Two-Temperature EPR Measurements of Multi-Walled Carbon Nanotubes. Paweł Szroeder, Franciszek Rozpłoch and Waldemar Marciniak

Size: px
Start display at page:

Download "Two-Temperature EPR Measurements of Multi-Walled Carbon Nanotubes. Paweł Szroeder, Franciszek Rozpłoch and Waldemar Marciniak"

Transcription

1 Solid State Phenomena Vol. 94 (2003) pp (2003) Trans Tech Publications, Switzerland doi: / Two-Temperature EPR Measurements of Multi-Walled Carbon Nanotubes Paweł Szroeder, Franciszek Rozpłoch and Waldemar Marciniak Instytut Fizyki UMK, ul. Grudzi dzka 5/7, PL Toru, Poland Keywords: electron paramagnetic resonance (EPR), multi-walled carbon nanotube (MWNT) Abstract. Two-temperature EPR measurements of macroscopic bundles of multi-walled carbon nanotubes were performed. The asymmetric resonance lines were observed. The contribution of localized -electron spin centers was higher than in pyrolytic graphite. The interpretation of these results is that the nanotube graphene sheet curvature causes an increase in the density of trapped electrons. Introduction The purpose of the experiments was to determine the contribution of the delocalized spins which give rise to electron paramagnetic resonance in multi-walled carbon nanotubes (MWNT). Like graphite, MWNTs are essentially sp 2 bonded systems that consist of coaxial graphene cylinders. The interlayer spacing between concentric nanotubes was slightly greater (1%-2%) than that found in graphite [1]. Depending on the chirality and diameter, the individual nanotubes are predicted to exhibit either metallic or semiconductiong properties. For metallic nanotubes, the bonding defects on cylindrical sheets as well as tube tips can serve as trapping sites for conduction electrons. The trapping sites are associated with interesting junction properties indicating possible applications. The localized spin centers near defect states show Curie-like temperature dependence; by contrast, the EPR temperature dependence of conduction electron spins is close to that predicted by the Pauli magnetism. The comparison of EPR signal intensity at two temperatures allows one to determine the relative contributions of both types of spin centers. The paper reports on the experiments performed on unoriented bulk material using two-temperature EPR measurements Experimental The purpose of the experiments was to determine the contribution of the delocalized spins which give rise to electron paramagnetic resonance in multi-walled carbon nanotubes (MWNT). Like graphite, MWNTs are essentially sp 2 bonded systems that consist of coaxial graphene cylinders. The interlayer spacing between concentric nanotubes was slightly greater (1%-2%) than that found in graphite [1]. Depending on the chirality and diameter, the individual nanotubes are predicted to exhibit either metallic or semiconductiong properties. For metallic nanotubes, the bonding defects on cylindrical sheets as well as tube tips can serve as trapping sites for conduction electrons. The trapping sites are associated with interesting junction properties indicating possible applications. The localized spin centers near defect states show Curie-like temperature dependence; by contrast, the EPR temperature dependence of conduction electron spins is close to that predicted by the Pauli magnetism. The comparision of EPR signal intensity at two temperatures allows one to determine the relative contributions of both types of spin centres. The paper reports on the experiments performed on unoriented bulk material using two-temperature EPR measurements. Results and discussion Line shape. The experimental EPR curves in bulk carbon nanotubes are shown in Fig 2. The shapes of the resonance line are strongly assymetric due to the skin effect. All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP, (ID: , Pennsylvania State University, University Park, United States of America-04/06/14,10:21:11)

2 276 Interfacial Effects and Novel Properties of Nanomaterials Fig. 1. SEM images of MWNTs bundles To discuss these asymmetric curves the modified Dyson's theory of CESR line shape in graphite was used [3]. The skin depth was estimated from resistivity. Electron transport phenomena in macroscopic bundles of closely packed MWNTs are dominated by intertube contacts or intratube barriers and the measured resistivity is 6.5 m cm at 300 K [4]. Assuming this value we find» 40 m at 10 GHz. The skin depth is comparable to the diameter of columnar MWNT's bundles seen in the SEM images. So the conclusion is that the resonance lines reflect CESR phenomena within MWNT's bundles as a whole The linewidth. The linewidth B in macroscopic bundles of close-packed MWNTs decreases with increasing temperature. It equals 31 Gs at 77 K and 12 Gs at room temperature. Knowledge of B allows determination of the spin relaxation time T2 (= T1 for metals). Using the formula T2 =1/ B [5] we find T2» s at room temperature and» s at 77 K. The amplitude asymmetry of resonance curve A/B (see inset in Fig. 2) is related to the square root of the ratio T D / T2. TD is the time required for a spin to diffuse across the skin depth. Using this relation we estimate TD» 10-8 s at 300 K and s at 77 K. Taking a Fermi velocity uf» 10-8 cm/s in nanotube bundles estimated by Song et al. using Hall measurements [4], and confirmed by Tian et al. on the basis of thermoelectric power experiments [6], we determine a mean free path L. Assuming that all the conduction electrons have the same Fermi velocity uf, then TD = (3/2)(d2/uFL). The room temperature value for TD, combined with d» 40 m, leads to a mean free path L» 6 m. While crude, this estimate suggests that conduction occurs mainly along the nanotube axis in the bulk material and that the hopping between the tubes within a bundle is not the dominant transport mechanism. The g value. The g-value of bulk MWNTs is equal to ± at room temperature and increases with decreasing temperature. At 77 K g becomes ± 0,003. The shift g of the gfactor with respect to the free electron value (gfree = ) and B reveals information about the intristic resistivity in graphite. B is determined by the Elliott mechanism which relates the spin relaxation time T1 ( B a 1/T1) to the resistivity scattering time tr = kt1 g2, k being a constant in the range Using this relation with care we find tr» s. These results allow us to give an

3 Solid State Phenomena Vol Fig. 2. The EPR lines in bundles of carbon nanotubes at 300 and 77 K. The absorptive and dispersive components of resonance curves are shown under recorded spectra. The inset shows the parameters of Dysanian lines. upper limit of the intristic resistivity m/ne 2 τ R 10-1 Ωcm for MWNTs bundles at room temperature, where n is a carrier density (10 18 cm -1 ) and m is a carrier mass, assuming free electron mass. This value is over one order higher than the dc resistivities of MWNT films (see Ref. 4) which is consistent with the interpretation that dc is dominated by the intertube contact resistances. Resonant intensity. The intensity of the absorptive part of the resonance line is contributed to by both the conduction electrons and localized spin centres at the tube tips and defects such as deformed azulene structures on the graphene cylinders. Two-temperature measurements allow the subdivision of the total intensity of the absorptive part of the line I into two components that display respectively Pauli- (I Pauli = A + BT) and Curie-like (I Curie = C/T) temperature behaviour, where I = I Pauli + I Curie. If X I Pauli /I denotes the contribution of delocalized electron states then I I TN TRT A + BTN TRT = X + ( 1 X ) (1) A + BT T RT N

4 278 Interfacial Effects and Novel Properties of Nanomaterials Neglecting that π-electrons contributes to the creation of holes in the valence band we estimate using Eq. 1 that ~ 80 % of spin states are delocalized and Pauli-like temperature behavior occurs. Two-temperature EPR spectra recorded in pyrolytic graphite shows that X increases with improvement of their crystallite structure by annealing [7]. In pyrolytic graphite annealed at 2873 K, X = Much lower X in bundles of MWNT can be interpreted as a consequence of the tubular geometry of graphene layers being conducive to the creation of trapping sites for conduction -electrons. Conclusions Assuming mixed Curie- and Pauli-like temperature dependence of EPR line intensity we use the two-temperature measurement method for estimating the contribution of delocalizad -electron states in resonance. The percentage of delocalized states is much lower than that in annealed pyrolytic graphite. This result suggests that a higher number of defects (f.ex. pentagon-heptagon pairs) in MWNTs are present than in graphite. Topological imperfections and open edges of graphitic domains on the tips, cause increase of the trapped electron density. That leads to a decrease in carier mobility and resistivity scattering time τ R. Acknowledgments This work was supported by N.Copernicus University Grant No. 380-F. References [1] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, Phys. Rev. B Vol. 48, (1993), p [2] S. Ijima, Nature Vol.354, (1991) p. 56 [3] A. M. Ziatdinov, N. M. Mishtshenko, Fiz. Tverd. Tel a Vol. 36, (1994), p. 2360, A. M. Ziatdinov, N. M. Mishtshenko, Fiz. Tverd. Tel a Vol. 29, (1987), p [4] S. N. Song, X. K. Wang, R. P. H. Chang, and J. B. Ketterson, Phys. Rev. Lett. Vol. 72, (1994), p. 697 [5] G. Feher and A. F. Kipp, Phys. Rev. Vol. 98, (1955) p. 337 [6] M. Tian, F. Li, L. Chen, and Z. Mao, Phys. Rev. B Vol. 58, (1998), p [7] F. Rozpłoch, Magnetooporno ujemna w w glu pirolitycznym, (UMK, Toru, Poland 1984), p.56

5 Interfacial Effects and Novel Properties of Nanomaterials / Two-Temperature EPR Measurements of Multi-Walled Carbon Nanotubes / DOI References [1] Y. Saito, T. Yoshikawa, S. Bandow, M. Tomita, and T. Hayashi, Phys. Rev. B Vol. 48, (1993), doi: /physrevb

TEMPERATURE DEPENDENCE OF CURRENT CARRIER S SPIN RELAXATION IN GRAPHITE

TEMPERATURE DEPENDENCE OF CURRENT CARRIER S SPIN RELAXATION IN GRAPHITE TEMPERATURE DEPENDENCE OF CURRENT CARRIER S SPIN RELAXATION IN GRAPHITE A.M. Ziatdinov and V.V. Kainara Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences 159, Prosp. 1-letiya,

More information

Quantised Thermal Conductance

Quantised Thermal Conductance B B Quantised Thermal Conductance In 1983 J Pendry published a paper on the quantum limits to the flow of information and entropy [Pendry'83]. In it he showed that there is an inequality that limits the

More information

Self Formation of Porous Silicon Structure: Primary Microscopic Mechanism of Pore Separation

Self Formation of Porous Silicon Structure: Primary Microscopic Mechanism of Pore Separation Solid State Phenomena Vols. 97-98 (2004) pp 181-184 (2004) Trans Tech Publications, Switzerland Journal doi:10.4028/www.scientific.net/ssp.97-98.181 Citation (to be inserted by the publisher) Copyright

More information

Infrared Absorption Measurement of Carbon Concentration Down to 1x10 14 /cm 3 In CZ Silicon

Infrared Absorption Measurement of Carbon Concentration Down to 1x10 14 /cm 3 In CZ Silicon Solid State Phenomena Vols. 18-19 (25) pp 621-626 Online available since 25/Dec/15 at www.scientific.net (25) Trans Tech Publications, Switzerland doi:1.428/www.scientific.net/ssp.18-19.621 Infrared Absorption

More information

NANOGRAPHITES AND THEIR COMPOUNDS

NANOGRAPHITES AND THEIR COMPOUNDS NANOGRAPHITES AND THEIR COMPOUNDS Albert M. Ziatdinov Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences. Vladivostok, Russia E-mail: albert_ziatdinov@mail.primorye.ru Introduction

More information

2 Symmetry. 2.1 Structure of carbon nanotubes

2 Symmetry. 2.1 Structure of carbon nanotubes 2 Symmetry Carbon nanotubes are hollow cylinders of graphite sheets. They can be viewed as single molecules, regarding their small size ( nm in diameter and µm length), or as quasi-one dimensional crystals

More information

A polyhedral model for carbon nanotubes

A polyhedral model for carbon nanotubes University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2007 A polyhedral model for carbon nanotubes Barry

More information

Dielectric Characteristics of Polyimides Modified by Additions of C 60 -Fullerene

Dielectric Characteristics of Polyimides Modified by Additions of C 60 -Fullerene Solid State Phenomena Vols. 99-100 (2004) pp 157-160 nline available since 2004/Jul/31 at www.scientific.net (2004) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.99-100.157 Dielectric

More information

BF 3 -doped polyaniline: A novel conducting polymer

BF 3 -doped polyaniline: A novel conducting polymer PRAMANA c Indian Academy of Sciences Vol. 67, No. 1 journal of July 2006 physics pp. 135 139 BF 3 -doped polyaniline: A novel conducting polymer DEBANGSHU CHAUDHURI and D D SARMA Solid State and Structural

More information

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT

The Photophysics of Nano Carbons. Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Photophysics of Nano Carbons Kavli Institute, UC Santa Barbara January 9, 2012 M. S. Dresselhaus, MIT The Electronic Structure of Graphene Near the K point E ( ) v F linear relation where and and 0

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Facile Synthesis of High Quality Graphene Nanoribbons Liying Jiao, Xinran Wang, Georgi Diankov, Hailiang Wang & Hongjie Dai* Supplementary Information 1. Photograph of graphene

More information

FREE RADICALS IN K AND Rb ADMIXTURED FULLERENE C60

FREE RADICALS IN K AND Rb ADMIXTURED FULLERENE C60 Vol. 84 (1993) ACTA PHYSICA POLONICA A No. 6 FREE RADICALS IN K AND Rb ADMIXTURED FULLERENE C60 J. STANKOWSKI, W. KEMPIŃSKla, P. BYSZEWSKlb AND Z. TRYBUŁAa Institute of Molecular Physics, Polish Academy

More information

High-eld cyclotron resonance studies of InMnAs-based ferromagnetic semiconductor heterostructures

High-eld cyclotron resonance studies of InMnAs-based ferromagnetic semiconductor heterostructures vailable online at www.sciencedirect.com Physica E 21 (24) 978 982 www.elsevier.com/locate/physe High-eld cyclotron resonance studies of InMns-based ferromagnetic semiconductor heterostructures G.. Khodaparast

More information

Supporting Information: A comparative Electron Paramagnetic Resonance study of expanded graphites and graphene

Supporting Information: A comparative Electron Paramagnetic Resonance study of expanded graphites and graphene Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2014 Supporting Information: A comparative Electron Paramagnetic Resonance study

More information

Kinetic Monte Carlo simulation of semiconductor quantum dot growth

Kinetic Monte Carlo simulation of semiconductor quantum dot growth Solid State Phenomena Online: 2007-03-15 ISSN: 1662-9779, Vols. 121-123, pp 1073-1076 doi:10.4028/www.scientific.net/ssp.121-123.1073 2007 Trans Tech Publications, Switzerland Kinetic Monte Carlo simulation

More information

Graphite, graphene and relativistic electrons

Graphite, graphene and relativistic electrons Graphite, graphene and relativistic electrons Introduction Physics of E. graphene Y. Andrei Experiments Rutgers University Transport electric field effect Quantum Hall Effect chiral fermions STM Dirac

More information

The Biological Effect of Iron Oxide and its Hydrate Nanoparticles

The Biological Effect of Iron Oxide and its Hydrate Nanoparticles Solid State Phenomena Vols. 121-123 (2007) pp 735-738 Online available since 2007/Mar/15 at www.scientific.net (2007) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.121-123.735

More information

Evaluation of plasma strip induced substrate damage Keping Han 1, S. Luo 1, O. Escorcia 1, Carlo Waldfried 1 and Ivan Berry 1, a

Evaluation of plasma strip induced substrate damage Keping Han 1, S. Luo 1, O. Escorcia 1, Carlo Waldfried 1 and Ivan Berry 1, a Solid State Phenomena Vols. 14-146 (29) pp 249-22 Online available since 29/Jan/6 at www.scientific.net (29) Trans Tech Publications, Switzerland doi:.428/www.scientific.net/ssp.14-146.249 Evaluation of

More information

Diffusion of silver in silicate glass and clustering in hydrogen atmosphere

Diffusion of silver in silicate glass and clustering in hydrogen atmosphere Defect and Diffusion Forum Vols. 7-4 (5) pp. 689-694 online at http://www.scientific.net 5 Trans Tech Publications, Switzerland Diffusion of silver in silicate glass and clustering in hydrogen atmosphere

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Giant magneto-conductance in twisted carbon nanotubes

Giant magneto-conductance in twisted carbon nanotubes EUROPHYSICS LETTERS 1 July 2002 Europhys. Lett., 59 (1), pp. 75 80 (2002) Giant magneto-conductance in twisted carbon nanotubes S. W. D. Bailey 1,D.Tománek 2, Y.-K. Kwon 2 ( )andc. J. Lambert 1 1 Department

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

CARBON NANOTUBES: PYSICAL PROPERTIES & APPLICATIONS

CARBON NANOTUBES: PYSICAL PROPERTIES & APPLICATIONS REPORT TITLE CARBON NANOTUBES: PYSICAL PROPERTIES & APPLICATIONS COURSE NAME: 01NUWKI CHEMISTRY-PHYSICS OF MATERIALS FOR NANOTECHNOLOGY SUBMITTED TO: PROF. GARRONE EDOARDO SUBMITTED BY: NADIA PARVEEN MATRICULATION

More information

The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz

The Mechatronics Design for Measuring Fluid Friction Losses in Pipe Flows Rıza Gurbuz Solid State Phenomena Vol. 113 (2006) pp 603-608 Online available since 2006/Jun/15 at www.scientific.net (2006) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.113.603 The Mechatronics

More information

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES

CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 10 CHAPTER 6 CHIRALITY AND SIZE EFFECT IN SINGLE WALLED CARBON NANOTUBES 6.1 PREAMBLE Lot of research work is in progress to investigate the properties of CNTs for possible technological applications.

More information

The many forms of carbon

The many forms of carbon The many forms of carbon Carbon is not only the basis of life, it also provides an enormous variety of structures for nanotechnology. This versatility is connected to the ability of carbon to form two

More information

Carbon based Nanoscale Electronics

Carbon based Nanoscale Electronics Carbon based Nanoscale Electronics 09 02 200802 2008 ME class Outline driving force for the carbon nanomaterial electronic properties of fullerene exploration of electronic carbon nanotube gold rush of

More information

Figure 1. Schematic picture of surface helical domain structure.

Figure 1. Schematic picture of surface helical domain structure. Advances in Science and Technology Vol. 93 (2014) pp 203-207 Submitted: 20.05.2014 (2014) Trans Tech Publications, Switzerland Accepted: 10.07.2014 doi:10.4028/www.scientific.net/ast.93.203 Influence of

More information

Carbon nanotubes: Models, correlations and the local density of states

Carbon nanotubes: Models, correlations and the local density of states Carbon nanotubes: Models, correlations and the local density of states Alexander Struck in collaboration with Sebastián A. Reyes Sebastian Eggert 15. 03. 2010 Outline Carbon structures Modelling of a carbon

More information

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES

ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES ELECTRONIC ENERGY DISPERSION AND STRUCTURAL PROPERTIES ON GRAPHENE AND CARBON NANOTUBES D. RACOLTA, C. ANDRONACHE, D. TODORAN, R. TODORAN Technical University of Cluj Napoca, North University Center of

More information

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1]

Fig. 1: Raman spectra of graphite and graphene. N indicates the number of layers of graphene. Ref. [1] Vibrational Properties of Graphene and Nanotubes: The Radial Breathing and High Energy Modes Presented for the Selected Topics Seminar by Pierce Munnelly 09/06/11 Supervised by Sebastian Heeg Abstract

More information

Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy

Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy EUROPHYSICS LETTERS 1 September 1999 Europhys. Lett., 47 (5), pp. 601-607 (1999) Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy W. Clauss( ), D. J. Bergeron,

More information

548 Advances of Computational Mechanics in Australia

548 Advances of Computational Mechanics in Australia Applied Mechanics and Materials Online: 2016-07-25 ISSN: 1662-7482, Vol. 846, pp 547-552 doi:10.4028/www.scientific.net/amm.846.547 2016 Trans Tech Publications, Switzerland Geometric bounds for buckling-induced

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Aharonov-Bohm interference in topological insulator nanoribbons Hailin Peng 1,2, Keji Lai 3,4, Desheng Kong 1, Stefan Meister 1, Yulin Chen 3,4,5, Xiao-Liang Qi 4,5, Shou- Cheng

More information

Structural and Thermal Characterization of Polymorphic Er 2 Si 2 O 7 Asghari Maqsood

Structural and Thermal Characterization of Polymorphic Er 2 Si 2 O 7 Asghari Maqsood Key Engineering Materials Online: 202-05-4 ISSN: 662-9795, Vols. 50-5, pp 255-260 doi:0.4028/www.scientific.net/kem.50-5.255 202 Trans Tech Publications, Switzerland Structural and Thermal Characterization

More information

Spin transport and relaxation mechanism in disordered organic film

Spin transport and relaxation mechanism in disordered organic film pin transport and relaxation mechanism in disordered organic film Motoi Kimata 1, Daisuke Nozaki 1, Yasuhiro Niimi 1, Hiroyui Tajima 2, YoshiChika Otani 1, 3 1 Institute for olid tate Physics, University

More information

ESR evidence for disordered magnetic phase from ultra-small carbon nanotubes. embedded in zeolite nanochannels

ESR evidence for disordered magnetic phase from ultra-small carbon nanotubes. embedded in zeolite nanochannels 1 ESR evidence for disordered magnetic phase from ultra-small carbon nanotubes embedded in zeolite nanochannels S. S. RAO 1 *, A. STESMANS 1, J. V. NOYEN 2, P. JACOBS 2, and B. SELS 2 1 Department of Physics

More information

Carbon nanotubes and Graphene

Carbon nanotubes and Graphene 16 October, 2008 Solid State Physics Seminar Main points 1 History and discovery of Graphene and Carbon nanotubes 2 Tight-binding approximation Dynamics of electrons near the Dirac-points 3 Properties

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supplementary Information Engineering the Intermediate Band States in Amorphous

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Information Figure S1: (a) Initial configuration of hydroxyl and epoxy groups used in the MD calculations based on the observations of Cai et al. [Ref 27 in the

More information

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation Fabrication and Measurement of Spin Devices Zhihong Chen School of Electrical and Computer Engineering Birck Nanotechnology Center, Discovery Park Purdue University Purdue Birck Presentation zhchen@purdue.edu

More information

status solidi Department of Physics, University of California at Berkeley, Berkeley, CA, USA 2

status solidi Department of Physics, University of California at Berkeley, Berkeley, CA, USA 2 physica pss status solidi basic solid state physics b Extreme thermal stability of carbon nanotubes G. E. Begtrup,, K. G. Ray, 3, B. M. Kessler, T. D. Yuzvinsky,, 3, H. Garcia,,, 3 and A. Zettl Department

More information

Novel Photo Resist Stripping for Single Wafer Process

Novel Photo Resist Stripping for Single Wafer Process Solid State Phenomena Vols. 103-104 (2005) pp 297-300 Online available since 2005/Apr/01 at www.scientific.net (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.103-104.297

More information

Conductivity of a disordered ferromagnetic monoatomic film

Conductivity of a disordered ferromagnetic monoatomic film Materials Science-Poland, Vol. 6, No. 4, 008 Conductivity of a disordered ferromagnetic monoatomic film A. PAJA *, B. J. SPISAK Faculty of Physics and Applied Computer Science, AGH University of Science

More information

characterization in solids

characterization in solids Electrical methods for the defect characterization in solids 1. Electrical residual resistivity in metals 2. Hall effect in semiconductors 3. Deep Level Transient Spectroscopy - DLTS Electrical conductivity

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure 1: Region mapping. a Pristine and b Mn-doped Bi 2 Te 3. Arrows point at characteristic defects present on the pristine surface which have been used as markers

More information

Novel Magnetic Properties of Carbon Nanotubes. Abstract

Novel Magnetic Properties of Carbon Nanotubes. Abstract Novel Magnetic Properties of Carbon Nanotubes Jian Ping Lu Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 jpl@physics.unc.edu arxiv:cond-mat/94779v1

More information

Evaluation of the plasmaless gaseous etching process

Evaluation of the plasmaless gaseous etching process Solid State Phenomena Vol. 134 (28) pp 7-1 Online available since 27/Nov/2 at www.scientific.net (28) Trans Tech Publications, Switzerland doi:1.428/www.scientific.net/ssp.134.7 Evaluation of the plasmaless

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap

Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap Calculating Electronic Structure of Different Carbon Nanotubes and its Affect on Band Gap 1 Rashid Nizam, 2 S. Mahdi A. Rizvi, 3 Ameer Azam 1 Centre of Excellence in Material Science, Applied Physics AMU,

More information

Carbon nanotubes in a nutshell

Carbon nanotubes in a nutshell Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS576 Colossal Enhancement of Spin-Orbit Coupling in Weakly Hydrogenated Graphene Jayakumar Balakrishnan 1,, *, Gavin Kok Wai Koon 1,, 3, *, Manu Jaiswal 1,,, Antonio H. Castro Neto 1,,

More information

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently,

Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, Supplementary Figure S1. AFM images of GraNRs grown with standard growth process. Each of these pictures show GraNRs prepared independently, suggesting that the results is reproducible. Supplementary Figure

More information

Two dimensional spin transport and magnetism in layered organic crystals

Two dimensional spin transport and magnetism in layered organic crystals PhD thesis booklet Two dimensional spin transport and magnetism in layered organic crystals Ágnes Antal Supervisor: András Jánossy Budapest University of Technology and Economics Department of Physics

More information

Technique for Magnetic Susceptibility Determination in the High Doped Semiconductors by Electron Spin Resonance

Technique for Magnetic Susceptibility Determination in the High Doped Semiconductors by Electron Spin Resonance Technique for Magnetic Susceptibility Determination in the High Doped Semiconductors by Electron Spin Resonance A. I. Veinger, A. G. Zabrodskii, T. V. Tisnek, S. I. Goloshchapov, P. V. Semenikhin Ioffe

More information

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8 Electrical Transport The study of the transport of electrons & holes (in semiconductors) under various conditions. A broad & somewhat specialized

More information

Band Structure of Isolated and Bundled Nanotubes

Band Structure of Isolated and Bundled Nanotubes Chapter 5 Band Structure of Isolated and Bundled Nanotubes The electronic structure of carbon nanotubes is characterized by a series of bands (sub- or minibands) arising from the confinement around the

More information

Electrical and Optical Properties. H.Hofmann

Electrical and Optical Properties. H.Hofmann Introduction to Nanomaterials Electrical and Optical Properties H.Hofmann Electrical Properties Ohm: G= σw/l where is the length of the conductor, measured in meters [m], A is the cross-section area of

More information

Japan. Keywords: wet etching, nanoscale region, dhf (dilute hydrofluoric acid solution), electric double layer, solid-liquid interface

Japan. Keywords: wet etching, nanoscale region, dhf (dilute hydrofluoric acid solution), electric double layer, solid-liquid interface Solid State Phenomena Online: 24926 ISSN: 6629779, Vol. 29, pp 58 doi:.428/www.scientific.net/ssp.29.5 25 Trans Tech Publications, Switzerland Impact of electrostatic effects on wet etching phenomenon

More information

SEMICONDUCTOR PHYSICS REVIEW BONDS,

SEMICONDUCTOR PHYSICS REVIEW BONDS, SEMICONDUCTOR PHYSICS REVIEW BONDS, BANDS, EFFECTIVE MASS, DRIFT, DIFFUSION, GENERATION, RECOMBINATION February 3, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles

More information

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite.

Carbon nanotubes in a nutshell. Graphite band structure. What is a carbon nanotube? Start by considering graphite. Carbon nanotubes in a nutshell What is a carbon nanotube? Start by considering graphite. sp 2 bonded carbon. Each atom connected to 3 neighbors w/ 120 degree bond angles. Hybridized π bonding across whole

More information

NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs

NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs NBTI and Spin Dependent Charge Pumping in 4H-SiC MOSFETs Mark A. Anders, Patrick M. Lenahan, Pennsylvania State University Aivars Lelis, US Army Research Laboratory Energy Deviations from the resonance

More information

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique

Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique PRAMANA c Indian Academy of Sciences Vol. 67, No. 2 journal of August 2006 physics pp. 395 400 Metallic/semiconducting ratio of carbon nanotubes in a bundle prepared using CVD technique KHURSHED AHMAD

More information

Random Telegraph Signal in Carbon Nanotube Device

Random Telegraph Signal in Carbon Nanotube Device Random Telegraph Signal in Carbon Nanotube Device Tsz Wah Chan Feb 28, 2008 1 Introduction 1. Structure of Single-walled Carbon Nanotube (SWCNT) 2. Electronic properties of SWCNT 3. Sample preparation:

More information

Carbon Nanotubes (CNTs)

Carbon Nanotubes (CNTs) Carbon Nanotubes (s) Seminar: Quantendynamik in mesoskopischen Systemen Florian Figge Fakultät für Physik Albert-Ludwigs-Universität Freiburg July 7th, 2010 F. Figge (University of Freiburg) Carbon Nanotubes

More information

Effect of randomness on anomalous Hall coefficient in antiferromagnet U 2 PdGa 3

Effect of randomness on anomalous Hall coefficient in antiferromagnet U 2 PdGa 3 Materials Science-Poland, Vol. 26, No. 4, 2008 Effect of randomness on anomalous Hall coefficient in antiferromagnet U 2 PdGa 3 V. H. TRAN * Institute of Low Temperature and Structure Research, Polish

More information

Application of rheological model of material with microdefects and nanodefects with hydrogen in the case of cyclic loading

Application of rheological model of material with microdefects and nanodefects with hydrogen in the case of cyclic loading Key Engineering Materials Submitted: 2014-12-15 ISSN: 1662-9795, Vols. 651-653, pp 592-597 Revised: 2015-02-13 doi:10.4028/www.scientific.net/kem.651-653.592 Accepted: 2015-02-16 2015 Trans Tech Publications,

More information

Temperature dependence of electron spin resonance and electrical conductivity in P -implanted C 60 films and their derivatives

Temperature dependence of electron spin resonance and electrical conductivity in P -implanted C 60 films and their derivatives JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 5 1 MARCH 2003 Temperature dependence of electron spin resonance and electrical conductivity in P -implanted C 60 films and their derivatives N. F. Fahim, a)

More information

Study of static electricity in wafer cleaning process M. Wada 1a, T. Sueto 1b, H. Takahashi 1c, N. Hayashi 1d, and A. Eitoku 1e

Study of static electricity in wafer cleaning process M. Wada 1a, T. Sueto 1b, H. Takahashi 1c, N. Hayashi 1d, and A. Eitoku 1e Solid State Phenomena Vol. 134 (28) pp 263266 Online available since 27/Nov/2 at www.scientific.net (28) Trans Tech Publications, Switzerland doi:1.428/www.scientific.net/ssp.134.263 Study of static electricity

More information

Graphene. Tianyu Ye November 30th, 2011

Graphene. Tianyu Ye November 30th, 2011 Graphene Tianyu Ye November 30th, 2011 Outline What is graphene? How to make graphene? (Exfoliation, Epitaxial, CVD) Is it graphene? (Identification methods) Transport properties; Other properties; Applications;

More information

The annealing of interstitial carbon atoms in high resistivity n-type silicon after proton irradiation

The annealing of interstitial carbon atoms in high resistivity n-type silicon after proton irradiation ROSE/TN/2002-01 The annealing of interstitial carbon atoms in high resistivity n-type silicon after proton irradiation M. Kuhnke a,, E. Fretwurst b, G. Lindstroem b a Department of Electronic and Computer

More information

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

Equipment Innovation Team, Memory Fab. Center, Samsung Electronics Co. Ltd. San#16, Banwol, Taean, Hwansung, Kyungki, , Republic of Korea

Equipment Innovation Team, Memory Fab. Center, Samsung Electronics Co. Ltd. San#16, Banwol, Taean, Hwansung, Kyungki, , Republic of Korea Solid State Phenomena Vols. 103-104 (2005) pp 63-66 Online available since 2005/Apr/01 at www.scientific.net (2005) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/ssp.103-104.63 Development

More information

Observation and modeling of single-wall carbon nanotube bend junctions

Observation and modeling of single-wall carbon nanotube bend junctions PHYSICAL REVIEW B VOLUME 57, NUMBER 23 15 JUNE 1998-I Observation and modeling of single-wall carbon nanotube bend junctions Jie Han, M. P. Anantram, and R. L. Jaffe NASA Ames Research Center, Moffett

More information

Controlled continuous spinning of fibres of single wall carbon nanotubes

Controlled continuous spinning of fibres of single wall carbon nanotubes Controlled continuous spinning of fibres of single wall carbon nanotubes Guadalupe Workshop 8-12 April 2011 Krzysztof Koziol and Alan Windle kk292@cam.ac.uk Department of Materials Science and Metallurgy

More information

Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles

Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles Australian Journal of Basic and Applied Sciences, 5(7): 483-490, 2011 ISSN 1991-8178 Hydrogen Storage in Single- and Multi-walled Carbon Nanotubes and Nanotube Bundles 1 S. Hamidi and 2 H. Golnabi 1 Physics

More information

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model

The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model The calculation of energy gaps in small single-walled carbon nanotubes within a symmetry-adapted tight-binding model Yang Jie( ) a), Dong Quan-Li( ) a), Jiang Zhao-Tan( ) b), and Zhang Jie( ) a) a) Beijing

More information

Ferromagnetism and Anomalous Hall Effect in Graphene

Ferromagnetism and Anomalous Hall Effect in Graphene Ferromagnetism and Anomalous Hall Effect in Graphene Jing Shi Department of Physics & Astronomy, University of California, Riverside Graphene/YIG Introduction Outline Proximity induced ferromagnetism Quantized

More information

Supplementary information

Supplementary information Supplementary information Supplementary Figure S1STM images of four GNBs and their corresponding STS spectra. a-d, STM images of four GNBs are shown in the left side. The experimental STS data with respective

More information

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs Universal valence-band picture of the ferromagnetic semiconductor GaMnAs Shinobu Ohya *, Kenta Takata, and Masaaki Tanaka Department of Electrical Engineering and Information Systems, The University of

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Spintronics at Nanoscale

Spintronics at Nanoscale Colloquium@NTHU Sep 22, 2004 Spintronics at Nanoscale Hsiu-Hau Lin Nat l Tsing-Hua Univ & Nat l Center for Theoretical Sciences What I have been doing Spintronics: Green s function theory for diluted magnetic

More information

Recap (so far) Low-Dimensional & Boundary Effects

Recap (so far) Low-Dimensional & Boundary Effects Recap (so far) Ohm s & Fourier s Laws Mobility & Thermal Conductivity Heat Capacity Wiedemann-Franz Relationship Size Effects and Breakdown of Classical Laws 1 Low-Dimensional & Boundary Effects Energy

More information

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus

Physics of Nanotubes, Graphite and Graphene Mildred Dresselhaus Quantum Transport and Dynamics in Nanostructures The 4 th Windsor Summer School on Condensed Matter Theory 6-18 August 2007, Great Park Windsor (UK) Physics of Nanotubes, Graphite and Graphene Mildred

More information

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator

Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator Authors: Yang Xu 1,2, Ireneusz Miotkowski 1, Chang Liu 3,4, Jifa Tian 1,2, Hyoungdo

More information

FM AFM Crossover in Vanadium Oxide Nanomaterials

FM AFM Crossover in Vanadium Oxide Nanomaterials ISSN 0021-3640, JETP Letters, 2010, Vol. 91, No. 1, pp. 11 15. Pleiades Publishing, Inc., 2010. Original Russian Text S.V. Demishev, A.L. Chernobrovkin, V.V. Glushkov, A.V. Grigorieva, E.A. Goodilin, N.E.

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

The Meaning of Fermi-Level And Related Concepts (Like Band-Bending)

The Meaning of Fermi-Level And Related Concepts (Like Band-Bending) The Meaning of Fermi-Level And Related Concepts (Like Band-Bending) Martin Peckerar January 14, 2003 The Fermi level is a term derived from statistical mechanics and used to calculate the number of mobile

More information

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession

Temperature dependence of spin diffusion length in silicon by Hanle-type spin. precession Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession T. Sasaki 1,a), T. Oikawa 1, T. Suzuki 2, M. Shiraishi 3, Y. Suzuki 3, and K. Noguchi 1 SQ Research Center, TDK

More information

Alignment characterization of single-wall carbon nanotubes by Raman scattering

Alignment characterization of single-wall carbon nanotubes by Raman scattering Physics Letters A 313 (2003) 302 306 www.elsevier.com/locate/pla Alignment characterization of single-wall carbon nanotubes by Raman scattering Pijun Liu, Liyue Liu, Yafei Zhang Key Laboratory for Thin

More information

Mass Transfer with Chemical Reactions in Porous Catalysts: A Discussion on the Criteria for the Internal and External Diffusion Limitations

Mass Transfer with Chemical Reactions in Porous Catalysts: A Discussion on the Criteria for the Internal and External Diffusion Limitations Defect and Diffusion Forum Online: 03-0-3 ISSN: 66-9507, Vols. 334-335, pp 79-83 doi:0.408/www.scientific.net/ddf.334-335.79 03 Trans Tech Publications, Switzerland Mass Transfer with Chemical Reactions

More information

Advanced Lab Course. Tunneling Magneto Resistance

Advanced Lab Course. Tunneling Magneto Resistance Advanced Lab Course Tunneling Magneto Resistance M06 As of: 015-04-01 Aim: Measurement of tunneling magnetoresistance for different sample sizes and recording the TMR in dependency on the voltage. Content

More information

Solid Surfaces, Interfaces and Thin Films

Solid Surfaces, Interfaces and Thin Films Hans Lüth Solid Surfaces, Interfaces and Thin Films Fifth Edition With 427 Figures.2e Springer Contents 1 Surface and Interface Physics: Its Definition and Importance... 1 Panel I: Ultrahigh Vacuum (UHV)

More information

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6

Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6 Linear temperature dependence of electron spin resonance linewidths in La 0.7 Ca 0.3 MnO 3 and YBaMn 2 O 6 Abstract D. L. Huber Department of Physics, University of Wisconsin-Madison, Madison, WI 53706

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor 1. Surface morphology of InP substrate and the device Figure S1(a) shows a 10-μm-square

More information

Raman Imaging and Electronic Properties of Graphene

Raman Imaging and Electronic Properties of Graphene Raman Imaging and Electronic Properties of Graphene F. Molitor, D. Graf, C. Stampfer, T. Ihn, and K. Ensslin Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland ensslin@phys.ethz.ch

More information

Hall effect and dielectric properties of Mn-doped barium titanate

Hall effect and dielectric properties of Mn-doped barium titanate Microelectronic Engineering 66 (200) 855 859 www.elsevier.com/ locate/ mee Hall effect and dielectric properties of Mn-doped barium titanate a a a a b, * Xiang Wang, Min Gu, Bin Yang, Shining Zhu, Wenwu

More information