-butanol dehydration Mathew John, Konstantinos Alexopoulos, Marie-Françoise Reyniers* and Guy B. Marin Laboratory

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of Effusion The Maxwell-Boltzmann Distribution A Digression on

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene

10/26/2010. An Example of a Polar Reaction: Addition of H 2 O to Ethylene. to Ethylene 6.5 An Example of a Polar Reaction: Addition of H 2 O to Ethylene Addition of water to ethylene Typical polar process Acid catalyzed addition reaction (Electophilic addition reaction) Polar Reaction All

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2009 69451 Weinheim, Germany Total Synthesis of Spirastrellolide F thyl Ester Part 2: Macrocyclization and Completion of the Synthesis** Stefan Benson, Marie-Pierre Collin,

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Supporting Information. DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis

Supporting Information. DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis Supporting Information DFT as a Powerful Predictive Tool in Photoredox Catalysis: Redox Potentials and Mechanistic Analysis Taye B. Demissie,, Kenneth Ruud,, and Jørn. ansen *, Centre for Theoretical and

More information

Supporting Information

Supporting Information Supporting Information Z-Selective Ethenolysis With a Ruthenium Metathesis Catalyst: Experiment and Theory Hiroshi Miyazaki,, Myles B. Herbert,, Peng Liu, Xiaofei Dong, Xiufang Xu,,# Benjamin K. Keitz,

More information

5 The effect of steric bulk on C C bond activation

5 The effect of steric bulk on C C bond activation 5 The effect of steric bulk on C C bond activation Inspired by: Willem-Jan van Zeist, Joost N. P. van Stralen, Daan P. Geerke, F. Matthias Bickelhaupt To be submitted Abstract We have studied the effect

More information

ETS NOCV description of σ hole bonding

ETS NOCV description of σ hole bonding ETS NOCV description of σ hole bonding an insight based on the natural orbitals for chemical valence (NOCV) combined with extended transition state method (ETS) Karol Dyduch, Mariusz Mitoraj, Artur Michalak

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supporting Information Are intramolecular frustrated Lewis pairs also intramolecular

More information

Supporting Information

Supporting Information Supporting Information Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of ( )-11 -Hydroxycurvularin Hyeonjeong Choe, Thuy Trang Pham,

More information

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica Computational Material Science Part II Ito Chao ( ) Institute of Chemistry Academia Sinica Ab Initio Implementations of Hartree-Fock Molecular Orbital Theory Fundamental assumption of HF theory: each electron

More information

Figure 1: Transition State, Saddle Point, Reaction Pathway

Figure 1: Transition State, Saddle Point, Reaction Pathway Computational Chemistry Workshops West Ridge Research Building-UAF Campus 9:00am-4:00pm, Room 009 Electronic Structure - July 19-21, 2016 Molecular Dynamics - July 26-28, 2016 Potential Energy Surfaces

More information

Thiourea Derivatives as Brønsted Acid Organocatalysts

Thiourea Derivatives as Brønsted Acid Organocatalysts Supporting Information Thiourea Derivatives as Brønsted Acid Organocatalysts Ádám Madarász, Zsolt Dósa, Szilárd Varga, * Tibor Soós, Antal Csámpai, Imre Pápai * Institute of Organic Chemistry, Research

More information

New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-alkanes

New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-alkanes Supplemental Material for paper New Reaction Classes in the Kinetic Modeling of Low Temperature Oxidation of n-alkanes Eliseo Ranzi, Carlo Cavallotti, Alberto Cuoci, Alessio Frassoldati, Matteo Pelucchi,

More information

The Boron Buckyball has an Unexpected T h Symmetry

The Boron Buckyball has an Unexpected T h Symmetry The Boron Buckyball has an Unexpected T h Symmetry G. Gopakumar, Minh Tho Nguyen, and Arnout Ceulemans* Department of Chemistry and Institute for Nanoscale Physics and Chemistry, University of Leuven,

More information

Supporting Information for

Supporting Information for Supporting Information for Factors Controlling the Reactivity and Chemoselectivity of Resonance Destabilized Amides in Ni-catalyzed Decarbonylative and Non-decarbonylative Suzuki-Miyaura Coupling Chong-Lei

More information

SUPPORTING INFORMATION. Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting

SUPPORTING INFORMATION. Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting SUPPORTING INFORMATION List of Contents Table S1: Use of different functionals and variation of HF exchange on IS/HS splitting S2 Table S2: Structural parameters using the B3LYP** functional for the IS

More information

Supporting Information

Supporting Information Supporting Information The Journal of Physical Chemistry A Determination of Binding Strengths of a Host-Guest Complex Using Resonance Raman Scattering Edward H. Witlicki, Stinne W. Hansen, Martin Christensen,

More information

Synthesis of Polyynes Using Dicobalt Masking Groups

Synthesis of Polyynes Using Dicobalt Masking Groups Supporting Information Synthesis of Polyynes Using Dicobalt Masking Groups Daniel R. Kohn, Przemyslaw Gawel, Yaoyao Xiong, Kirsten E. Christensen, and Harry L. Anderson* University of Oxford, Department

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Supporting Information

Supporting Information Supporting Information Computational details The first important issue we have encountered to accomplish our calculations has been the choice of the computational method. We decided to focus on the Density

More information

CHAPTER 8 HW: ELIMINATIONS REACTIONS

CHAPTER 8 HW: ELIMINATIONS REACTIONS APTER 8 W: ELMNATNS REATNS S-TRANS SMERSM 1. Use a discussion and drawing of orbitals to help explain why it is generally easy to rotate around single bonds at room temperature, while it is difficult to

More information

Supporting Information

Supporting Information Supporting Information Synthesis of α-(pentafluorosulfanyl)- and α-(trifluoromethyl)-substituted Carboxylic Acid Derivatives by Ireland-Claisen Rearrangement Anna-Lena Dreier, Bernd Beutel, Christian Mück-Lichtenfeld,

More information

Chem 121 Winter 2016: Section 03, Sample Problems. Alkenes and Alkynes

Chem 121 Winter 2016: Section 03, Sample Problems. Alkenes and Alkynes Chem 121 Winter 2016: Section 03, Sample Problems Alkenes and Alkynes Problems adapted from Chemistry - The Central Science, 3 rd edition. 24.2 Consider the hydrocarbon drawn below. (a) What is the hybridisation

More information

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage Kapil S. Lokare,* a Robert J. Nielsen, *b Muhammed Yousufuddin, c William A. Goddard III, b and Roy A. Periana*,a a Scripps

More information

CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008

CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008 First Three Letters of Last Name NAME Network ID CHEMISTRY 332 SUMMER 08 EXAM I June 26-28, 2008 The following materials are permissible during the exam: molecular model kits, course notes (printed, electronic,

More information

COSMO-RS Theory. The Basics

COSMO-RS Theory. The Basics Theory The Basics From µ to properties Property µ 1 µ 2 activity coefficient vapor pressure Infinite dilution Gas phase Pure compound Pure bulk compound Partition coefficient Phase 1 Phase 2 Liquid-liquid

More information

Computational details, X-ray datas and spectral copies of 1 H, 13 C NMR of compounds obtained in this study

Computational details, X-ray datas and spectral copies of 1 H, 13 C NMR of compounds obtained in this study Stereo, Regio-, and Chemoselective [3+2]-Cycloaddition of (2E,4E)-Ethyl 5-(Phenylsulfonyl)penta-2,4-dienoate with Various Azomethine Ylides, Nitrones, and Nitrile Oxides: Synthesis of Pyrrolidine, Isoxazolidine,

More information

A Computer Study of Molecular Electronic Structure

A Computer Study of Molecular Electronic Structure A Computer Study of Molecular Electronic Structure The following exercises are designed to give you a brief introduction to some of the types of information that are now readily accessible from electronic

More information

Lecture 1. Conformational Analysis in Acyclic Systems

Lecture 1. Conformational Analysis in Acyclic Systems Lecture 1 Conformational Analysis in Acyclic Systems Learning Outcomes: by the end of this lecture and after answering the associated problems, you will be able to: 1. use Newman and saw-horse projections

More information

Exercise 7: Reaction Mechanisms

Exercise 7: Reaction Mechanisms Exercise 7: Reaction Mechanisms In this exercise, a simple S N 2 reaction is studied using quantum chemical methods: F C Cl F C Cl F C Cl + Reactant Transition State Product The goal is to determine the

More information

Free energy, electrostatics, and the hydrophobic effect

Free energy, electrostatics, and the hydrophobic effect Protein Physics 2016 Lecture 3, January 26 Free energy, electrostatics, and the hydrophobic effect Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap Protein structure

More information

Department of Chemistry, University of Rhode Island, Kingston, RI USA

Department of Chemistry, University of Rhode Island, Kingston, RI USA Supporting Information for Controlled Organocatalytic Ring-Opening Polymerization of - Thionocaprolactone Partha P. Datta and Matthew K. Kiesewetter Department of Chemistry, University of Rhode Island,

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

APPENDIX 2. Semiempirical PM3 (Parametrization Method #3) When analytical solutions cannot be obtained, Schrödinger equation may be solved:

APPENDIX 2. Semiempirical PM3 (Parametrization Method #3) When analytical solutions cannot be obtained, Schrödinger equation may be solved: WRNING NOTICE: The experiments described in these materials are potentially hazardous and require a high level of safety training, special facilities and equipment, and supervision by appropriate individuals.

More information

Excited States Calculations for Protonated PAHs

Excited States Calculations for Protonated PAHs 52 Chapter 3 Excited States Calculations for Protonated PAHs 3.1 Introduction Protonated PAHs are closed shell ions. Their electronic structure should therefore be similar to that of neutral PAHs, but

More information

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome s1 Electronic Supplementary Information A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome Byung Jin Byun and Young Kee Kang* Department of Chemistry, Chungbuk

More information

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons

Chemistry 11. Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons Chemistry 11 Unit 10 Organic Chemistry Part III Unsaturated and aromatic hydrocarbons 2 1. Unsaturated hydrocarbons So far, we have studied the hydrocarbons in which atoms are connected exclusively by

More information

Table S1. Computational details for the reaction of {[(NH 3 ) 2 Cu]-(O 2 )-[Cu(NH 3 ) 2 ]} 2+ with 4-carboxamidophenolate.

Table S1. Computational details for the reaction of {[(NH 3 ) 2 Cu]-(O 2 )-[Cu(NH 3 ) 2 ]} 2+ with 4-carboxamidophenolate. SI 1 Supporting Information: Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF Supplementary Materials and Methods. Protein Expression

More information

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics

Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic Dynamics Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 Supplementary Data for Modeling Ultrafast Deactivation in Oligothiophenes via Nonadiabatic

More information

Structure and Dynamics of Chitin Nanofibrils in Aqueous Environment Revealed by Molecular Dynamics Simulations

Structure and Dynamics of Chitin Nanofibrils in Aqueous Environment Revealed by Molecular Dynamics Simulations Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Structure and Dynamics of Chitin Nanofibrils in Aqueous Environment Revealed by Molecular Dynamics

More information

Is Vitamin A an Antioxidant or a Prooxidant?

Is Vitamin A an Antioxidant or a Prooxidant? Supporting Information Is Vitamin A an Antioxidant or a Prooxidant? Duy Quang Dao 1,*, Thi Chinh Ngo 1, Nguyen Minh Thong 2, Pham Cam Nam 3,* 1 Institute of Research and Development, Duy Tan University,

More information

Exam 2 October 29, time finished. Notes on exam format:

Exam 2 October 29, time finished. Notes on exam format: Chemistry 417-01 Inorganic Chemistry Exam 2 October 29, 2001 GROUND RULES: a. Closed book; closed notes; no consulting b. allowed: calculator; model set; point group flowchart; ruler c. 180 minute (3 h)

More information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supporting Information {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in

More information

Chemistry 125 First Semester Final Examination Name

Chemistry 125 First Semester Final Examination Name Chemistry 125 First Semester Final Examination Name December 15, 1999 The exam budgets 150 minutes, but you may have 180 minutes to finish it. Good answers can fit in the space provided. 1. (36 minutes)

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Active Site Structure and Absorption Spectrum of Channelrhodopsin-2

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Supplementary Information Mechanistic insight into the ruthenium-catalysed anti- Markovnikov

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 Answer Key

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 Answer Key Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2013 Answer Key 1. Let's return to our favorite natural products from the first problem set. In the templates subdirectory of my

More information

( ) + ( ) + ( ) = 0.00

( ) + ( ) + ( ) = 0.00 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 32, April 14, 2006 (Some material in this lecture has been adapted from Cramer, C.

More information