1 Routh Array: 15 points

Size: px
Start display at page:

Download "1 Routh Array: 15 points"

Transcription

1 EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() (+). Find the cloed loop tranfer function Y () R(), and range of k for all cloed-loop pole in the left half plane. We can ue the tandard feedback formula to find the cloed loop tranfer function: Y () R() D()G() + D()G()H y () + k(+) k(+) (+) 2k( + )( + ) 2( + 2)( + ) + k( + )( ) 2k( ) ( ) + (k 3 + k 2 + 2k) + (k 2 + k + 2k) 2k( ) (2 + k) 3 + (24 + k) 2 + (4 + 3k) + 2k Now develop the Routh array. Grey cell come from the polynomial, white cell are calculated. cell (a): cell (b): k 4 + 3k k 2k (a) 96+2k+3k2 24+k (b) 2k (2 + k) (4 + 3k) (24 + k) 2k 24 + k ( (4 + 3k)(24 + k) 2k(2 + k) 24 + k (24 + k) ) 2k 2k 96+2k+3k 2 24+k 96+2k+3k 2 24+k k + 3k k (the white cell with zero in them are eay). Recall that all pole in LHP i equivalent to no ign change in firt column of Routh array. So we want either everything in the firt column poitive or everything in the firt column negative. Break the problem into two cae. trying to make everything poitive: 2 + k > k > 2 (*) 24 + k > k > 24 (*) The fractional term i eaier becaue we already know that the denominator mut be poitive! k + 3k k > and denominator poitive k + 3k 2 >

2 Ue the quadratic equation to find the root at k 2± { 2.245,.3984}. Tet point on either ide of the root to find that the quadratic expreion i poitive if x < or x > k + 3k 2 > k < or k >.3984 (*) 2k > k > (*) All four of the tarred condition have to be true; the lat one dominate all of them. k > i the final condition. trying to make everything negative: 2 + k < k < 2 (**) 24 + k < k < 24 (**) Since the denominator i negative, the numerator of the fractional term mut be poitive! k + 3k k < and denominator negative k + 3k 2 > k + 3k 2 > k < or k >.3984 (**) 2k < k < (**) All of the (**) tarred condition mut be true. Thi time it one of the quadratic condition that dominate the other. k < i the reulting condition. Either of the two final condition will work to make the ytem have all left-hand-plane pole. The final range i: 2 Linearization: 2 point k (, 2.245) (, ) For the ytem: ẋ ẋ 2 ẋ 3 ẋ 4 f f 2 f 3 f 4 x 2 β(x 3 + kx ) u α x 2 4 βx 2 () Linearize the ytem about x x 2 x 3, x 4, u, and expre in tate pace form: δx Aδx + Bδu. (β, k and α are contant.) The A matrix i compoed of the partial derivative of the ytem dynamic for each tate variable, evaluated 2

3 at the equilibrium A f x f x 2 f x 3 f x 4 x x 2 x 3 x 4 x x 2 x 3 x 4 x x 2 x 3 x 4 βk β 2αu x 3 4 2βx βk β 2αu (evaluated at equilibrium) Similarly the B matrix i from the partial w.r.t. the input B f u u u u α α x 2 4 (evaluated at equilibrium) Therefore the linearized ytem i: δx βk β 3 Steady State Error: 2 point δx + α δu For the ytem below, let D(), G() (+) (+2), H y() + 4, and w(t). a) What i the ytem type and appropriate tatic error contant? Thi problem i intereting becaue there i a enor H y which ditort the output. The problem hould have pecified which error to conider, either the error a meaured between the reference and the enor e(t) r(t) y (t) (referred to a e a (t) in Nie), or the error between the reference and the actual ytem output e y (t) r(t) y(t). (For thi problem, either anwer will be accepted.) Uually, a control ytem deigner would be concerned with e y (t). For example, if the enor i an airplane altimeter, the autopilot hould care about the true height above ground, not the enor output. Here we will calculate both e(t) and e y (t) and how why they are different type ytem. Note that the ytem i table, o that the final value theorem can be applied. 3

4 3. Error between reference and enor r(t) y (t) Since w(t) we know that we re intereted in the teady tate error (expreed at e(t)) a it relate to the reference input (r(t)). So we look for the tranfer function E() R(). Finding thi i very much like deriving the uual feedback formula. E() R() Y () Y () H y ()Y () Y () D()G()E() E() R() H y ()D()G()E() E() R() + H y ()D()G() + ( + 4) (+) (+2) ( + 2) ( + 2) + ( + 4)( + ) Now we can ue the Final Value Theorem to evaluate the repone of E() to a unit tep input: e tep ( ) lim R() E() R() lim ( + 2) ( + 2) + ( + 4)( + ) ( + 2) ( + 2) + ( + 4)( + ) 4 So we know the ytem i not Type. Next, we ue FVT to find the repone of E() to a unit ramp input: e ramp ( ) lim R() E() R() lim ( + 2) 2 ( + 2) + ( + 4)( + ) ( + 2) ( + 2) + ( + 4)( + ) Contant error from a ramp input mean that the ytem i Type. The tatic error contant for a Type ytem i K v (velocity error contant), and the relationhip between the teady tate error and the error contant i (ee table 7.2 on page 353 on Nie): e ramp ( ) K v o K v 2. b) What input waveform r(t) would yield a contant error? (e.g. tep, ramp, parabola, or?) c) What i the teady tate error for a unit input of r(t) from b)? Both of thee anwer fall out of our previou work. A ramp input give a contant error; and a unit input ramp will lead to teady tate error of Error reference and output r(t) y(t) Here we re intereted in the teady tate ouput error expreed a e y (t) r(t) y(t)) So we look for the tranfer function Ey() R(). Finding thi i very much like deriving the uual feedback formula. 4

5 E y () R() Y () Y () D()G()E() E y () R() D()G()E() D()G() R()( + H y ()D()G() ) E y () R() + D()G()(H y() ) + H y ()D()G() ( + 2) + ( + )( + 3) ( + 2) + ( + 4)( + ) Now we can ue the Final Value Theorem to evaluate the repone of E y () to a unit tep input: e ytep ( ) lim R() E y() R() lim ( + 2) + ( + )( + 3) ( + 2) + ( + 4)( + ) ( + 2) + ( + )( + 3) ( + 2) + ( + 4)( + ) 3 4 Since e ytep ( ) 3 4, the ytem type for output error i type. The error contant for a type ytem i K p, and ince e ytep ( ) 3 4 +K p, then K p 3. b) a unit tep give a contant error, with teady tate error of 3/ Comparion of e( ) e a ( ) and e y ( ) The teady tate output y( ) can be found from Y () R() D()G() + H y ()D()G() ( + ) ( + 2) + ( + 4)( + ) Now we can ue the Final Value Theorem to find y( ) for a unit tep input: y tep ( ) lim R() Y () R() lim ( + ) ( + 2) + ( + 4)( + ) ( + ) ( + 2) + ( + 4)( + ) 4 Since H y () (+4), then y (t) ẏ(t)+4y(t). Since we are in teady tate, with a tep input, ẏ( ). Thu y ( ) 4y( ). So everything work out. The enor error i e( ) r( ) y ( ) 4y( )

6 The output error i e ytep ( ) r( ) y( ) y( ) Since G() ha a pole at, it allow y( ) to be non-zero even with e( ). The teady tate error in y(t) hould not be too urpriing, ince we are in effect comparing the reference to 4y(t), and hence the output i only 4 what it would be with unity feedback. 4 PID Control: 25 point For the ytem below, let D() k p + k I + k D, H y (), and G() 2 +2ζω n+ω. n 2 a) With r(t), determine the ytem type (,, 2,...) and error contant with repect to tep diturbance input W (). Finding the cloed-loop tranfer function E() W () E() W () G() + D()G() 2 +2ζω n+ω 2 n by eq 7.6: + kp+ k I +k D 2 +2ζω n+ωn ζω n + ωn 2 + k p + k I + k D ( 2 + 2ζω n + ωn) 2 + k p + k I + k D 2 Q() Auming k I, the teady tate error due to tep diturbance by FVT i: lim Q() The teady tate error due to ramp diturbance i: lim Q() 2 k I Therefore, becaue the ytem can repond to a tep diturbance with error, but ha contant error from a ramp diturbance, it i Type. From Table 7.2, the error contant are K p,k v k I,K a. b) With w(t), determine the ytem type (,, 2,...) and error contant with repect to tep and ramp reference input R(). Since H y (), thi i a tandard Steady-State-Error problem, with a ytem tranfer function of D()G() k p + k I + k D 2 + 2ζω n + ωn 2 k p + k I + k D 2 ( 2 + 2ζω n + ω 2 n) Auming all contant are nonzero, the type of the ytem i. From Table 7.2, the error contant are K p, K v lim D()G() k I ω, K n 2 a. 6

7 5 Error and Diturbance: 2 point For the ytem below, let D() k(+2) +3, G() k2 (+4), and H y(). Find the value of k and k 2 uch that: a) the teady-tate error component e(t) due to a unit tep diturbance w(t) i 3 ; We need the tranfer function E() W (). Notice that we aume R() while olving for thi TF. Solve the uual way: E() Y () Y () Y () G() ( W () + U() ) U() D()E() E() G() ( W () + D()E() ) E() + G()D()E() G()W () E() W () G() + G()D() k 2 (+4) + k2 (+4) k (+2) +3 k 2 ( + 3) ( + 4)( + 3) + k k 2 ( + 2) Now ue the Final Value Theorem to evaluate the repone to a unit tep diturbance: e tep,w ( ) lim k 2 ( + 3) ( + 4)( + 3) + k k 2 ( + 2) k 2 ( + 3) ( + 4)( + 3) + k k 2 ( + 2) Given our deired value, we can olve for k : k 3 2( 3 ) 5 3k 2 2k k 2 3 2k k 2 i unretricted. Note that the integrator in G() i in effect calculating a teady-tate offet to cancel w(t), which i why the k 2 gain i a free parameter for thi problem. b) the teady tate error e(t) due to a unit ramp input r(t) i 3. Find the tranfer function E() R(), auming W (). E() R() Y () Y () H y ()Y () Y () G()D()E() E() ( + H y ()G()D() ) R() E() R() H y ()G()D()E() E() R() + H y ()G()D() ( + 4)( + 3) ( + 4)( + 3) + k k 2 ( + 2) + k2 k (+2) (+4) +3 7

8 Now ue FVT to find the repone to a ramp input: Given our deired value we can olve for k k 2 : e ramp,r ( ) lim ( + 4)( + 3) 2 ( + 4)( + 3) + k k 2 ( + 2) ( + 4)( + 3) ( + 4)( + 3) + k k 2 ( + 2) 2 2k k 2 k k Any combination of k, k 2 that atifie thi condition will do. If we want to atify both (a) and (b) imultaneouly, we find: k k

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax: Control Sytem Engineering ( Chapter 7. Steady-State Error Prof. Kwang-Chun Ho kwangho@hanung.ac.kr Tel: 0-760-453 Fax:0-760-4435 Introduction In thi leon, you will learn the following : How to find the

More information

Feedback Control Systems (FCS)

Feedback Control Systems (FCS) Feedback Control Sytem (FCS) Lecture19-20 Routh-Herwitz Stability Criterion Dr. Imtiaz Huain email: imtiaz.huain@faculty.muet.edu.pk URL :http://imtiazhuainkalwar.weebly.com/ Stability of Higher Order

More information

Analysis of Stability &

Analysis of Stability & INC 34 Feedback Control Sytem Analyi of Stability & Steady-State Error S Wonga arawan.won@kmutt.ac.th Summary from previou cla Firt-order & econd order ytem repone τ ωn ζω ω n n.8.6.4. ζ ζ. ζ.5 ζ ζ.5 ct.8.6.4...4.6.8..4.6.8

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial :. PT_EE_A+C_Control Sytem_798 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubanewar olkata Patna Web: E-mail: info@madeeay.in Ph: -4546 CLASS TEST 8-9 ELECTRICAL ENGINEERING Subject

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Chapter 13. Root Locus Introduction

Chapter 13. Root Locus Introduction Chapter 13 Root Locu 13.1 Introduction In the previou chapter we had a glimpe of controller deign iue through ome imple example. Obviouly when we have higher order ytem, uch imple deign technique will

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-0 Linear Control Sytem Spring 04, Exam No calculator or computer allowed, you may leave your anwer a fraction. All problem are worth point unle noted otherwie. Total /00 Problem - refer to the unit

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

Figure 1: Unity Feedback System

Figure 1: Unity Feedback System MEM 355 Sample Midterm Problem Stability 1 a) I the following ytem table? Solution: G() = Pole: -1, -2, -2, -1.5000 + 1.3229i, -1.5000-1.3229i 1 ( + 1)( 2 + 3 + 4)( + 2) 2 A you can ee, all pole are on

More information

Stability Criterion Routh Hurwitz

Stability Criterion Routh Hurwitz EES404 Fundamental of Control Sytem Stability Criterion Routh Hurwitz DR. Ir. Wahidin Wahab M.Sc. Ir. Arie Subiantoro M.Sc. Stability A ytem i table if for a finite input the output i imilarly finite A

More information

Module 4: Time Response of discrete time systems Lecture Note 1

Module 4: Time Response of discrete time systems Lecture Note 1 Digital Control Module 4 Lecture Module 4: ime Repone of dicrete time ytem Lecture Note ime Repone of dicrete time ytem Abolute tability i a baic requirement of all control ytem. Apart from that, good

More information

FRTN10 Exercise 3. Specifications and Disturbance Models

FRTN10 Exercise 3. Specifications and Disturbance Models FRTN0 Exercie 3. Specification and Diturbance Model 3. A feedback ytem i hown in Figure 3., in which a firt-order proce if controlled by an I controller. d v r u 2 z C() P() y n Figure 3. Sytem in Problem

More information

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions

CONTROL SYSTEMS. Chapter 2 : Block Diagram & Signal Flow Graphs GATE Objective & Numerical Type Questions ONTOL SYSTEMS hapter : Bloc Diagram & Signal Flow Graph GATE Objective & Numerical Type Quetion Quetion 6 [Practice Boo] [GATE E 994 IIT-Kharagpur : 5 Mar] educe the ignal flow graph hown in figure below,

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine? A 2.0 Introduction In the lat et of note, we developed a model of the peed governing mechanim, which i given below: xˆ K ( Pˆ ˆ) E () In thee note, we want to extend thi model o that it relate the actual

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0

Root Locus Diagram. Root loci: The portion of root locus when k assume positive values: that is 0 Objective Root Locu Diagram Upon completion of thi chapter you will be able to: Plot the Root Locu for a given Tranfer Function by varying gain of the ytem, Analye the tability of the ytem from the root

More information

Function and Impulse Response

Function and Impulse Response Tranfer Function and Impule Repone Solution of Selected Unolved Example. Tranfer Function Q.8 Solution : The -domain network i hown in the Fig... Applying VL to the two loop, R R R I () I () L I () L V()

More information

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

ECE382/ME482 Spring 2004 Homework 4 Solution November 14, ECE382/ME482 Spring 2004 Homework 4 Solution November 14, 2005 1 Solution to HW4 AP4.3 Intead of a contant or tep reference input, we are given, in thi problem, a more complicated reference path, r(t)

More information

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with : 376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD Therefore by applying the lead compenator with ome gain adjutment : D() =.12 4.5 +1 9 +1 we get the compenated ytem with : PM =65, ω c = 22 rad/ec, o

More information

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004

ME 375 FINAL EXAM SOLUTIONS Friday December 17, 2004 ME 375 FINAL EXAM SOLUTIONS Friday December 7, 004 Diviion Adam 0:30 / Yao :30 (circle one) Name Intruction () Thi i a cloed book eamination, but you are allowed three 8.5 crib heet. () You have two hour

More information

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S -

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S - 6302 Feedback ytem Recitation 6: teadytate Error Prof Joel L Dawon A valid performance metric for any control ytem center around the final error when the ytem reache teadytate That i, after all initial

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin

Stability. ME 344/144L Prof. R.G. Longoria Dynamic Systems and Controls/Lab. Department of Mechanical Engineering The University of Texas at Austin Stability The tability of a ytem refer to it ability or tendency to eek a condition of tatic equilibrium after it ha been diturbed. If given a mall perturbation from the equilibrium, it i table if it return.

More information

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004 METR4200 Advanced Control Lecture 4 Chapter Nie Controller Deign via Frequency Repone G. Hovland 2004 Deign Goal Tranient repone via imple gain adjutment Cacade compenator to improve teady-tate error Cacade

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis

MEM 355 Performance Enhancement of Dynamical Systems Root Locus Analysis MEM 355 Performance Enhancement of Dynamical Sytem Root Locu Analyi Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan in

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1

Homework #7 Solution. Solutions: ΔP L Δω. Fig. 1 Homework #7 Solution Aignment:. through.6 Bergen & Vittal. M Solution: Modified Equation.6 becaue gen. peed not fed back * M (.0rad / MW ec)(00mw) rad /ec peed ( ) (60) 9.55r. p. m. 3600 ( 9.55) 3590.45r.

More information

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances ECE 350 Root Locu Deign Example Recall the imple crude ervo from lab G( ) 0 6.64 53.78 σ = = 3 23.473 PI To eliminate teady-tate error (for contant input) & perfect reection of contant diturbance Note:

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL 98 CHAPTER DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL INTRODUCTION The deign of ytem uing tate pace model for the deign i called a modern control deign and it i

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

The Root Locus Method

The Root Locus Method The Root Locu Method MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Outline The root locu method wa introduced by Evan

More information

State Space: Observer Design Lecture 11

State Space: Observer Design Lecture 11 State Space: Oberver Deign Lecture Advanced Control Sytem Dr Eyad Radwan Dr Eyad Radwan/ACS/ State Space-L Controller deign relie upon acce to the tate variable for feedback through adjutable gain. Thi

More information

Chapter 4 Interconnection of LTI Systems

Chapter 4 Interconnection of LTI Systems Chapter 4 Interconnection of LTI Sytem 4. INTRODUCTION Block diagram and ignal flow graph are commonly ued to decribe a large feedback control ytem. Each block in the ytem i repreented by a tranfer function,

More information

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam

Solutions. Digital Control Systems ( ) 120 minutes examination time + 15 minutes reading time at the beginning of the exam BSc - Sample Examination Digital Control Sytem (5-588-) Prof. L. Guzzella Solution Exam Duration: Number of Quetion: Rating: Permitted aid: minute examination time + 5 minute reading time at the beginning

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Chapter 10. Closed-Loop Control Systems

Chapter 10. Closed-Loop Control Systems hapter 0 loed-loop ontrol Sytem ontrol Diagram of a Typical ontrol Loop Actuator Sytem F F 2 T T 2 ontroller T Senor Sytem T TT omponent and Signal of a Typical ontrol Loop F F 2 T Air 3-5 pig 4-20 ma

More information

MM1: Basic Concept (I): System and its Variables

MM1: Basic Concept (I): System and its Variables MM1: Baic Concept (I): Sytem and it Variable A ytem i a collection of component which are coordinated together to perform a function Sytem interact with their environment. The interaction i defined in

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

G(s) = 1 s by hand for! = 1, 2, 5, 10, 20, 50, and 100 rad/sec.

G(s) = 1 s by hand for! = 1, 2, 5, 10, 20, 50, and 100 rad/sec. 6003 where A = jg(j!)j ; = tan Im [G(j!)] Re [G(j!)] = \G(j!) 2. (a) Calculate the magnitude and phae of G() = + 0 by hand for! =, 2, 5, 0, 20, 50, and 00 rad/ec. (b) ketch the aymptote for G() according

More information

Chapter 9: Controller design. Controller design. Controller design

Chapter 9: Controller design. Controller design. Controller design Chapter 9. Controller Deign 9.. Introduction 9.2. Eect o negative eedback on the network traner unction 9.2.. Feedback reduce the traner unction rom diturbance to the output 9.2.2. Feedback caue the traner

More information

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

More information

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response. EE202 HOMEWORK PROBLEMS SPRING 18 TO THE STUDENT: ALWAYS CHECK THE ERRATA on the web. Quote for your Parent' Partie: 1. Only with nodal analyi i the ret of the emeter a poibility. Ray DeCarlo 2. (The need

More information

Massachusetts Institute of Technology Dynamics and Control II

Massachusetts Institute of Technology Dynamics and Control II I E Maachuett Intitute of Technology Department of Mechanical Engineering 2.004 Dynamic and Control II Laboratory Seion 5: Elimination of Steady-State Error Uing Integral Control Action 1 Laboratory Objective:

More information

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 :

The state variable description of an LTI system is given by 3 1O. Statement for Linked Answer Questions 3 and 4 : CHAPTER 6 CONTROL SYSTEMS YEAR TO MARKS MCQ 6. The tate variable decription of an LTI ytem i given by Jxo N J a NJx N JN K O K OK O K O xo a x + u Kxo O K 3 a3 OKx O K 3 O L P L J PL P L P x N K O y _

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

H DESIGN OF ROTOR FLUX ORIENTED CONTROLLED INDUCTION

H DESIGN OF ROTOR FLUX ORIENTED CONTROLLED INDUCTION H DESIGN OF ROTOR FLUX ORIENTED CONTROLLED INDUCTION MOTOR DRIVES: SPEED CONTROL, STABILITY ROBUSTNESS AND NOISE ATTENUATION João C. Bailio,, Joé A. Silva Jr.,, Jr., and Lui G. B. Rolim, Member, IEEE,

More information

Homework 12 Solution - AME30315, Spring 2013

Homework 12 Solution - AME30315, Spring 2013 Homework 2 Solution - AME335, Spring 23 Problem :[2 pt] The Aerotech AGS 5 i a linear motor driven XY poitioning ytem (ee attached product heet). A friend of mine, through careful experimentation, identified

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

The Laplace Transform , Haynes Miller and Jeremy Orloff

The Laplace Transform , Haynes Miller and Jeremy Orloff The Laplace Tranform 8.3, Hayne Miller and Jeremy Orloff Laplace tranform baic: introduction An operator take a function a input and output another function. A tranform doe the ame thing with the added

More information

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions

Lecture 8. PID control. Industrial process control ( today) PID control. Insights about PID actions Lecture 8. PID control. The role of P, I, and D action 2. PID tuning Indutrial proce control (92... today) Feedback control i ued to improve the proce performance: tatic performance: for contant reference,

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach.

Chapter 6 Control Systems Design by Root-Locus Method. Lag-Lead Compensation. Lag lead Compensation Techniques Based on the Root-Locus Approach. hapter 6 ontrol Sytem Deign by Root-Lou Method Lag-Lead ompenation Lag lead ompenation ehnique Baed on the Root-Lou Approah. γ β K, ( γ >, β > ) In deigning lag lead ompenator, we onider two ae where γ

More information

Solutions to homework #10

Solutions to homework #10 Solution to homework #0 Problem 7..3 Compute 6 e 3 t t t 8. The firt tep i to ue the linearity of the Laplace tranform to ditribute the tranform over the um and pull the contant factor outide the tranform.

More information

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach

Control of Delayed Integrating Processes Using Two Feedback Controllers R MS Approach Proceeding of the 7th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING (ICOSSSE '8) Control of Delayed Integrating Procee Uing Two Feedback Controller R MS Approach LIBOR

More information

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi

THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY STABILIZING CONTROLLERS. Tatsuya Hoshikawa, Kou Yamada and Yuko Tatsumi International Journal of Innovative Computing, Information Control ICIC International c 206 ISSN 349-498 Volume 2, Number 2, April 206 pp. 357 370 THE PARAMETERIZATION OF ALL TWO-DEGREES-OF-FREEDOM SEMISTRONGLY

More information

Exercises for lectures 19 Polynomial methods

Exercises for lectures 19 Polynomial methods Exercie for lecture 19 Polynomial method Michael Šebek Automatic control 016 15-4-17 Diviion of polynomial with and without remainder Polynomial form a circle, but not a body. (Circle alo form integer,

More information

Controllability and Observability

Controllability and Observability Controllability and Obervability Controllability and Obervability are propertie of ytem which relate to whether the tate can be driven to any arbitrary tate from a given input (controllable) or whether

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickon Department of Electrical, Computer, and Energy Engineering Univerity of Colorado, Boulder Cloed-loop buck converter example: Section 9.5.4 In ECEN 5797, we ued the CCM mall ignal model to

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.1 INTRODUCTION 8.2 REDUCED ORDER MODEL DESIGN FOR LINEAR DISCRETE-TIME CONTROL SYSTEMS 8.3

More information

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is CONTROL SYSTEMS Chapter 5 : Root Locu Diagram GATE Objective & Numerical Type Solution Quetion 1 [Work Book] [GATE EC 199 IISc-Bangalore : Mark] The tranfer function of a cloed loop ytem i T () where i

More information

MAE140 Linear Circuits Fall 2012 Final, December 13th

MAE140 Linear Circuits Fall 2012 Final, December 13th MAE40 Linear Circuit Fall 202 Final, December 3th Intruction. Thi exam i open book. You may ue whatever written material you chooe, including your cla note and textbook. You may ue a hand calculator with

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

ROUTH HURWITZ ANALYSIS

ROUTH HURWITZ ANALYSIS ROUTH HURWITZ ANALYSIS The Routh Hurwitz analyi tell you how many root are located in the a) let-hand plane, ) right-hand plane, and c) on the jω-axi. The technique i illutrated here with an example. The

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH International Journal of Electrical, Electronic and Data Communication, ISSN: 232-284 Volume-3, Iue-8, Aug.-25 NONLINEAR CONTROLLER DESIGN FOR A SHELL AND TUBE HEAT EXCHANGER AN EXPERIMENTATION APPROACH

More information

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20)

Homework 7 Solution - AME 30315, Spring s 2 + 2s (s 2 + 2s + 4)(s + 20) 1 Homework 7 Solution - AME 30315, Spring 2015 Problem 1 [10/10 pt] Ue partial fraction expanion to compute x(t) when X 1 () = 4 2 + 2 + 4 Ue partial fraction expanion to compute x(t) when X 2 () = ( )

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation

IEOR 3106: Fall 2013, Professor Whitt Topics for Discussion: Tuesday, November 19 Alternating Renewal Processes and The Renewal Equation IEOR 316: Fall 213, Profeor Whitt Topic for Dicuion: Tueday, November 19 Alternating Renewal Procee and The Renewal Equation 1 Alternating Renewal Procee An alternating renewal proce alternate between

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank.

Lecture Notes II. As the reactor is well-mixed, the outlet stream concentration and temperature are identical with those in the tank. Lecture Note II Example 6 Continuou Stirred-Tank Reactor (CSTR) Chemical reactor together with ma tranfer procee contitute an important part of chemical technologie. From a control point of view, reactor

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

Linear-Quadratic Control System Design

Linear-Quadratic Control System Design Linear-Quadratic Control Sytem Deign Robert Stengel Optimal Control and Etimation MAE 546 Princeton Univerity, 218! Control ytem configuration! Proportional-integral! Proportional-integral-filtering! Model

More information

Lecture 5 Introduction to control

Lecture 5 Introduction to control Lecture 5 Introduction to control Tranfer function reviited (Laplace tranform notation: ~jω) () i the Laplace tranform of v(t). Some rule: ) Proportionality: ()/ in () 0log log() v (t) *v in (t) () * in

More information

Solutions to exercises week 45 FYS2160

Solutions to exercises week 45 FYS2160 Solution to exercie week 45 FYS2160 Kritian Bjørke, Knut Oddvar Høie Vadla November 29, 2017 Schroeder 5.23 a) Writing Φ = U T S µn in term of infiniteimal change of the quantitie involved: dφ = du T ds

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE5 - Fall 5 Microelectronic Device and ircuit Lecture 9 Second-Order ircuit Amplifier Frequency Repone Announcement Homework 8 due tomorrow noon Lab 7 next week Reading: hapter.,.3. Lecture Material Lat

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information