Oxia Planum. ExoMars. Ellipse ~ 104 km x 19 km Between 25 N & 5 S < -2 km elevation

Size: px
Start display at page:

Download "Oxia Planum. ExoMars. Ellipse ~ 104 km x 19 km Between 25 N & 5 S < -2 km elevation"

Transcription

1 ExoMars Oxia Planum Ellipse ~ 104 km x 19 km Between 25 N & 5 S < -2 km elevation Astrobiological mission Outflow for Coogoon Valles Phyllosilicates Igneous units

2 Mars 2020 Next MSL-class rover Landing site TBD

3 Proposed Engineering Constraints Between 30 N & 30 S Below -.5km MOLA Baseline ellipse 25x20km EDL (Entry, Descent, & Landing) enhancements would increase landing precision Range Trigger: 12x11 km, up to 0.0 km TRN (Terrain Relative Navigation)

4 Mission Science Goals Conduct rigorous in-situ science Geology: Characterize the processes that formed and modified the geologic record within a field exploration area on Mars selected for evidence of an astrobiologically relevant ancient environment and geologic diversity Astrobiology: Determine the habitability of an ancient environment, search for materials with high biosignature preservation potential, and search for potential evidence of past life.

5 Enable the future Sample Return: Collect samples that are scientifically selected, for which the field context is documented, that contain the most promising samples identified in the astrobiology objective and that represent the geologic diversity of the field site Human Exploration/Technology: Contribute to the preparation for human exploration of Mars by making significant progress towards filling at least one major Strategic Knowledge Gap

6 Current top 3 landing sites 1. Jezero Crater 2. Colombia Hills (Gusev Crater, MER - A) 3. NE Syrtis

7 Human landing sites New landing site initiatve 2015 Humans on Mars in late 2030 s Two way mission! 30 day or 500 day Multiple, recurring missions Build infrastructure, maximize science potential

8 1 st landing site/exploration zone workshop Lunar and Planetary Institute, October 2015 ~40 landing sites proposed Three sites proposed by Gallegos & Newsom 1. Mesopotamia 2. Protonilus Mensae 3. Tempe Terra

9 Requirements Engineering ±50 latitude < +2 km MOLA 100 km radius 25 sq km landing area Low thermal inertia/high albedo Science Same as always but hopefully with better tools! In-situ Resource Utilization Water for drinking, power, and liftoff: 20MT/landing Materials to be used as metal and silicon feedstock Materials for civil engineering

10 Geoscience Science Site Criteria Atmospheric Science Astrobio AND/OR Site Factors Threshold Qualifying Threshold Potential for past habitability Potential for present habitability/refugia Potential for organic matter, w/ surface exposure Noachian/Hesperian rocks w/ trapped atmospheric gases Meteorological diversity in space and time Qualifying High likelihood of surface-atmosphere exchange Amazonian subsurface or high-latitude ice or sediment High likelihood of active trace gas sources Range of martian geologic time; datable surfaces Threshold Evidence of aqueous processes Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times SCIENCE RUBRIC Qualifying Near-surface ice, glacial or permafrost Noachian or pre-noachian bedrock units Outcrops with remnant magnetization Primary, secondary, and basin-forming impact deposits Structural features with regional or global context Diversity of aeolian sediments and/or landforms East Hellas: Mesopotamia 56

11 Metal/Silicon Resource ISRU and Civil Engineering Criteria Food Production Civil Engineering Water Resource AND/O R Site Factors RESOURCE RUBRIC Engineering Threshold Qualifying Threshold Qualifying Qualifying Threshold Qualifying Meets First Order Criteria (Latitude, Elevation, Thermal Inertia) Potential for ice or ice/regolith mix Potential for hydrated minerals Quantity for substantial production Potential to be minable by highly automated systems Located less than 3 km from processing equipment site Located no more than 3 meters below the surface Accessible by automated systems Potential for multiple sources of ice, ice/regolith mix and hydrated minerals Distance to resource location can be >5 km Route to resource location must be (plausibly) traversable ~50 sq km region of flat and stable terrain with sparse rock distribution 1 10 km length scale: <10 Located within 5 km of landing site location Located in the northern hemisphere Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith Utilitarian terrain features Low latitude No local terrain feature(s) that could shadow light collection facilities Access to water Access to dark, minimally altered basaltic sands Potential for metal/silicon Potential to be minable by highly automated systems Located less than 3 km from processing equipment site Located no more than 3 meters below the surface Accessible by automated systems Potential for multiple sources of metals/silicon Distance to resource location can be >5 km Route to resource location must be (plausibly) traversable East Hellas: Mesopotamia 57

12 3 2 1

13 The East Rim of Hellas: Mars Mesopotamia Zachary Gallegos University of New Mexico Horton Newsom University of New Mexico East Hellas: Mesopotamia 59

14 EZ Close-up 94.02E, S East Hellas: Mesopotamia 60

15 Geologic Context AHi Hve IHv enhm ehv ANa AHi ehv East Hellas: Mesopotamia 61

16 Regional Geologic/Geomorphic map AHi enhm Early Noachian highland massif unit lhv1 ANma Amazonian/Noachian massif apron unit Hve Hesperian volcanic edifice Hve ihv2 lhv2 ehv1 Early Hesperian volcanics 1 ehv2 Early Hesperian volcanics 2 enhm HAcd ihv1 ihv1 Intermediate Hesperian volcanics 1 ihv2 Intermediate Hesperian volcanics 2 ehv2 AHi enhm lhv2 Late Hesperian volcanics 1 lhv2 Late Hesperian volcanics 2 HAcd Drainage channel deposits (ehv) ehv1 HAgs ANma ehv2 HAgp Amazonian and Hesperian glacial piedmont (ehv2) HAgs Amazonian and Hesperian glacial scablands (ehv2) AHi Amazonian and Hesperian impact unit East Hellas: Mesopotamia 62

17 ROI1 Amazonian-Noachian apron unit (ANa) E, Amazonian water ice Noachian bedrock East Hellas: Mesopotamia 63

18 ROI1 Amazonian-Noachian apron unit (ANa) East Hellas: Mesopotamia 64

19 Massif-draped debris aprons Replace With: EZ Location Name 65

20 HiRISE geologic/geomorphic map ehv2 HAgs enhm Early Noachian highland massif unit ANma Amazonian/Noachian massif apron unit ehv2 Early Hesperian volcanics HAgp Amazonian and Hesperian glacial piedmont (ehv) AHi HAgs Amazonian and Hesperian glacial scablands (ehv) HAgp AHi Amazonian and Hesperian impact unit ANma ENhm 66

21 HiRISE observations Linear fearures Ridges Furrows Moraine Moat 67

22 ROI2 Dao Vallis E, Aqueous processes Past habitability? Water ice Hydrated minerals East Hellas: Mesopotamia 68

23 ROI2 Dao Vallis East Hellas: Mesopotamia 69

24 ROI3 Negele Crater (AHi) E, Impact deposits Trapped atmospheric gasses Water ice Hydrated minerals? East Hellas: Mesopotamia 70

25 ROI3 Negele Crater (AHi) East Hellas: Mesopotamia 71

26 ROI4 Early Hesperian volcanic unit (ehv) E, Igneous rocks Datable surfaces Trapped atmospheric gasses Metals? Cobbles, rocks, regolith East Hellas: Mesopotamia 72

27 ROI4 Early Hesperian volcanic unit (ehv) East Hellas: Mesopotamia 73

28 ROI5 Late Hesperian volcanic unit (lhv) E, Igneous rocks Datable surfaces Trapped atmospheric gasses Metals? Cobbles, rocks, regolith East Hellas: Mesopotamia 74

29 Metal/Silicon Resource Geoscience ISRU and Civil Engineering Criteria Food Production Science Site Criteria Civil Engineering Atmospheric Science Water Resource Astrobio AND/OR AND/O R EZ EZ EZ Rubrics Threshold Site Factors Potential for past habitability Potential for present habitability/refugia Qualifying Potential for organic matter, w/ surface exposure? Threshold Qualifying Threshold Qualifying Noachian/Hesperian rocks w/ trapped atmospheric gases Meteorological diversity in space and time High likelihood of surface-atmosphere exchange? Amazonian subsurface or high-latitude ice or sediment High likelihood of active trace gas sources? Range of martian geologic time; datable surfaces Evidence of aqueous processes Potential for interpreting relative ages Igneous Rocks tied to 1+ provinces or different times Near-surface ice, glacial or permafrost Noachian or pre-noachian bedrock units Outcrops with remnant magnetization Primary, secondary, and basin-forming impact deposits Structural features with regional or global context Diversity of aeolian sediments and/or landforms Engineering Threshold Qualifying Threshold Qualifying Qualifying Threshold Site Factors Meets First Order Criteria (Latitude, Elevation, Thermal Inertia) Potential for ice or ice/regolith mix Potential for hydrated minerals Quantity for substantial production Potential to be minable by highly automated systems Located less than 3 km from processing equipment site? Located no more than 3 meters below the surface? Accessible by automated systems Potential for multiple sources of ice, ice/regolith mix and hydrated minerals Distance to resource location can be >5 km Route to resource location must be (plausibly) traversable ~50 sq km region of flat and stable terrain with sparse rock distribution 1 10 km length scale: <10? Located within 5 km of landing site location Located in the northern hemisphere Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith? Utilitarian terrain features? Low latitude No local terrain feature(s) that could shadow light collection facilities Access to water Access to dark, minimally altered basaltic sands Potential for metal/silicon Potential to be minable by highly automated systems Located less than 3 km from processing equipment site? Located no more than 3 meters below the surface? Accessible by automated systems Route to resource location must be (plausibly) traversable Potential for multiple sources of metals/silicon Replace With: EZ Location Name 75 Qualifying Distance to resource location can be >5 km

30 Protonilus Mensae Zachary Gallegos University of New Mexico Horton Newsom University of New Mexico Protonilus Mensae 76

31 Geologic Context HNt HNt AHi eht ANa eht mnh AHi ANa mnh Protonilus Mensae 77

32 ROI1 Amazonian-Noachian apron unit (ANa) E, E, Amazonian water ice Noachian bedrock Protonilus Mensae 78

33 ROI1 Amazonian-Noachian apron unit (ANa)

34 ROI2 Outflow channels E, E, Aqueous processes Past habitability? Water ice Protonilus Mensae 80

35 ROI2 Outflow channels Protonilus Mensae 81

36 ROI3 Moreux Crater (AHi) E, Impact deposits Trapped atmospheric gasses Water ice Protonilus Mensae 82

37 ROI4 Noachian Highlands (mnh) E, Igneous rocks Datable surfaces Trapped atmospheric gasses Protonilus Mensae 83

38 New HIRISE observation Protonilus Mensae 84

39 Zachary Gallegos Astronaut Candidate

40 Mars One Humans to Mars in late 2020s 12 year current projection One-way colonization mission 202,000+ applicants! 100 astronaut candidates remain I am one of the final 100

41

42

43

44 Training in New Mexico?

45 Questions Zachary Gallegos UNM Institute of Meteoritics

46 Mars One video

Supplemental Background Information

Supplemental Background Information Supplemental Background Information NASA has begun a process to identify and evaluate candidate locations where humans could land, live and work on the martian surface referred to as Exploration Zones

More information

LANDING SITE SELECTION FOR THE MARS SCIENCE LABORATORY AND IMPLICATIONS FOR MARS SAMPLE RETURN

LANDING SITE SELECTION FOR THE MARS SCIENCE LABORATORY AND IMPLICATIONS FOR MARS SAMPLE RETURN Miyamoto Landing Site LANDING SITE SELECTION FOR THE MARS SCIENCE LABORATORY AND IMPLICATIONS FOR MARS SAMPLE RETURN Horton Newsom, Ann Ollila, Nina Lanza, Institute of Meteoritics and Dept. of Earth and

More information

Mars Program Planning

Mars Program Planning Mars Program Planning April 2, 2009 David Beaty Operational 2001-Present Odyssey The Exploration of Mars Where to From Here? 2009 Launch Year 2011 2013 2016 2016 & Beyond The Era of Mars Sample Return

More information

Examining the Terrestrial Planets (Chapter 20)

Examining the Terrestrial Planets (Chapter 20) GEOLOGY 306 Laboratory Instructor: TERRY J. BOROUGHS NAME: Examining the Terrestrial Planets (Chapter 20) For this assignment you will require: a calculator, colored pencils, a metric ruler, and your geology

More information

Mars Landing Sites: Mawrth Vallis. Debra Buczkowski, Kim Seelos, Wes Patterson, and Frank Seelos

Mars Landing Sites: Mawrth Vallis. Debra Buczkowski, Kim Seelos, Wes Patterson, and Frank Seelos Mars Landing Sites: Mawrth Vallis Debra Buczkowski, Kim Seelos, Wes Patterson, and Frank Seelos Review: Final 4 (or 5?) Candidate MSL Landing Sites Northeast Syrtis Eberswalde Crater Mawrth Vallis + one

More information

Mars: Current State of Knowledge and Outstanding Questions. Jack Mustard, Brown University Presentation to the Mars 3

Mars: Current State of Knowledge and Outstanding Questions. Jack Mustard, Brown University Presentation to the Mars 3 Mars: Current State of Knowledge and Outstanding Questions Jack Mustard, Brown University Presentation to the Mars 3 2 3 Mariner 4, 6, 7 4 5 McKay, D. S.; et al. (1996). "Search for Past Life on Mars:

More information

39 Mars Ice: Intermediate and Distant Past. James W. Head Brown University Providence, RI

39 Mars Ice: Intermediate and Distant Past. James W. Head Brown University Providence, RI 39 Mars Ice: Intermediate and Distant Past James W. Head Brown University Providence, RI james_head@brown.edu 37 Follow the Water on Mars: 1. Introduction: Current Environments and the Traditional View

More information

Mars Science Laboratory: Mission Perspective

Mars Science Laboratory: Mission Perspective Mars Science Laboratory: Mission Perspective John Grotzinger JPL/Caltech MSL Project Scientist Science Goals MSL s primary scientific goal is to explore a landing site as a potential habitat for life,

More information

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading:

The Main Points. The View from the Surface. Geology of Mars. Lecture #20: Reading: Surface of Mars Lecture #20: Geology and Geologic Processes View from the Surface History/Evolution of the surface Reading: Chapter 9.4 The Main Points Mars has had a geologically active past that has

More information

Gale Crater MSL Candidate Landing Site in Context

Gale Crater MSL Candidate Landing Site in Context Gale Crater MSL Candidate Landing Site in Context by K. Edgett April 2010 MSL Science Team Landing Sites Discussions Gale Crater Edgett, p. 1 What do I mean by Context? How will the things we can learn

More information

Science Targets Along a Proposed Gale Traverse. Ryan Anderson, Dawn Sumner & Jim Bell 5 th Mars Science Laboratory Landing Site Workshop May 17, 2011

Science Targets Along a Proposed Gale Traverse. Ryan Anderson, Dawn Sumner & Jim Bell 5 th Mars Science Laboratory Landing Site Workshop May 17, 2011 Science Targets Along a Proposed Gale Traverse Ryan Anderson, Dawn Sumner & Jim Bell 5 th Mars Science Laboratory Landing Site Workshop May 17, 2011 Traverse Overview This is a notional traverse. Based

More information

Minéralogie de Valles Marineris (Mars) par télédetection hyperspectrale: Histoire magmatique et sédimentaire de la région.

Minéralogie de Valles Marineris (Mars) par télédetection hyperspectrale: Histoire magmatique et sédimentaire de la région. Minéralogie de Valles Marineris (Mars) par télédetection hyperspectrale: Histoire magmatique et sédimentaire de la région. Dr. Jessica Flahaut Chercheur postdoctoral, Institut d Astrophysique Spatiale,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Materials for Ancient ocean on Mars supported by global distribution of deltas and valleys Gaetano Di Achille 1* & Brian M. Hynek 1,2 1 Laboratory for Atmospheric

More information

MSL Landing Site Analysis for Planetary Protection

MSL Landing Site Analysis for Planetary Protection MSL Landing Site Analysis for Planetary Protection Ashwin R. Vasavada MSL Deputy Project Scientist Jet Propulsion Laboratory, California Institute of Technology NASA Planetary Protection Subcommittee May

More information

PTYS 214 Spring Announcements. Graded exams available. Writing assignment early deadline 4/17

PTYS 214 Spring Announcements. Graded exams available. Writing assignment early deadline 4/17 s PTYS 214 Spring 2018 Announcements Graded exams available Writing assignment early deadline 4/17 1 Midterm #4 Total Students: 19 Class Average: 79 Low: 48 High: 100 If you have questions see one of us!

More information

Habitable Environments of Ancient Mars: Deciphering the Rock Record. John Grotzinger

Habitable Environments of Ancient Mars: Deciphering the Rock Record. John Grotzinger Habitable Environments of Ancient Mars: Deciphering the Rock Record John Grotzinger Modern Mars: Recurring Slope Lineae McEwan et al., 2014 Mars Timeline: Water-related environments Ehlmann et al., 2011,

More information

Geophysics & Meteorology on the surface of Mars. P.Lognonné, T.Spohn, F.Forget IPGP, DLR, IPSL

Geophysics & Meteorology on the surface of Mars. P.Lognonné, T.Spohn, F.Forget IPGP, DLR, IPSL Geophysics & Meteorology on the surface of Mars P.Lognonné, T.Spohn, F.Forget IPGP, DLR, IPSL Geophysics on the Martian surface Why a geophysical exploration of Mars? Many strong geophysical differences

More information

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 10. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 10 Astronomy Today 8th Edition Chaisson/McMillan Chapter 10 Mars Units of Chapter 10 10.1 Orbital Properties 10.2 Physical Properties 10.3 Long-Distance Observations of Mars 10.4

More information

Highs and Lows Floods and Flows

Highs and Lows Floods and Flows Highs and Lows Floods and Flows Planetary Mapping Facilitator Guide Becky Nelson Education Specialist The Lunar and Planetary Institute Highs and Lows, Floods and Flows Planetary Mapping Overview In this

More information

Ancient Floodwaters and Seas on

Ancient Floodwaters and Seas on 1 of 9 posted July 16, 2003 Ancient Floodwaters and Seas on Mars --- Surface deposits within the northern lowlands support the oceans hypothesis. Written by Linda M. V. Martel Hawai'i Institute of Geophysics

More information

AT A GLANCE. Content Goals Sand grains contain clues about their origin and history. A sand sample reflects the geology of its watershed

AT A GLANCE. Content Goals Sand grains contain clues about their origin and history. A sand sample reflects the geology of its watershed AT A GLANCE Overview This activity introduces students to one of the main geologic reasons why the mouth of Ares Vallis is such a desirable landing site. By examining sand samples from different locations,

More information

Highs and Lows, Floods and Flows PLANETARY MAPPING

Highs and Lows, Floods and Flows PLANETARY MAPPING Highs and Lows, Floods and Flows PLANETARY MAPPING OVERVIEW Teams of students become familiar with the topography of Mars, its geologic features, and patterns of features using a color-coded topographic

More information

Martian Salt Tectonics? Martin Jackson

Martian Salt Tectonics? Martin Jackson Martian Salt Tectonics? Martin Jackson Martin Jackson Structural geologist,, Jackson School of Geosciences. Research focused on salt tectonics, using physical and numerical modeling, seismic data, field

More information

Analogue Mission Simulations

Analogue Mission Simulations Analogue Mission Simulations Briefing Topic: Potential Locations for NEO Mission Simulations, Black Point Lava Flow, Arizona David A. Kring Analogue Mission Simulations Contents: Previous BPLF Mission

More information

Gray Iron Oxide in Meridiani, Mars

Gray Iron Oxide in Meridiani, Mars : 1 of 8 posted March 13, 2003 Gray Iron Oxide in Meridiani, Mars --- A deposit of gray hematite in Terra Meridiani may suggest that water once circulated through the rock layers in this region of Mars.

More information

The History of Water on Mars: Synthesis of New Results from Valley Networks and Deltas

The History of Water on Mars: Synthesis of New Results from Valley Networks and Deltas The History of Water on Mars: Synthesis of New Results from Valley Networks and Deltas Brian M. Hynek Professor at the University of Colorado, Laboratory for Atmospheric and Space Physics Department of

More information

THE NEW GEOLOGY OF MARS: TOP TEN RESULTS OF POST-VIKING GLOBAL MAPPING AND CRATER-DATING

THE NEW GEOLOGY OF MARS: TOP TEN RESULTS OF POST-VIKING GLOBAL MAPPING AND CRATER-DATING THE NEW GEOLOGY OF MARS: TOP TEN RESULTS OF POST-VIKING GLOBAL MAPPING AND CRATER-DATING K.L. Tanaka 1, J.A. Skinner, Jr. 1, C.M. Fortezzo 1, T.M. Hare 1, R.P. Irwin 2, T. Platz 3, G. Michael 3, J.M. Dohm

More information

David Baxter. GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School

David Baxter. GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School David Baxter GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School Department of Geological Sciences Planetary Geology Group Dr. Michael Wyatt Dr. James

More information

Why Should We Expect to Find Life on Mars?

Why Should We Expect to Find Life on Mars? Why Should We Expect to Find Life on Mars? Roger C. Wiens ASA 2017 Golden, Colorado Wikipedia sources used Mars as a Habitable Planet Mars is within the habitable zone of our solar system Had ancient lakes,

More information

The SPE Foundation through member donations and a contribution from Offshore Europe

The SPE Foundation through member donations and a contribution from Offshore Europe Primary funding is provided by The SPE Foundation through member donations and a contribution from Offshore Europe The Society is grateful to those companies that allow their professionals to serve as

More information

Automated Identification and Characterization of Landforms on Mars

Automated Identification and Characterization of Landforms on Mars Automated Identification and Characterization of Landforms on Mars Tomasz F. Stepinski Lunar and Planetary Institute Collaborators: Wei Luo Students: Brain Bue Ian Molloy Erik Urbach Michael Mendenhall

More information

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets

page - Lab 13 - Introduction to the Geology of the Terrestrial Planets page - Lab 13 - Introduction to the Geology of the Terrestrial Planets Introduction There are two main families of planets in our solar system: the inner Terrestrial planets (Earth, Mercury, Venus, and

More information

Cratering and the Martian Surface

Cratering and the Martian Surface Lab 4 Cratering and the Martian Surface 4.1 Overview Exercise four continues our study of terrestrial surface evolution, shifting from the Moon to Mars and exploiting an extensive reservoir of recent high-resolution

More information

Introduction. Background

Introduction. Background Introduction In introducing our research on mars we have asked the question: Is there a correlation between the width of an impact crater and the depth of that crater? This will lead to answering the question:

More information

Life and habitability in the Solar System and beyond: the Roadmap

Life and habitability in the Solar System and beyond: the Roadmap "There are more things in heaven and earth, Horatio, than are dreamt of in your philosophy." Hamlet (I, v, 166-167) Life and habitability in the Solar System and beyond: the Roadmap Lucia Marinangeli and

More information

Mission Pre-Briefing for Crew B

Mission Pre-Briefing for Crew B BPLF Lunar Mission Simulations 2009 Briefing Topic: Mission Pre-Briefing for Crew B Regional Geologic Context Black Point Lava Flow 2009 Test Site BPLF occurs along the NE margin of a large volcanic field

More information

10/31/2010. Opposition and Conjunction. Opposition occurs every 2 years. Best opposition at perihelion. Percival Lowell

10/31/2010. Opposition and Conjunction. Opposition occurs every 2 years. Best opposition at perihelion. Percival Lowell Opposition and Conjunction Opposition occurs every 2 years Best opposition at perihelion Percival Lowell 1 Canals on Mars? Martians? Orson Welle s Broadcast (1938) The War of the Worlds H G Wells (1898)

More information

Follow the Water on Mars. James W. Head Brown University Providence, RI

Follow the Water on Mars. James W. Head Brown University Providence, RI Follow the Water on Mars James W. Head Brown University Providence, RI james_head@brown.edu Water On Mars: Some Key Questions - Key ingredient for life. - Follow the water! - How much is there? - Where

More information

Presentation given to computer science undergraduate students at the University of Houston July 2007

Presentation given to computer science undergraduate students at the University of Houston July 2007 Presentation given to computer science undergraduate students at the University of Houston July 2007 Machine Learning and Data Mining in Mars Tomasz F. Stepinski Lunar and Planetary Institute MARS/EARTH

More information

From Habitability to Life

From Habitability to Life From Habitability to Life An Ecosystem Approach to the Search for Life Beyond Earth Presentation to the NAS/Astrobiology Science Strategy for the Search for Life in the Universe Committee March 6, 2018

More information

Did Fluvial Landforms Form Under A Warmer Early Mars?

Did Fluvial Landforms Form Under A Warmer Early Mars? Did Fluvial Landforms Form Under A Warmer Early Mars? N. Mangold, LPG Nantes/CNRS, France Acknowledgments: I warmly thank all colleagues and students having worked with me in the last 15 years. Textbook

More information

Opposition and Conjunction

Opposition and Conjunction Opposition and Conjunction Summary 1. Mars is 52% further the Sun having an orbital period of nearly 2 Earth years 2. Mars is much smaller than the Earth being roughly 53% the size, 11% the mass of the

More information

Bethany Ehlmann 8 Dec 2015

Bethany Ehlmann 8 Dec 2015 Some background on (1) Martian heatflow, (2) water and physical properties of the Mars subsurface, (3) water rock reactions, (4) places of escape of methane Bethany Ehlmann 8 Dec 2015 Heat flow and thermal

More information

Proposed Mars Sample Return (MSR) E2E-iSAG: Phase I Analysis

Proposed Mars Sample Return (MSR) E2E-iSAG: Phase I Analysis Proposed Mars Sample Return (MSR) E2E-iSAG: Phase I Analysis MEPAG E2E-iSAG Scott McLennan, Mark Sephton, and the E2E-iSAG team AGU Town Hall, Dec. 15, 2010 Proposed MSR Objectives & Charter Tasks PROPOSED

More information

Presentation given at Smithsonian National Air and Space Museum October 2006

Presentation given at Smithsonian National Air and Space Museum October 2006 Presentation given at Smithsonian National Air and Space Museum October 2006 The Science and Art of Mapping Martian Valley Networks Using a Computer Algorithm Tomasz F. Stepinski Lunar and Planetary Institute

More information

Outflow Channels May Make a Case for a Bygone Ocean on Mars Written by Linda M.V. Martel Hawai'i Institute of Geophysics and Planetology

Outflow Channels May Make a Case for a Bygone Ocean on Mars Written by Linda M.V. Martel Hawai'i Institute of Geophysics and Planetology 1 of 5 posted June 14, 2001 Outflow Channels May Make a Case for a Bygone Ocean on Mars Written by Linda M.V. Martel Hawai'i Institute of Geophysics and Planetology High-resolution elevation data from

More information

ExoMars 2018 Mission

ExoMars 2018 Mission POCKOCMOC POCKOCMOC ExoMars 2018 Mission J. L. Vago, D. S. Rodionov, O. Witasse, G. Kminek, L. Lorenzoni, the LSSWG, and the ExoMars Team 1 The 8 th International Conference on Mars 18 July 2014, Pasadena

More information

Scientific Contributions of Lunar Robotic Precursor Missions

Scientific Contributions of Lunar Robotic Precursor Missions Scientific Contributions of Lunar Robotic Precursor Missions Paul D. Spudis Johns Hopkins University Applied Physics Laboratory paul.spudis@jhuapl.edu www.spudislunarresources.com Presentation to LEAG

More information

Final Report of the 2020 Mars Rover Science Definition Team (SDT)

Final Report of the 2020 Mars Rover Science Definition Team (SDT) Final Report of the 2020 Mars Rover Science Definition Team (SDT) January 2013: SDT Members selected (Jack Mustard, Chair) June 28, 2013: Delivery of text report to NASA (available at the mission web site:

More information

1.2: Observing the Surfaces of Mars and Earth

1.2: Observing the Surfaces of Mars and Earth GEOLOGY ON MARS Unit 1 - Chapter 1-2 Comparing Rocky Planets 1.2: Observing the Surfaces of Mars and Earth Log on to Amplify Geology on Mars Chapter 1.2 In a moment, you will watch a video made by other

More information

Mars Science Laboratory - Overview Mars Express Conference

Mars Science Laboratory - Overview Mars Express Conference Mars Science Laboratory - Overview Mars Express Conference February 2005 Michael Meyer MSL Program Scientist Mars Science Laboratory the AO The overall MSL science objective is to explore and quantitatively

More information

The ExoMars Programme

The ExoMars Programme E X O M A R S The ExoMars Programme PHOOTPRINT Scientific context E X O M A R S - A primitive Mars and an early evolution similar to that early of evolution the Earth similar to that A primitive Mars likely

More information

Page 1. Name:

Page 1. Name: Name: 1) Which property would best distinguish sediment deposited by a river from sediment deposited by a glacier? thickness of sediment layers age of fossils found in the sediment mineral composition

More information

E X O M A R S. The ESA/NASA ExoMars Programme

E X O M A R S. The ESA/NASA ExoMars Programme The ESA/NASA ExoMars Programme 1 International Scene Recognising that a Mars Sample Return (MSR) mission is very challenging, and that its and that its undertaking will likely exceed the financial capabilities

More information

Mars ( ) The Sun and Planets Lecture Notes 6. Spring Semester 2018 Prof Dr Ravit Helled

Mars ( ) The Sun and Planets Lecture Notes 6. Spring Semester 2018 Prof Dr Ravit Helled The Sun and Planets Lecture Notes 6. Spring Semester 2018 Prof Dr Ravit Helled Mars ( ) Mars is the fourth planet from the Sun and the outermost terrestrial planet. It has a density of 3.93 g/cm3, which

More information

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS

ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS ENVIRONMENTAL GEOSCIENCE UNIFORM SYLLABUS The Association of Professional Engineers and Geoscientists of the Province of British Columbia Note: 1. This Syllabus May Be Subject To Change 2. These Courses

More information

Candidate Scientific Objectives for the Human Exploration of Mars, and Implications for the Identification of Martian Exploration Zones

Candidate Scientific Objectives for the Human Exploration of Mars, and Implications for the Identification of Martian Exploration Zones Candidate Scientific Objectives for the Human Exploration of Mars, and Implications for the Identification of Martian Exploration Zones Scientific Objectives for the Human Exploration of Mars Science Analysis

More information

Mars, The First Billion Years Warm and Wet vs. Cold and Icy?

Mars, The First Billion Years Warm and Wet vs. Cold and Icy? Mars, The First Billion Years Warm and Wet vs. Cold and Icy? Bethany L. Ehlmann 1,2 1 GPS-Caltech, 2 JPL-Caltech 8 th International Mars Conference July 15, 2014 Mineralogy & Chemistry this presentation

More information

Lecture 15 Crater counting on Mars (Matt Smith, ESS)

Lecture 15 Crater counting on Mars (Matt Smith, ESS) Tuesday, 24 February Lecture 15 Crater counting on Mars (Matt Smith, ESS) Reading assignment: Ch. 8.1-8.5 Radar Basics (p.626 648) Ch 8.20 - Passive microwave (p. 709-714) Next lecture Forest remote sensing,

More information

The Latest from Mars: Recent Results and the Next Decade of Exploration

The Latest from Mars: Recent Results and the Next Decade of Exploration The Latest from Mars: Recent Results and the Next Decade of Exploration Brian M. Hynek Laboratory for Atmospheric and Space Physics & Department of Geological Sciences, University of Colorado Mars ½ diameter

More information

Gale Crater Observations of Relevance to Planetary Protection

Gale Crater Observations of Relevance to Planetary Protection Gale Crater Observations of Relevance to Planetary Protection Ashwin Vasavada MSL Project Scientist 12/8/15 This document has been reviewed and determined not to contain export controlled technical data.

More information

GEOCHEMISTRY UNIFORM SYLLABUS

GEOCHEMISTRY UNIFORM SYLLABUS GEOCHEMISTRY UNIFORM SYLLABUS The Association of Professional Engineers and Geoscientists of the Province of British Columbia Note: 1. This Syllabus May Be Subject To Change 2. These Courses Are Required

More information

Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels.

Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. Rilles Lunar Rilles are long, narrow, depressions formed by lava flows, resembling channels. Rugged Terra Rugged terra are mountainous regions of the moon. Wrinkle Ridges Wrinkle Ridges are created through

More information

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos

Mars: The Red Planet. Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Mars: The Red Planet Roman God of war Blood Reflects 30% of its incident sunlight 2 small moons : Phobos and Deimos Property Earth Mars Radius 6378km 3394km ~ 0.51R E Mass 5.97x10 24 kg 6.42x10 23 kg =

More information

GEOLOGIC MAPPING AS A GUIDE TO ROVER MISSION PLANNING ON MARS

GEOLOGIC MAPPING AS A GUIDE TO ROVER MISSION PLANNING ON MARS GEOLOGIC MAPPING AS A GUIDE TO ROVER MISSION PLANNING ON MARS Irwin and Grant, 2013 John A. Grant Center for Earth and Planetary Studies, National Air and Space Museum Smithsonian Institution Washington,

More information

Planetary Geology. Geology Colloquium. Tucker County Research Assistants

Planetary Geology. Geology Colloquium. Tucker County Research Assistants Planetary Geology Geology Colloquium Dr. Peter Sak, Dickinson College Interseismic Coupling, Quaternary Uplift Rates, and Fore Arc Deformation along the Costa Rican Segment of the Middle American Trench

More information

Scale: Mars is 6,787 km in diameter. Image 1. What is the feature across the middle? What do you think the circles on the left side are?

Scale: Mars is 6,787 km in diameter. Image 1. What is the feature across the middle? What do you think the circles on the left side are? Image Set Scale: Mars is 6,787 km in diameter. Image 1 What is the feature across the middle? What do you think the circles on the left side are? Image 2 On Earth, what are some things about the size of

More information

The Main Point. Lecture #21: Mars ~3 billion years ago? The Martian Climate

The Main Point. Lecture #21: Mars ~3 billion years ago? The Martian Climate Lecture #21: The Martian Climate Evidence for climate change Did it rain on Mars? Can you have a snowball fight on Mars? Similarities to variations in Earth's climate... Reading: Chapter 10.4 The Main

More information

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit

9/15/16. Guiding Questions. Our Barren Moon. The Moon s Orbit Our Barren Moon Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior have a

More information

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars

Today s Class. Results for Exam #2 11/7/2017. Today s Class: Robotic & Human Exploration of Mars 11/7/2017 Today s Class: Robotic & Human Exploration of Mars Results for Exam #2 Homework: 1. Reading for Earth as a Planet: Section 9.4 of Cosmic Perspective. 2. Meet at Fiske on Thursday! Average Median

More information

ExoMars 2016 Mission

ExoMars 2016 Mission POCKOCMOC POCKOCMOC ExoMars 2016 Mission O. Witasse, J. L. Vago, D. Rodionov, and the ExoMars Team 1 The 8 th International Conference on Mars 18 July 2014, Pasadena (USA) Cooperation ExoMars Programme

More information

EXPLORING THE GEOLOGY OF SEVERAL WORLDS FROM SPACE

EXPLORING THE GEOLOGY OF SEVERAL WORLDS FROM SPACE NAME DATE PARTNER(S) EXPLORING THE GEOLOGY OF SEVERAL WORLDS FROM SPACE We have investigated to understand how scientists can map the sea floor and land surfaces of the Earth. Now let=s extend our vision

More information

Mars Exploration Program (MEP) Update

Mars Exploration Program (MEP) Update Mars Exploration Program (MEP) Update Presented to the Planetary Protection Subcommittee Dec 8, 2015 Jim Watzin Director Mars Exploration Program MEP Update Ongoing efforts Operational assets continuing

More information

A Long-Range Vision for the Exploration of Mars

A Long-Range Vision for the Exploration of Mars A Long-Range Vision for the Exploration of Mars March 30, 2017 Compiled by David Beaty 1 and Bethany Ehlmann 2 1 Mars Program Office, Jet Propulsion Laboratory, California Institute of Technology 2 GPS/Caltech

More information

THE ROLE OF OBLIQUITY, WATER VAPOR AND TRACE GAS GREENHOUSES ON THE EARLY MARTIAN CLIMATE

THE ROLE OF OBLIQUITY, WATER VAPOR AND TRACE GAS GREENHOUSES ON THE EARLY MARTIAN CLIMATE THE ROLE OF OBLIQUITY, WATER VAPOR AND TRACE GAS GREENHOUSES ON THE EARLY MARTIAN CLIMATE M.A. Mischna, Jet Propulsion Laboratory / California Institute of Technology, Pasadena, CA, USA, (michael.a.mischna@

More information

Geologic Features of Mars

Geologic Features of Mars Name Purpose Geologic Features of Mars To learn to identify landforms on the surface of Mars and the geological processes that produced them. Introduction In many ways, Mars is similar to Earth. The same

More information

Major episodes of the hydrologic history in the region of Hesperia Planum, Mars

Major episodes of the hydrologic history in the region of Hesperia Planum, Mars JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2005je002420, 2005 Major episodes of the hydrologic history in the region of Hesperia Planum, Mars M. A. Ivanov, 1,2 J. Korteniemi, 2 V.-P. Kostama,

More information

Transient Processes and Environments on Present- Day Mars

Transient Processes and Environments on Present- Day Mars Transient Processes and Environments on Present- Day Mars Alfred McEwen University of Arizona 13 June 2011 Mars Habitability Conference, Lisbon HiRISE ESP_014339_0930 South Pole residual CO 2 ice cap in

More information

Europa Lander Mission Study: Science Dave Senske (JPL) Deputy Europa Study Scientist OPAG March 29, 2012

Europa Lander Mission Study: Science Dave Senske (JPL) Deputy Europa Study Scientist OPAG March 29, 2012 Europa Lander Mission Study: Science Dave Senske (JPL) Deputy Europa Study Scientist OPAG March 29, 2012 3/29/12 23 Science from Europa s Surface For key habitability science, Europa surface materials

More information

Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey

Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006je002680, 2007 Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey Horton E.

More information

Lunar Exploration Requirements and Data Acquisition Architectures

Lunar Exploration Requirements and Data Acquisition Architectures Lunar Exploration Requirements and Data Acquisition Architectures J. Plescia P. Spudis B. Bussey Johns Hopkins University / Applied Physics Laboratory 2005 International Lunar Conference The Vision and

More information

Chloride Deposits on Mars: Chlorine from the Sky, or Chlorine from the Rocks?

Chloride Deposits on Mars: Chlorine from the Sky, or Chlorine from the Rocks? Chloride Deposits on Mars: Chlorine from the Sky, or Chlorine from the Rocks? Mohit Melwani Daswani Edwin S. Kite Session 102, # 3 GSA Denver 26 th September 2016 Department of the Geophysical Sciences

More information

National Aeronautics and Space Administration

National Aeronautics and Space Administration Mars Math National Aeronautics and Space Administration Table of Contents ii Acknowledgments Table of Contents Mathematics Topic Matrix How to use this Book Alignment with Standards Teacher Comments Grade

More information

SP-1291 June Mars Express. The Scientific Investigations

SP-1291 June Mars Express. The Scientific Investigations SP-1291 June 2009 Mars Express The Scientific Investigations Overview 1 Mars Express: Summary of Scientific Results A.F. Chicarro, O.G. Witasse & A. Pio Rossi Solar System Missions Division, Research &

More information

Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars

Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008je003091, 2008 Evidence for extensive olivine-rich basalt bedrock outcrops in Ganges and Eos chasmas, Mars C. S.

More information

Astrobiology in the inner Solar System

Astrobiology in the inner Solar System Venus Surface conditions Astrobiology in the inner Solar System Planets and Astrobiology (2016-2017) G. Vladilo T s =735 K p s =92 x 10 5 Pa Atmospheric composition dominated by CO 2, without O 2 Absence

More information

3. GEOLOGY. 3.1 Introduction. 3.2 Results and Discussion Regional Geology Surficial Geology Mine Study Area

3. GEOLOGY. 3.1 Introduction. 3.2 Results and Discussion Regional Geology Surficial Geology Mine Study Area 3. GEOLOGY 3.1 Introduction This chapter discusses the baseline study of the geology and mineralization characteristics of the mine study area. The study consolidates existing geological data and exploration

More information

Our Barren Moon. Chapter Ten. Guiding Questions

Our Barren Moon. Chapter Ten. Guiding Questions Our Barren Moon Chapter Ten Guiding Questions 1. Is the Moon completely covered with craters? 2. Has there been any exploration of the Moon since the Apollo program in the 1970s? 3. Does the Moon s interior

More information

Importance of Sample Return to Understanding Mars. Meenakshi Wadhwa, ASU Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM)

Importance of Sample Return to Understanding Mars. Meenakshi Wadhwa, ASU Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) Importance of Sample Return to Understanding Mars Meenakshi Wadhwa, ASU Curation and Analysis Planning Team for Extraterrestrial Materials (CAPTEM) Outline General Principles for Planetary Missions Importance

More information

LETTERS. High-resolution subsurface water-ice distributions on Mars. Joshua L. Bandfield 1

LETTERS. High-resolution subsurface water-ice distributions on Mars. Joshua L. Bandfield 1 Vol 447 3 May 7 doi:10.1038/nature05781 LETTERS High-resolution subsurface water-ice distributions on Mars Joshua L. Bandfield 1 Theoretical models indicate that water ice is stable in the shallow subsurface

More information

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth

10. Our Barren Moon. Moon Data (Table 10-1) Moon Data: Numbers. Moon Data: Special Features 1. The Moon As Seen From Earth 10. Our Barren Moon Lunar plains & craters Manned lunar exploration The lunar interior The Moon s geologic history The formation of the Moon Moon Data (Table 10-1) Moon Data: Numbers Diameter: 3,476.km

More information

Geological Setting of the Luna Glob Candidate Landing Site Region in the Northern High Latitudes: Characterization from LOLA and Related Data

Geological Setting of the Luna Glob Candidate Landing Site Region in the Northern High Latitudes: Characterization from LOLA and Related Data Geological Setting of the Luna Glob Candidate Landing Site Region in the Northern High Latitudes: Characterization from LOLA and Related Data A.M. Abdrakhimov, A.T. Basilevsky, M.A. Ivanov, Vernadsky Institute,

More information

In Situ Noble Gas-based Dating On Terrestrial Planet Surfaces

In Situ Noble Gas-based Dating On Terrestrial Planet Surfaces In Situ Noble Gas-based Dating On Terrestrial Planet Surfaces Tim Swindle Lunar and Planetary Laboratory, University of Arizona Decadal Survey Terrestrial Planets Panel Irvine, California October 26, 2009

More information

Topographic and morphologic characteristics of Reull Vallis, Mars: Implications for the history of the Reull Vallis fluvial system

Topographic and morphologic characteristics of Reull Vallis, Mars: Implications for the history of the Reull Vallis fluvial system JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006je002848, 2007 Topographic and morphologic characteristics of Reull Vallis, Mars: Implications for the history of the Reull Vallis fluvial system

More information

Uncertainties: Limitations of Martian Granular Material Remote Sensing

Uncertainties: Limitations of Martian Granular Material Remote Sensing Uncertainties: Limitations of Martian Granular Material Remote Sensing Albert F. C. Haldemann Jet Propulsion Laboratory, California Institute of Technology. albert.f.haldemann@jpl.nasa.gov More Data, Better

More information

Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams

Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams Dana Felberg Steven Hester David Nielsen Zach Weddle Jack Williams To identify key features on the lunar surface near the Apollo 11 Landing site in the Mare Tranquillitatis. Apollo 11 launched: 16 July

More information

Martian Crater Dating through Isochrons. The universe is a vast and seemingly-endless array of space and matter that

Martian Crater Dating through Isochrons. The universe is a vast and seemingly-endless array of space and matter that Gary Studen ASTR 498 5/13/05 Martian Crater Dating through Isochrons Introduction The universe is a vast and seemingly-endless array of space and matter that harbors many mysteries. Through advances in

More information

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts

SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS. 7 th Annual Meeting of the NASA Institute for Advanced Concepts SAILING THE PLANETS: PLANETARY EXPLORATION FROM GUIDED BALLOONS 7 th Annual Meeting of the NASA Institute for Advanced Concepts DR. ALEXEY PANKINE GLOBAL AEROSPACE CORPORATION SAILING THE PLANETS 1 MARS

More information

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging

Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Constellation Program Office Tier 1 Regions of Interest for Lunar Reconnaissance Orbiter Camera (LROC) Imaging Regions of Interest listed in alphabetical order ( no priority implied) East longitudes represented

More information

Outline 9: Origin of the Earth: solids, liquids, and gases

Outline 9: Origin of the Earth: solids, liquids, and gases Outline 9: Origin of the Earth: solids, liquids, and gases The Early Archean Earth Origin of Earth s Matter The earth is made of recycled elements formed in stars that existed prior to our Sun. Supernova

More information