STATE RETENTION OF AN INVERTED PENDULUM

Size: px
Start display at page:

Download "STATE RETENTION OF AN INVERTED PENDULUM"

Transcription

1 ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 SAE REENION OF AN INVERED PENDULUM Potluri Krihna Murthy Aitant Profeor Department of Electrical and Electronic Engineering Vignan Nirula Intitute of echnology and Science for Women Pedapalakaluru, Guntur Rameh Kumar Patro Aitant Profeor Department of Electrical and Electronic Engineering Vignan Intitute of Information echnology Viakhapatnam Ajit Kumar Mohanty Aitant Profeor Department of Electrical and Electronic Engineering Vignan Intitute of Information echnology Viakhapatnam Abtract he Cart Inverted Pendulum Sytem (CIPS ha been conidered among the mot claical and difficult problem in the field of control engineering. he Inverted Pendulum i conidered among the typical repreentative of a cla of non-minimal ytem with non-linear dynamic. he aim of thi work i to tabilize the Inverted Pendulum uch that poition of the cart on track i controlled intantly and accurately o that pendulum i alway maintained erected in it upright (inverted poition. Inverted Pendulum i inherently untable i.e. if it i left without a tabilizing controller it will not be able to remain in an upright poition when diturbed. Hence PID controller i deigned and ytematic iterative method for the tate feedback deign by chooing weighting matrice key to Linear Quadratic Regulator (LQR deign i preented auming all the tate to be available at the output. Where not all tate variable are available, a tate etimator i to be deigned. So oberver baed tate feedback controller ha been deigned. Keyword PID controller; LQR controller; Oberver baed tate feed back controller. I. INRODUCION If we remember ever trying to balance a broom-tick on our inde finger or the palm of our hand, we had to contantly adjut the poition of our hand to keep the object upright. An Inverted Pendulum doe baically the ame thing. But in cae of an Inverted Pendulum the motion i retricted to one dimenion only, where a in cae of a broom-tick the hand i free to move in any direction. An Inverted Pendulum ha it ma above the pivoted point, which i mounted on a cart which can be moved horizontally. he pendulum i table while hanging downward, but the inverted pendulum i inherently untable and need to be balanced. In thi cae the ytem ha one input - the force applied to the cart, and two output - poition of the cart and the angle of the pendulum, making it a SIMO Sytem. here are mainly three way of balancing an inverted pendulum, viz. (i by applying a torue at the pivoted point, (ii by moving the cart horizontally, and (iii by ocillating the upport rapidly up and down. hi can be achieved by two controller, (i LQR controller, and (ii Oberver baed tate feedback controller for tabilizing Cart Inverted Pendulum Sytem. II. MAHEMAICAL MODELLING : Fig: Schematic diagram of Inverted Pendulum Adding all the force on the cart in the horizontal direction, we have, M b N F ( Adding all the force on the pendulum in the horizontal direction, we have, m ml θ coθ ml θ inθ N ( Subtituting euation ( in euation (, we have, ( b ml θ coθ ml θ in θ F ( Adding all the force along the vertical direction of the pendulum, Pinθ N coθ mg inθ ml θ m coθ ( Conidering um of the moment about the center of gravity (C.G of the pendulum, Pl in θ Nl coθ I θ (5 Now, from euation ( & (5 ( θ mgl inθ ml coθ (6 he ytem under conideration i a non-linear ytem. For eae of modeling and imulation, we have to take a mall cae approimation uch that the ytem will be a linear one. Let take the linearization point a θ Π IJCA Jan-Feb 6 6

2 ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 ay θ Π φ Where, ϕ i the angle between the pendulum and vertical upward direction. If we chooe ϕ ᴝ. hen co,in dθ θ θ φ, ( d So, after linearization euation (6 become, ( φ mglφ ml (7 And euation ( become, ( b ml φ F (8 Here, F i the mechanical force to be applied on the moving cart ytem. But in real time model we have to give input voltage proportional to the force F. If the input voltage i u, then euation (8 become, ( b ml φ u A. ranfer Function In control theory, function called tranfer function are commonly ued to characterize the input-output relationhip of component or ytem that can be decribed by linear, time-invariant, differential euation. he tranfer function of a linear, time-invariant, differential euation ytem i defined a the ratio of the Laplace tranform of the output (repone function to the Laplace tranform of the input (driving function under the aumption that all initial condition are zero. Conider the linear time-invariant ytem defined by the following differential euation: ( n ( n ( m ( m a y a y an y an y b b... b b m m Where y i the output of the ytem and i the input. he tranfer function of the ytem i the ratio of the Laplace tranformed output to the Laplace tranformed input when all initial condition are zero, or ranfer function at zero initial condition L( outpu G ( L( inpu X ( ml ( g φ( Subtituting euation(in( ( I Ml g ( φ( ml mlφ( U ( From the above euation φ( U ( b( ( b ml ( ml ( mgl ( ( g φ( bmgl Where [( ( ( ml ] In euation (, it i clear that one pole and zero i at origin. hi lead to cancelation of one pole and zero. So reulting euation will be ml φ ( U ( b( ( mgl bmgl ( Here in thi cae the angle from the vertical poition (( i taken a the output and the applied force to the cart (u( i taken a the input function. Again from euation( ml φ( X ( ( mgl (5 ( m ( m Y ( b b... bm bm ( n ( n X ( a y a y... a y a y n n Now putting the value of ϕ( in euation(, By uing the concept of tranfer function, it i poible to repreent ytem dynamic by algebraic euation in. If the highet power of in the denominator of the tranfer function i eual to n, the ytem i called an nth-order ytem. Laplace tranform of euation (7 ( φ ( mglφ( mlx ( (9 Laplace tranform of euation (8 ( X ( bx ( mlφ ( U ( ( Solving euation (9 for X( X ( ( mgl U ( (( ( ml [ b( I mil ] [( mgl] mglb (6 Here the ditance of the cart from the origin i treated a the output function wherea the applied force on the cart i till the input function. B. State-Space Euation: In a tate-pace ytem repreentation, we have a ytem of two euation: an euation i to determine the tate of the ytem, and the other euation i to determine the output of the ytem. We will ue variable y( a the output of the IJCA Jan-Feb 6 6

3 ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 ytem, ( a the tate of the ytem, and u( a the input of the ytem. We ue the notation for the firt derivative of the tate vector of the ytem, a dependent on the current ytem and current input. We can write thee two euation a A( ( B( u( y( C( ( D( u( If the ytem themelve are time-invariant, we can re-write thi a follow: A( Bu( y ( C( Du( he State Euation how the relationhip between the ytem' current tate and it input, and the future tate of the ytem. he Output Euation how the relationhip between the ytem tate and it input, and the output. hee euation how that in a given ytem, the current output i dependent on the current input and the current tate. he future tate i alo dependent on the current tate and the current input. Now, with thi baic knowledge chooing the tate variable of the above conidered Inverted pendulum, φ; φ (7 Now euation( can be written a: ( ml b u (8 And euation(9 can be written a ( ml mgl (9 Putting the value of from euation (9 in euation (8, we have, b( m gl u ( ( Now putting the value of from euation ( in euation (9 we have, mbl mgl( mlu ( here are two output o, y ( φ( t ( ( t y Now contructing the tate pace matri X AX BU YCX, Where, ; X U u( ; ( Y X φ φ φ ( φ φ Referring from euation 7,, and, we have, b( m gl A mbl mgl( ; C B mlu he deign limitation are he ditance covered by the cart from the tarting point i.e. hould be in the range of. meter. he angle θ hould be in the range of. radian. he applied voltage to the DC motor hould remain within the range of.5 to -.5. III. PID CONROLLER DESIGN: Let conider a following unity feedback ytem Fig: Schematic diagram of the unity feedback control ytem he error ignal i ent to the PID controller, and the controller compute both the derivative and integral of the error ignal. he ignal (u jut pat the controller i now eual to the proportional gain ( K time the magnitude of the P error plu the integral gain ( K time the integral of the error I plu the derivative gain ( K time the derivative of the Error. u K e K D P I e( t dt K D de dt ranfer function of angle of the pendulum i φ( U ( ml mgl ( Now, cancelling the common pole i.e., we have, IJCA Jan-Feb 6 6

4 ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 φ ( U ( ml ( mgl b a If we neglect the frictional force and ma of the pendulum compared to ma of the cart, then the tranfer function of poition of the cart i X ( U ( ( b Where Q Q and R R are weighting parameter that penalize the tate and the control effort, repectively. hee matrice are therefore controller tuning parameter. It i crucial that Q mut choen in accordance to the emphaize we want to give the repone of certain tate, or in other word; how we will penalize the tate. Likewie, the choen value ( of R will penalize the control effort u. Hence, in an optimal problem the control ytem eek to maimize the return from the ytem with minimum cot. In a LQR deign, becaue of the uadratic performance inde of the cot function, the ytem ha a mathematical olution that yield an optimal controller u( K( Where u i the control input and K i the gain given a K R B S. It can be hown in fig that S can be found by olving the algebraic Riccati Euation SA A S Q PBR B S Fig: Schematic diagram of the PID controller IV. Linear Quadratic Regulator (LQR Deign: here are different method, or procedure, to control the inverted pendulum. One i the pole placement procedure having the advantage of giving a much clearer linkage between adjuted parameter and the reulting change in controller behavior. However, one diadvantage with thi method i that the placing of the pole at deired location can lead to high gain. In thi ection a linear uadratic regulator (LQR i propoed a a olution. he principle of a LQR controller are given in figure. Here i the tate pace ytem repreented with it matrice A, B, and C with the LQR controller (hown with the ƒ{k. he LQR problem ret upon the following three aumption: All the tate (( are available for feedback, i.e. it can be meaured by enor etc. he ytem a tabilizable which mean that all of it untable mode are controllable. he ytem are detectable having all it untable mode obervable. o check whether the ytem i controllable and obervable, we ue the function obv(a,c and ctrb(a,b and find thi to be true. hi LQR regulator provide an optimal control law for a linear ytem with uadratic performance inde yielding a cot function on the form J ( Q( u ( Ru( dt Fig: Schematic diagram of LQR controller he proce of minimizing the cot function therefore involve to olve thi euation, which will be done with the ue of MALAB function lr. In thi project the parameter in Q wa initially choen according to Bryon Rule to be 5 Q 5 And the control weight of the performance inde R wa et to. Here we can ee that the choen value in Q reult in a relatively large penalty in the tate and. hi mean that if or i large, large value in Q will amplify the effect of nd in the optimization problem. Since the optimization problem are to minimize J, the optimal control u mut force the tate and to be mall. hi value mut be modified during ubeuent iteration to achieve a good repone a poible. By an iterative tudy when changing Q value and running the command Klr(A,B,Q,R K[ ] C. State Etimation: A mentioned for the cae of the LQR controller, all enor for meauring the different tate are aumed to be available. hi i not valid aumption in practice. Avoid of enor IJCA Jan-Feb 6 65

5 ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 mean that all tate (full-order tate oberver, or ome of the tate (reduced order oberver, are not immediately available for ue in any control cheme beyond jut tabilization. hu, an oberver i relied upon to upply accurate etimation of the tate at all inverted pendulum poition. he chematic of the ytem with the oberver i hown in below figure V. CONCLUSIONS: From the above dicuion, it can be concluded that both the control method of conventional controller (LQR and PID can control the cart poition and the pendulum angle for the linearized ytem. he repone characteritic atified the reuirement of the deigned criteria. VI. RESULS: Fig:Schematic of tate pace control uing a oberver gain and K i the LQR gain matri A can be een from figure the oberver tate euation are given by ˆ Aˆ Bu L( y Cˆ yˆ Cˆ Where ˆ i the etimate of the actual tate. Furthermore ˆ ( A LC ˆ Bu Ly hi, in turn, i the governing euation for a full order oberver, having two input u and y and one output, ˆ.Since we already know A,B and u, oberver of thi kind i imple in deign and provide accurate etimation of all the tate around the linearized point. From the above figure we can ee that oberver i implemented by uing a duplicate of the linearized ytem dynamic and adding in a correction term that i imply a gain on the error in the etimate. hu, we will feed back the difference between the meaured and the etimated output and correct the model continuouly. he proportional oberver gain matri, L, can be found by pole placement method by ue of the place command in MALAB. he pole were determined to be ten time fater then the ytem pole. hee were found to be eig ( A B * K [.6,.585,.59,8.559] Which yield the gain matri L When combining the control-law deign with the etimator deign we can get the compenator. Fig: Repone curve for cart poition uing PID controller Fig:Repone curve for pendulum angle uing PID controller IJCA Jan-Feb 6 66

6 ISSN:9-69 Potluri Krihna Murthy et al, Int.J.Computer echnology & Application,Vol 7 (,6-67 VII. REFERENCES []. A journal by Ahmed Nor Karuddin Bin Nair, Univerity Malayia, Modelling and controller deing for an Inverted pendulum ytem,7. []. M.Athan, he Linear Quadratic LQR Problem,Maachuett Intitute of echnology, Maachuett,98. []. A.E Frazhol, he Control of an Inverted pendulu, School of Aeronautic and Atonautic, Purdue Univerity, Indiana,7. [].J.Lam, Control of an Inverted Pendulum, Georgia ech college of computing, Georgia,9. [5]. J. Hapanha, Undergraduate Lecture Note on LQG/LQR Controller Deign, 7 [6]. Balancing an Inverted Pendulum on a Seeaw by Maim V. Subbotin. [7].PID control ytem deign by Karl Johan Atrom, Fig:Repone curve for pendulum angle uing LQR controller combined with tate etimator [8]. J. Lam, Control of an Inverted Pendulum, Georgia ech College of Computing, Georgia, 9 Fig:Repone curve for cart poition uing LQR controller combined with tate etimator IJCA Jan-Feb 6 67

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems A Simplified Methodology for the Synthei of Adaptive Flight Control Sytem J.ROUSHANIAN, F.NADJAFI Department of Mechanical Engineering KNT Univerity of Technology 3Mirdamad St. Tehran IRAN Abtract- A implified

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH

CONTROL OF INTEGRATING PROCESS WITH DEAD TIME USING AUTO-TUNING APPROACH Brazilian Journal of Chemical Engineering ISSN 004-6632 Printed in Brazil www.abeq.org.br/bjche Vol. 26, No. 0, pp. 89-98, January - March, 2009 CONROL OF INEGRAING PROCESS WIH DEAD IME USING AUO-UNING

More information

Pusan National University

Pusan National University Chapter 12. DESIGN VIA STATE SPACE Puan National Univerity oratory Table of Content v v v v v v v v Introduction Controller Deign Controllability Alternative Approache to Controller Deign Oberver Deign

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis

Evolutionary Algorithms Based Fixed Order Robust Controller Design and Robustness Performance Analysis Proceeding of 01 4th International Conference on Machine Learning and Computing IPCSIT vol. 5 (01) (01) IACSIT Pre, Singapore Evolutionary Algorithm Baed Fixed Order Robut Controller Deign and Robutne

More information

Copyright 1967, by the author(s). All rights reserved.

Copyright 1967, by the author(s). All rights reserved. Copyright 1967, by the author(). All right reerved. Permiion to make digital or hard copie of all or part of thi work for peronal or claroom ue i granted without fee provided that copie are not made or

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking

A Simple Approach to Synthesizing Naïve Quantized Control for Reference Tracking A Simple Approach to Syntheizing Naïve Quantized Control for Reference Tracking SHIANG-HUA YU Department of Electrical Engineering National Sun Yat-Sen Univerity 70 Lien-Hai Road, Kaohiung 804 TAIAN Abtract:

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi International Journal of Innovative Computing, Information Control ICIC International c 206 ISSN 349-498 Volume 2, Number 2, April 206 pp. 357 370 THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Section Induction motor drives

Section Induction motor drives Section 5.1 - nduction motor drive Electric Drive Sytem 5.1.1. ntroduction he AC induction motor i by far the mot widely ued motor in the indutry. raditionally, it ha been ued in contant and lowly variable-peed

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification

Hybrid Projective Dislocated Synchronization of Liu Chaotic System Based on Parameters Identification www.ccenet.org/ma Modern Applied Science Vol. 6, No. ; February Hybrid Projective Dilocated Synchronization of Liu Chaotic Sytem Baed on Parameter Identification Yanfei Chen College of Science, Guilin

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin Stability The tability of a ytem refer to it ability or tendency to eek a condition of tatic equilibrium after it ha been diturbed. If given a mall perturbation from the equilibrium, it i table if it return.

More information

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty

Simple Observer Based Synchronization of Lorenz System with Parametric Uncertainty IOSR Journal of Electrical and Electronic Engineering (IOSR-JEEE) ISSN: 78-676Volume, Iue 6 (Nov. - Dec. 0), PP 4-0 Simple Oberver Baed Synchronization of Lorenz Sytem with Parametric Uncertainty Manih

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach Proceeding of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '8) Control of Delayed Integrating Procee Uing Two Feedback Controller R MS Approach LIBOR

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder ZOH: Sampled Data Sytem Example v T Sampler v* H Zero-order hold H v o e = 1 T 1 v *( ) = v( jkω

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505) EE 4443/5329 LAB 3: Control of Indutrial Sytem Simulation and Hardware Control (PID Deign) The Inverted Pendulum (ECP Sytem-Model: 505) Compiled by: Nitin Swamy Email: nwamy@lakehore.uta.edu Email: okuljaca@lakehore.uta.edu

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Exercises for lectures 19 Polynomial methods

Exercises for lectures 19 Polynomial methods Exercie for lecture 19 Polynomial method Michael Šebek Automatic control 016 15-4-17 Diviion of polynomial with and without remainder Polynomial form a circle, but not a body. (Circle alo form integer,

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

Lecture 5 Introduction to control

Lecture 5 Introduction to control Lecture 5 Introduction to control Tranfer function reviited (Laplace tranform notation: ~jω) () i the Laplace tranform of v(t). Some rule: ) Proportionality: ()/ in () 0log log() v (t) *v in (t) () * in

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

Analysis of Prevention of Induction Motors Stalling by Capacitor Switching

Analysis of Prevention of Induction Motors Stalling by Capacitor Switching 16th NTIONL POWER SYSTEMS CONFERENCE, 15th-17th DECEMER, 2010 260 nalyi of Prevention of Induction Motor Stalling by Capacitor Switching S.Maheh and P.S Nagendra rao Department of Electrical Engineering

More information

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48) Chapter 5 SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lecture 41-48) 5.1 Introduction Power ytem hould enure good quality of electric power upply, which mean voltage and current waveform hould

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

Robust Decentralized Design of H -based Frequency Stabilizer of SMES

Robust Decentralized Design of H -based Frequency Stabilizer of SMES International Energy Journal: Vol. 6, No., Part, June 005-59 Robut Decentralized Deign of H -baed Frequency Stabilizer of SMES www.erd.ait.ac.th/reric C. Vorakulpipat *, M. Leelajindakrirerk *, and I.

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

5.5 Application of Frequency Response: Signal Filters

5.5 Application of Frequency Response: Signal Filters 44 Dynamic Sytem Second order lowpa filter having tranfer function H()=H ()H () u H () H () y Firt order lowpa filter Figure 5.5: Contruction of a econd order low-pa filter by combining two firt order

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

Figure 1 Siemens PSSE Web Site

Figure 1 Siemens PSSE Web Site Stability Analyi of Dynamic Sytem. In the lat few lecture we have een how mall ignal Lalace domain model may be contructed of the dynamic erformance of ower ytem. The tability of uch ytem i a matter of

More information

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems Wolfgang Hofle Wolfgang.Hofle@cern.ch CERN CAS Darmtadt, October 9 Feedback i a mechanim that influence a ytem by looping back an output to the input a concept which i found in abundance in nature and

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

Sensorless speed control including zero speed of non salient PM synchronous drives

Sensorless speed control including zero speed of non salient PM synchronous drives BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 54, No. 3, 2006 Senorle peed control including zero peed of non alient PM ynchronou drive H. RASMUSSEN Aalborg Univerity, Fredrik Bajer

More information

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS

CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Copyright 22 IFAC 5th Triennial World Congre, Barcelona, Spain CHEAP CONTROL PERFORMANCE LIMITATIONS OF INPUT CONSTRAINED LINEAR SYSTEMS Tritan Pérez Graham C. Goodwin Maria M. Serón Department of Electrical

More information

A Simplified Dynamics Block Diagram for a Four-Axis Stabilized Platform

A Simplified Dynamics Block Diagram for a Four-Axis Stabilized Platform A Simplified Dynamic Block Diagram for a FourAxi Stabilized Platform Author: Hendrik Daniël Mouton a Univerity of Cape Town, Rondeboch, Cape Town, South Africa, 770 Abtract: t i relatively traightforward

More information

Clustering Methods without Given Number of Clusters

Clustering Methods without Given Number of Clusters Clutering Method without Given Number of Cluter Peng Xu, Fei Liu Introduction A we now, mean method i a very effective algorithm of clutering. It mot powerful feature i the calability and implicity. However,

More information

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase GNSS Solution: Carrier phae and it meaurement for GNSS GNSS Solution i a regular column featuring quetion and anwer about technical apect of GNSS. Reader are invited to end their quetion to the columnit,

More information

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor The Influence of the Load Condition upon the Radial Ditribution of Electromagnetic Vibration and Noie in a Three-Phae Squirrel-Cage Induction Motor Yuta Sato 1, Iao Hirotuka 1, Kazuo Tuboi 1, Maanori Nakamura

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION Vol. VIII Decoupling Control - M. Fikar DECOUPLING CONTROL M. Fikar Department of Proce Control, Faculty of Chemical and Food Technology, Slovak Univerity of Technology in Bratilava, Radlinkého 9, SK-812 37 Bratilava, Slovakia Keyword: Decoupling:

More information

Assessment of Performance for Single Loop Control Systems

Assessment of Performance for Single Loop Control Systems Aement of Performance for Single Loop Control Sytem Hiao-Ping Huang and Jyh-Cheng Jeng Department of Chemical Engineering National Taiwan Univerity Taipei 1617, Taiwan Abtract Aement of performance in

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS International Journal o Computer Science, Engineering and Inormation Technology (IJCSEIT, Vol.1, No.5, December 2011 OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE

More information

Then C pid (s) S h -stabilizes G(s) if and only if Ĉpid(ŝ) S 0 - stabilizes Ĝ(ŝ). For any ρ R +, an RCF of Ĉ pid (ŝ) is given by

Then C pid (s) S h -stabilizes G(s) if and only if Ĉpid(ŝ) S 0 - stabilizes Ĝ(ŝ). For any ρ R +, an RCF of Ĉ pid (ŝ) is given by 9 American Control Conference Hyatt Regency Riverfront, St. Loui, MO, USA June -, 9 WeC5.5 PID Controller Synthei with Shifted Axi Pole Aignment for a Cla of MIMO Sytem A. N. Gündeş and T. S. Chang Abtract

More information

The Laplace Transform , Haynes Miller and Jeremy Orloff

The Laplace Transform , Haynes Miller and Jeremy Orloff The Laplace Tranform 8.3, Hayne Miller and Jeremy Orloff Laplace tranform baic: introduction An operator take a function a input and output another function. A tranform doe the ame thing with the added

More information

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL

POWER SYSTEM SMALL SIGNAL STABILITY ANALYSIS BASED ON TEST SIGNAL POWE YEM MALL INAL ABILIY ANALYI BAE ON E INAL Zheng Xu, Wei hao, Changchun Zhou Zheang Univerity, Hangzhou, 37 PChina Email: hvdc@ceezueducn Abtract - In thi paper, a method baed on ome tet ignal (et

More information

Controllability and Observability

Controllability and Observability Controllability and Obervability Controllability and Obervability are propertie of ytem which relate to whether the tate can be driven to any arbitrary tate from a given input (controllable) or whether

More information

Lqr Based Load Frequency Control By Introducing Demand Response

Lqr Based Load Frequency Control By Introducing Demand Response Lqr Baed Load Frequency Control By Introducing Demand Repone P.Venkateh Department of Electrical and Electronic Engineering, V.R iddhartha Engineering College, Vijayawada, AP, 520007, India K.rikanth Department

More information

A Comparative Study on Control Techniques of Non-square Matrix Distillation Column

A Comparative Study on Control Techniques of Non-square Matrix Distillation Column IJCTA, 8(3), 215, pp 1129-1136 International Science Pre A Comparative Study on Control Technique of Non-quare Matrix Ditillation Column 1 S Bhat Vinayambika, 2 S Shanmuga Priya, and 3 I Thirunavukkarau*

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

Longitudinal automatic control system for a light weight aircraft

Longitudinal automatic control system for a light weight aircraft Longitudinal automatic control ytem for a light eight aircraft Critian VIDAN*,, Silviu Ionut BADEA *Correponding author Military echnical Academy, Faculty of Mechatronic and Integrated Armament Sytem,

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2003. Cacaded Op Amp [DC&L, problem 4.29] An ideal op amp ha an output impedance of zero,

More information

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine

Sliding Mode Control of a Dual-Fuel System Internal Combustion Engine Proceeding of the ASME 9 Dynamic Sytem and Control Conference DSCC9 October -4, 9, Hollywood, California, USA DSCC9-59 Control of a Dual-Fuel Sytem Internal Combution Engine Stephen Pace Department of

More information

Halliday/Resnick/Walker 7e Chapter 6

Halliday/Resnick/Walker 7e Chapter 6 HRW 7e Chapter 6 Page of Halliday/Renick/Walker 7e Chapter 6 3. We do not conider the poibility that the bureau might tip, and treat thi a a purely horizontal motion problem (with the peron puh F in the

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment

Advanced D-Partitioning Analysis and its Comparison with the Kharitonov s Theorem Assessment Journal of Multidiciplinary Engineering Science and Technology (JMEST) ISSN: 59- Vol. Iue, January - 5 Advanced D-Partitioning Analyi and it Comparion with the haritonov Theorem Aement amen M. Yanev Profeor,

More information

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116

ISSN: [Basnet* et al., 6(3): March, 2017] Impact Factor: 4.116 IJESR INERNAIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH ECHNOLOGY DIREC ORQUE CONROLLED INDUCION MOOR DRIVE FOR ORQUE RIPPLE REDUCION Bigyan Banet Department of Electrical Engineering, ribhuvan Univerity,

More information

Analysis and Design of a Third Order Phase-Lock Loop

Analysis and Design of a Third Order Phase-Lock Loop Analyi Deign of a Third Order Phae-Lock Loop DANIEL Y. ABRAMOVITCH Ford Aeropace Corporation 3939 Fabian Way, MS: X- Palo Alto, CA 94303 Abtract Typical implementation of a phae-lock loop (PLL) are econd

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S -

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S - 6302 Feedback ytem Recitation 6: teadytate Error Prof Joel L Dawon A valid performance metric for any control ytem center around the final error when the ytem reache teadytate That i, after all initial

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Multi-dimensional Fuzzy Euler Approximation

Multi-dimensional Fuzzy Euler Approximation Mathematica Aeterna, Vol 7, 2017, no 2, 163-176 Multi-dimenional Fuzzy Euler Approximation Yangyang Hao College of Mathematic and Information Science Hebei Univerity, Baoding 071002, China hdhyywa@163com

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information