Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Size: px
Start display at page:

Download "Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane."

Transcription

1 Queens College, CUNY, Department of Computer Scence Numercal Methods CSCI 361 / 761 Sprng 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane Lecture 16a May 3, 2018 Numercal soluton of systems of ordnary dfferental equatons We dsplay worked examples of ntal alue problems usng auxlary arables. 1

2 16.12 Worked example Equaton Consder the followng ordnary dfferental equaton d 2 y dy + 2x dx2 dx + (1 x2 y e x. ( It s a second order ordnary dfferental equaton. We ntroduce an auxlary arable a dy dx. ( We reexpress eq. ( as a par of coupled frst order equatons as follows: dy dx, d dx 2x (1 x2 y + e x. ( a ( b We express ths n the formal notaton as follows. To aod confuson between y and the orgnal arable y, defne y (y 1, y 2 (u,. Then u s the orgnal scalar arable y and the equatons are d dx dy f(x, y, dx ( u ( f1 (x, u, f 2 (x, u, ( 2x (1 x 2 y + e x. ( Therefore the rght hand sde functons are f 1 (x, u,, f 2 (x, u, 2x (1 x 2 u + e x. ( a ( b 2

3 C++ code In terms of C++ functon calls, we hae m 2 and nt f(nt m, double x, const std::ector<double> & y, std::ector<double> & g { // frst component "f1(x,u, " g[0] y[1]; // second component "f2(x,u, -2x -(1-x^2y + exp(x" g[1] -2.0*x*y[1] - (1.0 - x*x*y[0] + exp(x; } return 0; All the ntegraton schemes can be called wth the followng nputs: // m 2 // x x_ // h step sze // ector (array y_n (u, _ // ector (array y_out (u, _{+1} nt Euler_explct(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; nt mdpont(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; nt trapezod(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; nt RK4(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; 3

4 Soluton for 0, etc Let the ntal condtons at x 0 0 be y 0 1 and 0 y 0 1. We shall ntegrate eq. ( usng explct Euler ntegraton wth a stepsze h. The formal equatons are y +1 y + hf(x, y. ( In terms of u and, the equatons are ( ( ( u u + h 2x (1 x 2 u + exp(x Step 0: Intally u 0 1 and 0 1. Then. ( u 1 u 0 + h 0 1 h. ( Next we hae Step 1: h ( 2x 0 0 (1 x 2 0u 0 + exp(x h ( 0 (1 0 + exp(0 1. ( We hae 2. Next we hae u 2 u 1 + h 1 1 h h 1 2h. ( h ( 2x 1 1 (1 x 2 1u 1 + exp(x h ( 2h (1 h 2 (1 h + exp(h 1 + h ( 1 + 3h + h 2 h 3 + exp(h ( h + 3h 2 + h 3 h 4 + h exp(h. Step 2: 1. We hae u 3 u 2 + h 2 1 2h + h ( 1 h + 3h 2 + h 3 h 4 + h exp(h 1 3h h 2 + 3h 3 + h 4 h 5 + h 2 exp(h. ( Next we hae h ( 2x 2 2 (1 x 2 2u 2 + exp(x h ( 4h 2 (1 4h 2 u 2 + exp(2h ugh. (

5 16.13 Worked example Equaton Consder the followng ordnary dfferental equaton Ths s a smple equaton. We know the general soluton s d 2 y dx 2 + y 0. ( y(x c 1 cos(x + c 2 sn(x. ( It s a second order ordnary dfferental equaton. We ntroduce an auxlary arable a dy dx. ( We reexpress eq. ( as a par of coupled frst order equatons as follows: dy dx, d dx y. ( a ( b We express ths n the formal notaton as follows. Agan defne y (y 1, y 2 (u,. Then d dx dy f(x, y, dx ( u ( f1 (x, u, f 2 (x, u, (. u ( Therefore the rght hand sde functons are f 1 (x, u,, ( a f 2 (x, u, u. ( b 5

6 C++ code In terms of C++ functon calls, we hae m 2 and nt f(nt m, double x, const std::ector<double> & y, std::ector<double> & g { // frst component "f1(x,u, " g[0] y[1]; // second component "f2(x,u, -u" g[1] -y[0]; } return 0; All the ntegraton schemes can be called wth the followng nputs: // m 2 // x x_ // h step sze // ector (array y_n (u, _ // ector (array y_out (u, _{+1} nt Euler_explct(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; nt mdpont(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; nt trapezod(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; nt RK4(nt m, double x, double h, std::ector<double> & y_n, std::ector<double> & y_out; 6

7 Soluton for 0, etc Let the ntal condtons at x 0 0 be y 0 1 and 0 y 0 0. Then we know the exact soluton s y exact (x cos(x. ( We shall ntegrate eq. ( usng explct Euler ntegraton wth a stepsze h. The formal equatons are y +1 y + hf(x, y. ( In terms of u and, the equatons are ( u Step 0: Intally u 0 1 and 0 0 and so ( ( u + h. ( u u 1 u 0 + h ( Next we hae 1 0 hu 0 0 h h. ( Step 1: 1. We hae 2. Next we hae u 2 u 1 + h h( h 1 h 2. ( hu 1 h h 2h. ( Step 2: 1. We hae 2. Next we hae u 3 u 2 + h 2 1 h 2 + h( 2h 1 3h 2. ( hu 2 2h h(1 h 2 3h + h 3. ( Step 3: 1. We hae u 4 u 3 + h 3 1 3h 2 + h( 3h + h 3 1 6h 2 + h 4. ( Next we hae 4 3 hu 3 3h + h 3 h(1 3h 2 4h + 4h 3. ( We see that the explct Euler method s not ery accurate. 7

8 Soluton usng mdpont method Let us ntegrate eq. ( usng the mdpont method wth a stepsze h. In terms of u and, the equatons are ( u Howeer, now we requre the alues ntermedate ponts. +1 ( ( u + h. ( u 1. Frst we hae, at the step, ( ( g u g 1 g. ( u 2. Next we hae ( g u g 2 1 g1 Step 0: ( f1 (x h, u + h 2 gu 1, + h 2 g 1 f 2 (x h, u + h 2 gu 1, + h 2 g 1 ( h 2 u u h 2. ( We hae 2. Next g u 2 0 h 2 u 0 0 h 2. ( g 2 u 0 h ( Then u 1 u 0 + hg u 2 1 h2 2, hg 2 0 h h. (

9 Step 1: 1. Now g u 2 and g 2 refer to the step 1. (g u h 2 u 1 h h 2 (1 h2 3h h3 4. ( Next (g 2 1 u 1 h h2 2 + h h2. ( Then Step 2: 1. Now g u 2 and g 2 u 2 u 1 + h(g2 u 1 1 h2 ( 2 + h 3h 2 + h h 2 + h4 4, h(g 2 1 h + h( 1 + h 2 refer to the step 2. 2h + h 3. ( Next (g u h 2 u 2 2h + h 3 h 2 (1 2h 2 + h4 5h h3 h5 8. ( (g 2 2 u 2 h h 2 h4 4 + h2 h h2 3h4 4. ( Then u 3 u 2 + h(g2 u 2 1 2h 2 + h4 ( 4 + h 5h 2 + 2h3 h h h4 4 h6 8, h(g2 2 2h + h 3 + h ( 1 + 3h 2 3h4 4 3h + 4h 3 3h5 4. ( Ths s more accurate than the explct Euler method. It matches the exact soluton to O(h 2. 9

6.3.4 Modified Euler s method of integration

6.3.4 Modified Euler s method of integration 6.3.4 Modfed Euler s method of ntegraton Before dscussng the applcaton of Euler s method for solvng the swng equatons, let us frst revew the basc Euler s method of numercal ntegraton. Let the general from

More information

Consistency & Convergence

Consistency & Convergence /9/007 CHE 374 Computatonal Methods n Engneerng Ordnary Dfferental Equatons Consstency, Convergence, Stablty, Stffness and Adaptve and Implct Methods ODE s n MATLAB, etc Consstency & Convergence Consstency

More information

16 Homework lecture 16

16 Homework lecture 16 Quees College, CUNY, Departmet of Computer Scece Numercal Methods CSCI 361 / 761 Fall 2018 Istructor: Dr. Sateesh Mae c Sateesh R. Mae 2018 16 Homework lecture 16 Please emal your soluto, as a fle attachmet,

More information

Lecture 2: Numerical Methods for Differentiations and Integrations

Lecture 2: Numerical Methods for Differentiations and Integrations Numercal Smulaton of Space Plasmas (I [AP-4036] Lecture 2 by Lng-Hsao Lyu March, 2018 Lecture 2: Numercal Methods for Dfferentatons and Integratons As we have dscussed n Lecture 1 that numercal smulaton

More information

Modelli Clamfim Equazioni differenziali 7 ottobre 2013

Modelli Clamfim Equazioni differenziali 7 ottobre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 7 ottobre 2013 professor Danele Rtell danele.rtell@unbo.t 1/18? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Modelli Clamfim Equazioni differenziali 22 settembre 2016

Modelli Clamfim Equazioni differenziali 22 settembre 2016 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal 22 settembre 2016 professor Danele Rtell danele.rtell@unbo.t 1/22? Ordnary Dfferental Equatons A dfferental equaton s an equaton that defnes a relatonshp

More information

Integrals and Invariants of Euler-Lagrange Equations

Integrals and Invariants of Euler-Lagrange Equations Lecture 16 Integrals and Invarants of Euler-Lagrange Equatons ME 256 at the Indan Insttute of Scence, Bengaluru Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng,

More information

Lecture 21: Numerical methods for pricing American type derivatives

Lecture 21: Numerical methods for pricing American type derivatives Lecture 21: Numercal methods for prcng Amercan type dervatves Xaoguang Wang STAT 598W Aprl 10th, 2014 (STAT 598W) Lecture 21 1 / 26 Outlne 1 Fnte Dfference Method Explct Method Penalty Method (STAT 598W)

More information

6 Lecture 6b: the Euler Maclaurin formula

6 Lecture 6b: the Euler Maclaurin formula Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Fall 217 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 217 March 26, 218 6 Lecture 6b: the Euler Maclaurin formula

More information

Topic 5: Non-Linear Regression

Topic 5: Non-Linear Regression Topc 5: Non-Lnear Regresson The models we ve worked wth so far have been lnear n the parameters. They ve been of the form: y = Xβ + ε Many models based on economc theory are actually non-lnear n the parameters.

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator) Numercal Algorthms for Vsual Computng 008/09 Example Solutons for Assgnment 4 Problem (Shft nvarance of the Laplace operator The Laplace equaton s shft nvarant,.e., nvarant under translatons x x + a, y

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Integrals and Invariants of

Integrals and Invariants of Lecture 16 Integrals and Invarants of Euler Lagrange Equatons NPTEL Course Varatonal Methods and Structural Optmzaton G. K. Ananthasuresh Professor, Mechancal Engneerng, Indan Insttute of Scence, Banagalore

More information

1 Matrix representations of canonical matrices

1 Matrix representations of canonical matrices 1 Matrx representatons of canoncal matrces 2-d rotaton around the orgn: ( ) cos θ sn θ R 0 = sn θ cos θ 3-d rotaton around the x-axs: R x = 1 0 0 0 cos θ sn θ 0 sn θ cos θ 3-d rotaton around the y-axs:

More information

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING

EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING EE215 FUNDAMENTALS OF ELECTRICAL ENGINEERING TaChang Chen Unersty of Washngton, Bothell Sprng 2010 EE215 1 WEEK 8 FIRST ORDER CIRCUIT RESPONSE May 21 st, 2010 EE215 2 1 QUESTIONS TO ANSWER Frst order crcuts

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

Modelli Clamfim Equazione del Calore Lezione ottobre 2014 CLAMFIM Bologna Modell 1 @ Clamfm Equazone del Calore Lezone 17 15 ottobre 2014 professor Danele Rtell danele.rtell@unbo.t 1/24? Convoluton The convoluton of two functons g(t) and f(t) s the functon (g

More information

Appendix B. The Finite Difference Scheme

Appendix B. The Finite Difference Scheme 140 APPENDIXES Appendx B. The Fnte Dfference Scheme In ths appendx we present numercal technques whch are used to approxmate solutons of system 3.1 3.3. A comprehensve treatment of theoretcal and mplementaton

More information

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system

Transfer Functions. Convenient representation of a linear, dynamic model. A transfer function (TF) relates one input and one output: ( ) system Transfer Functons Convenent representaton of a lnear, dynamc model. A transfer functon (TF) relates one nput and one output: x t X s y t system Y s The followng termnology s used: x y nput output forcng

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems

Chapter 5. Solution of System of Linear Equations. Module No. 6. Solution of Inconsistent and Ill Conditioned Systems Numercal Analyss by Dr. Anta Pal Assstant Professor Department of Mathematcs Natonal Insttute of Technology Durgapur Durgapur-713209 emal: anta.bue@gmal.com 1 . Chapter 5 Soluton of System of Lnear Equatons

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we hermodynamcs, Statstcal hermodynamcs, and Knetcs 4 th Edton,. Engel & P. ed Ch. 6 Part Answers to Selected Problems Q6.. Q6.4. If ξ =0. mole at equlbrum, the reacton s not ery far along. hus, there would

More information

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b

A New Refinement of Jacobi Method for Solution of Linear System Equations AX=b Int J Contemp Math Scences, Vol 3, 28, no 17, 819-827 A New Refnement of Jacob Method for Soluton of Lnear System Equatons AX=b F Naem Dafchah Department of Mathematcs, Faculty of Scences Unversty of Gulan,

More information

High resolution entropy stable scheme for shallow water equations

High resolution entropy stable scheme for shallow water equations Internatonal Symposum on Computers & Informatcs (ISCI 05) Hgh resoluton entropy stable scheme for shallow water equatons Xaohan Cheng,a, Yufeng Ne,b, Department of Appled Mathematcs, Northwestern Polytechncal

More information

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems

Chapter 12. Ordinary Differential Equation Boundary Value (BV) Problems Chapter. Ordnar Dfferental Equaton Boundar Value (BV) Problems In ths chapter we wll learn how to solve ODE boundar value problem. BV ODE s usuall gven wth x beng the ndependent space varable. p( x) q(

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

2 Finite difference basics

2 Finite difference basics Numersche Methoden 1, WS 11/12 B.J.P. Kaus 2 Fnte dfference bascs Consder the one- The bascs of the fnte dfference method are best understood wth an example. dmensonal transent heat conducton equaton T

More information

Lab session: numerical simulations of sponateous polarization

Lab session: numerical simulations of sponateous polarization Lab sesson: numercal smulatons of sponateous polarzaton Emerc Boun & Vncent Calvez CNRS, ENS Lyon, France CIMPA, Hammamet, March 2012 Spontaneous cell polarzaton: the 1D case The Hawkns-Voturez model for

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0

n α j x j = 0 j=1 has a nontrivial solution. Here A is the n k matrix whose jth column is the vector for all t j=0 MODULE 2 Topcs: Lnear ndependence, bass and dmenson We have seen that f n a set of vectors one vector s a lnear combnaton of the remanng vectors n the set then the span of the set s unchanged f that vector

More information

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)?

Problem Do any of the following determine homomorphisms from GL n (C) to GL n (C)? Homework 8 solutons. Problem 16.1. Whch of the followng defne homomomorphsms from C\{0} to C\{0}? Answer. a) f 1 : z z Yes, f 1 s a homomorphsm. We have that z s the complex conjugate of z. If z 1,z 2

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014)

10-801: Advanced Optimization and Randomized Methods Lecture 2: Convex functions (Jan 15, 2014) 0-80: Advanced Optmzaton and Randomzed Methods Lecture : Convex functons (Jan 5, 04) Lecturer: Suvrt Sra Addr: Carnege Mellon Unversty, Sprng 04 Scrbes: Avnava Dubey, Ahmed Hefny Dsclamer: These notes

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Module 3: Element Properties Lecture 1: Natural Coordinates

Module 3: Element Properties Lecture 1: Natural Coordinates Module 3: Element Propertes Lecture : Natural Coordnates Natural coordnate system s bascally a local coordnate system whch allows the specfcaton of a pont wthn the element by a set of dmensonless numbers

More information

The Analytical Solution of a System of Nonlinear Differential Equations

The Analytical Solution of a System of Nonlinear Differential Equations Int. Journal of Math. Analyss, Vol. 1, 007, no. 10, 451-46 The Analytcal Soluton of a System of Nonlnear Dfferental Equatons Yunhu L a, Fazhan Geng b and Mnggen Cu b1 a Dept. of Math., Harbn Unversty Harbn,

More information

Difference Equations

Difference Equations Dfference Equatons c Jan Vrbk 1 Bascs Suppose a sequence of numbers, say a 0,a 1,a,a 3,... s defned by a certan general relatonshp between, say, three consecutve values of the sequence, e.g. a + +3a +1

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation: HPT 3 xercses 3. The emtter current s gen by the Shockley equaton: S exp VT For operaton wth, we hae exp >> S >>, and we can wrte VT S exp VT Solng for, we hae 3. 0 6ln 78.4 mv 0 0.784 5 4.86 V VT ln 4

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

Trees and Order Conditions

Trees and Order Conditions Trees and Order Condtons Constructon of Runge-Kutta order condtons usng Butcher trees and seres. Paul Tranqull 1 1 Computatonal Scence Laboratory CSL) Department of Computer Scence Vrgna Tech. Trees and

More information

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations Numercal Methods (CENG 00) CHAPTER-VI Numercal Soluton of Ordnar Dfferental Equatons 6 Introducton Dfferental equatons are equatons composed of an unknown functon and ts dervatves The followng are examples

More information

Math1110 (Spring 2009) Prelim 3 - Solutions

Math1110 (Spring 2009) Prelim 3 - Solutions Math 1110 (Sprng 2009) Solutons to Prelm 3 (04/21/2009) 1 Queston 1. (16 ponts) Short answer. Math1110 (Sprng 2009) Prelm 3 - Solutons x a 1 (a) (4 ponts) Please evaluate lm, where a and b are postve numbers.

More information

Continuous Time Markov Chain

Continuous Time Markov Chain Contnuous Tme Markov Chan Hu Jn Department of Electroncs and Communcaton Engneerng Hanyang Unversty ERICA Campus Contents Contnuous tme Markov Chan (CTMC) Propertes of sojourn tme Relatons Transton probablty

More information

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods.

Key Words: Hamiltonian systems, canonical integrators, symplectic integrators, Runge-Kutta-Nyström methods. CANONICAL RUNGE-KUTTA-NYSTRÖM METHODS OF ORDERS 5 AND 6 DANIEL I. OKUNBOR AND ROBERT D. SKEEL DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 304 W. SPRINGFIELD AVE. URBANA, ILLINOIS

More information

FTCS Solution to the Heat Equation

FTCS Solution to the Heat Equation FTCS Soluton to the Heat Equaton ME 448/548 Notes Gerald Recktenwald Portland State Unversty Department of Mechancal Engneerng gerry@pdx.edu ME 448/548: FTCS Soluton to the Heat Equaton Overvew 1. Use

More information

Group Analysis of Ordinary Differential Equations of the Order n>2

Group Analysis of Ordinary Differential Equations of the Order n>2 Symmetry n Nonlnear Mathematcal Physcs 997, V., 64 7. Group Analyss of Ordnary Dfferental Equatons of the Order n> L.M. BERKOVICH and S.Y. POPOV Samara State Unversty, 4430, Samara, Russa E-mal: berk@nfo.ssu.samara.ru

More information

Newton s Method for One - Dimensional Optimization - Theory

Newton s Method for One - Dimensional Optimization - Theory Numercal Methods Newton s Method for One - Dmensonal Optmzaton - Theory For more detals on ths topc Go to Clck on Keyword Clck on Newton s Method for One- Dmensonal Optmzaton You are free to Share to copy,

More information

Homework 9 for BST 631: Statistical Theory I Problems, 11/02/2006

Homework 9 for BST 631: Statistical Theory I Problems, 11/02/2006 Due Tme: 5:00PM Thursda, on /09/006 Problem (8 ponts) Book problem 45 Let U = X + and V = X, then the jont pmf of ( UV, ) s θ λ θ e λ e f( u, ) = ( = 0, ; u =, +, )! ( u )! Then f( u, ) u θ λ f ( x x+

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

6.3.7 Example with Runga Kutta 4 th order method

6.3.7 Example with Runga Kutta 4 th order method 6.3.7 Example wth Runga Kutta 4 th order method Agan, as an example, 3 machne, 9 bus system shown n Fg. 6.4 s agan consdered. Intally, the dampng of the generators are neglected (.e. d = 0 for = 1, 2,

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Finding Dense Subgraphs in G(n, 1/2)

Finding Dense Subgraphs in G(n, 1/2) Fndng Dense Subgraphs n Gn, 1/ Atsh Das Sarma 1, Amt Deshpande, and Rav Kannan 1 Georga Insttute of Technology,atsh@cc.gatech.edu Mcrosoft Research-Bangalore,amtdesh,annan@mcrosoft.com Abstract. Fndng

More information

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2. Chemstry 360 Dr. Jean M. Standard Problem Set 9 Solutons. The followng chemcal reacton converts sulfur doxde to sulfur troxde. SO ( g) + O ( g) SO 3 ( l). (a.) Wrte the expresson for K eq for ths reacton.

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

A new Approach for Solving Linear Ordinary Differential Equations

A new Approach for Solving Linear Ordinary Differential Equations , ISSN 974-57X (Onlne), ISSN 974-5718 (Prnt), Vol. ; Issue No. 1; Year 14, Copyrght 13-14 by CESER PUBLICATIONS A new Approach for Solvng Lnear Ordnary Dfferental Equatons Fawz Abdelwahd Department of

More information

Norms, Condition Numbers, Eigenvalues and Eigenvectors

Norms, Condition Numbers, Eigenvalues and Eigenvectors Norms, Condton Numbers, Egenvalues and Egenvectors 1 Norms A norm s a measure of the sze of a matrx or a vector For vectors the common norms are: N a 2 = ( x 2 1/2 the Eucldean Norm (1a b 1 = =1 N x (1b

More information

Review of Taylor Series. Read Section 1.2

Review of Taylor Series. Read Section 1.2 Revew of Taylor Seres Read Secton 1.2 1 Power Seres A power seres about c s an nfnte seres of the form k = 0 k a ( x c) = a + a ( x c) + a ( x c) + a ( x c) k 2 3 0 1 2 3 + In many cases, c = 0, and the

More information

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56

CIVL 8/7117 Chapter 10 - Isoparametric Formulation 42/56 CIVL 8/77 Chapter 0 - Isoparametrc Formulaton 4/56 Newton-Cotes Example Usng the Newton-Cotes method wth = ntervals (n = 3 samplng ponts), evaluate the ntegrals: x x cos dx 3 x x dx 3 x x dx 4.3333333

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

THE SUMMATION NOTATION Ʃ

THE SUMMATION NOTATION Ʃ Sngle Subscrpt otaton THE SUMMATIO OTATIO Ʃ Most of the calculatons we perform n statstcs are repettve operatons on lsts of numbers. For example, we compute the sum of a set of numbers, or the sum of the

More information

Lecture Note 3. Eshelby s Inclusion II

Lecture Note 3. Eshelby s Inclusion II ME340B Elastcty of Mcroscopc Structures Stanford Unversty Wnter 004 Lecture Note 3. Eshelby s Incluson II Chrs Wenberger and We Ca c All rghts reserved January 6, 004 Contents 1 Incluson energy n an nfnte

More information

Professor Terje Haukaas University of British Columbia, Vancouver The Q4 Element

Professor Terje Haukaas University of British Columbia, Vancouver  The Q4 Element Professor Terje Haukaas Unversty of Brtsh Columba, ancouver www.nrsk.ubc.ca The Q Element Ths document consders fnte elements that carry load only n ther plane. These elements are sometmes referred to

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Haar wavelet collocation method to solve problems arising in induction motor

Haar wavelet collocation method to solve problems arising in induction motor ISSN 746-7659, England, UK Journal of Informaton and Computng Scence Vol., No., 07, pp.096-06 Haar wavelet collocaton method to solve problems arsng n nducton motor A. Padmanabha Reddy *, C. Sateesha,

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE : Lnear Systems Summary #: Backpropagaton BACKPROPAGATION The perceptron rule as well as the Wdrow Hoff learnng were desgned to tran sngle layer networks. They suffer from the same dsadvantage: they

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Bose State Unersty Department of Electrcal and omputer Engneerng EE 1L rcut Analyss and Desgn Lab Experment #8: The Integratng and Dfferentatng Op-Amp rcuts 1 Objectes The objectes of ths laboratory experment

More information

Calculus of Variations Basics

Calculus of Variations Basics Chapter 1 Calculus of Varatons Bascs 1.1 Varaton of a General Functonal In ths chapter, we derve the general formula for the varaton of a functonal of the form J [y 1,y 2,,y n ] F x,y 1,y 2,,y n,y 1,y

More information

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41,

Example: (13320, 22140) =? Solution #1: The divisors of are 1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 41, The greatest common dvsor of two ntegers a and b (not both zero) s the largest nteger whch s a common factor of both a and b. We denote ths number by gcd(a, b), or smply (a, b) when there s no confuson

More information

Digital Signal Processing

Digital Signal Processing Dgtal Sgnal Processng Dscrete-tme System Analyss Manar Mohasen Offce: F8 Emal: manar.subh@ut.ac.r School of IT Engneerng Revew of Precedent Class Contnuous Sgnal The value of the sgnal s avalable over

More information

1 Convex Optimization

1 Convex Optimization Convex Optmzaton We wll consder convex optmzaton problems. Namely, mnmzaton problems where the objectve s convex (we assume no constrants for now). Such problems often arse n machne learnng. For example,

More information

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise. Chapter - The Smple Lnear Regresson Model The lnear regresson equaton s: where y + = β + β e for =,..., y and are observable varables e s a random error How can an estmaton rule be constructed for the

More information

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs)

Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs) Problem adapted reduced models based on Reacton-Dffuson Manfolds (REDIMs) V Bykov, U Maas Thrty-Second Internatonal Symposum on ombuston, Montreal, anada, 3-8 August, 8 Problem Statement: Smulaton of reactng

More information

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty

Additional Codes using Finite Difference Method. 1 HJB Equation for Consumption-Saving Problem Without Uncertainty Addtonal Codes usng Fnte Dfference Method Benamn Moll 1 HJB Equaton for Consumpton-Savng Problem Wthout Uncertanty Before consderng the case wth stochastc ncome n http://www.prnceton.edu/~moll/ HACTproect/HACT_Numercal_Appendx.pdf,

More information

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan.

THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY. William A. Pearlman. References: S. Arimoto - IEEE Trans. Inform. Thy., Jan. THE ARIMOTO-BLAHUT ALGORITHM FOR COMPUTATION OF CHANNEL CAPACITY Wllam A. Pearlman 2002 References: S. Armoto - IEEE Trans. Inform. Thy., Jan. 1972 R. Blahut - IEEE Trans. Inform. Thy., July 1972 Recall

More information

The Geometry of Logit and Probit

The Geometry of Logit and Probit The Geometry of Logt and Probt Ths short note s meant as a supplement to Chapters and 3 of Spatal Models of Parlamentary Votng and the notaton and reference to fgures n the text below s to those two chapters.

More information

Edge Isoperimetric Inequalities

Edge Isoperimetric Inequalities November 7, 2005 Ross M. Rchardson Edge Isopermetrc Inequaltes 1 Four Questons Recall that n the last lecture we looked at the problem of sopermetrc nequaltes n the hypercube, Q n. Our noton of boundary

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Lecture 10: Euler s Equations for Multivariable

Lecture 10: Euler s Equations for Multivariable Lecture 0: Euler s Equatons for Multvarable Problems Let s say we re tryng to mnmze an ntegral of the form: {,,,,,, ; } J f y y y y y y d We can start by wrtng each of the y s as we dd before: y (, ) (

More information

An outside barrier option

An outside barrier option Chapter 24 An outsde barrer opton Barrer process: dy (t) Y (t) = dt+ 1 db 1 (t): Stock process: (t) S(t) = dt+ 2 db 1 (t) + 1 ; 2 2 db 2 (t) where 1 > 0 2 > 0 ;1

More information

Formal solvers of the RT equation

Formal solvers of the RT equation Formal solvers of the RT equaton Formal RT solvers Runge- Kutta (reference solver) Pskunov N.: 979, Master Thess Long characterstcs (Feautrer scheme) Cannon C.J.: 970, ApJ 6, 55 Short characterstcs (Hermtan

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion Lecture : Kneatcs of Partcles Rectlnear oton Straght-Lne oton [.1] Analtcal solutons for poston/veloct [.1] Solvng equatons of oton Analtcal solutons (1 D revew) [.1] Nuercal solutons [.1] Nuercal ntegraton

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate

(Online First)A Lattice Boltzmann Scheme for Diffusion Equation in Spherical Coordinate Internatonal Journal of Mathematcs and Systems Scence (018) Volume 1 do:10.494/jmss.v1.815 (Onlne Frst)A Lattce Boltzmann Scheme for Dffuson Equaton n Sphercal Coordnate Debabrata Datta 1 *, T K Pal 1

More information

ACTM State Calculus Competition Saturday April 30, 2011

ACTM State Calculus Competition Saturday April 30, 2011 ACTM State Calculus Competton Saturday Aprl 30, 2011 ACTM State Calculus Competton Sprng 2011 Page 1 Instructons: For questons 1 through 25, mark the best answer choce on the answer sheet provde Afterward

More information

MATH 281A: Homework #6

MATH 281A: Homework #6 MATH 28A: Homework #6 Jongha Ryu Due date: November 8, 206 Problem. (Problem 2..2. Soluton. If X,..., X n Bern(p, then T = X s a complete suffcent statstc. Our target s g(p = p, and the nave guess suggested

More information

Analysis of Variance and Design of Experiments-II

Analysis of Variance and Design of Experiments-II Analyss of Varance and Desgn of Experments-II MODULE - III LECTURE - 8 PARTIALLY BALANCED INCOMPLETE BLOCK DESIGN (PBIBD) Dr Shalah Department of Mathematcs & Statstcs Indan Insttute of Technology Kanpur

More information

Introduction to Algorithms

Introduction to Algorithms Introducton to Algorthms 6.046J/8.40J/SMA5503 Lecture 9 Prof. Erk Demane Shortest paths Sngle-source shortest paths Nonnegate edge weghts Djkstra s algorthm: OE + V lg V General Bellman-Ford: OVE DAG One

More information