Vacuum II. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1

Size: px
Start display at page:

Download "Vacuum II. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1"

Transcription

1 Vacuum II G. Franchetti CAS Bilbao 30/5/2011 G. Franchetti 1

2 Index Creating Vacuum (continuation) Measuring Vacuum Partial Pressure Measurements 30/5/2011 G. Franchetti 2

3 Laminar flow Cold surface Diffusion Ejector pump Inlet Schematic of the pump operating pressure: mbar Outlet Boiling oil 30/5/2011 G. Franchetti 3

4 Laminar flow Cold surface Inlet P i Pump principle: The vacuum gas diffuses into the jet and gets kicked by the oil molecules imprinting a downward momentum P o Outlet The oil jets produces a skirt which separate the inlet from the outlet Boiling oil 30/5/2011 G. Franchetti 4

5 Inlet Outlet Diffusion 30/5/2011 G. Franchetti 5

6 Cold surface Problems Inlet Pi Back streaming BackMigration 30/5/2011 G. Franchetti 6 Po

7 Cold surface Cold surface Cures Inlet Baffle (reduces the pumping speed of 0.3) Pi Cold Cap 30/5/2011 G. Franchetti 7 Po

8 with The pumping speed S m is proportional to the area of the inlet port 100 mm diameter S m = ~ 250 l/s for N 2 LEYBOLD (LEYBODIFF) 30/5/2011 G. Franchetti 8

9 Capture Vacuum Pumps Principle Capture vacuum pumps are based on the process of capture of vacuum molecules by surfaces Getter Pumps (evaporable, nonevaporable) Sputter ion Pumps Cryo Pumps 30/5/2011 G. Franchetti 9

10 Getter Pumps Gas Surface Solid Bulk 30/5/2011 G. Franchetti 10

11 Definition of NEG Getters are materials capable of chemically adsorbing gas molecules. To do so their surface must be clean. For NonEvaporable Getters a clean surface is obtained by heating to a temperature high enough to dissolve the native oxide layer into the bulk. T = T a T = RT T = RT Native oxide layer > no pumping Heating in vacuum Oxide dissolution > activation Pumping NEGs pump most of the gas except rare gases and methane at room temperature P. Chiggiato 11

12 Sorption Speed and Sorption Capacity C.Benvenuti, CAS /5/2011 G. Franchetti 12

13 Choice of the coating technique for thin film: sputtering substrate to coat: vacuum chamber target material: NEG (cathode) driving force: electrostatic energy carrier: noble gas ions NEG composition Ti V Zr The trend in vacuum technology consists in moving the pump progressively closer to the vacuum chamber wall. The ultimate step of this process consists of transforming the vacuum chamber from a gas source into a pump. One way to do this is by exsitu coating the vacuum chamber with a NEG thin film that will be activated during the in situ bakeout of the vacuum system. 13

14 Dipole Coating Facility Quadrupole Coating Facility M.C. Bellachioma (GSI) 30/5/2011 G. Franchetti 14

15 Sputter ion pumps Anode E Cathode E P2 B Titanum P1 30/5/2011 G. Franchetti 15

16 Sputtering process trapped electrons The adsorbing material is sputtered around the pump 30/5/2011 G. Franchetti 16

17 A glimpse to the complexity ion bombardment with sputtering Adsorbed ions Trapped electron ionization process 30/5/2011 G. Franchetti 17

18 Example of Pumping speed J.M. Laffterty, Vacuum Science, J. Wiley & Son, /5/2011 G. Franchetti 18

19 Cryo Pumps Stick to the Wall!! v 1 m Cold Wall Dispersion forces between molecules and surface are stronger then forces between molecules 30/5/2011 G. Franchetti 19

20 Schematic of a cryo pump Vessel n w p w P w P c I w I c = pressure warm = pressure in the cold = flux Vessel Pump = flux Pump Vessel Pump n c p c cold molecules stick to the cold wall 30/5/2011 G. Franchetti 20

21 Now By using the state equation In the same way If no pumping although Relation between pressures Thermal Transpiration 30/5/2011 G. Franchetti 21

22 When the two pressures breaks the thermal transpiration condition a particle flow starts We define and We find P c depends on the capture process Cryocondensation: P w is the vapor pressure of the gas at T c 30/5/2011 G. Franchetti 22

23 Summary on Pumps N. Marquardt 30/5/2011 G. Franchetti 23

24 Gauges Liquid Manometers MacLeod Gauges Viscosity Gauges Thermal conductivity Gauges Hot Cathode Gauges AlpertBayard Gauges Penning Gauges 30/5/2011 G. Franchetti 24

25 Liquid Manometers P 2 Relation between the two pressure P 1 h issue: measure precisely h by eye / 0.1 mm but with mercury surface tension depress liquid surface High accuracy is reached by knowing the liquid density Mercury should be handled with care: serious health hazard 30/5/2011 G. Franchetti 25

26 McLeod Gauge First mode of use: P 2 The reservoir is raised till the mercury reaches the level of the second branch (which is closed) Δh Closed h 0 Quadratic response to P 2 Second mode of use: keep the distance Δh constant and measure the distance of the two capillaries linear response in Δh 30/5/2011 G. Franchetti 26

27 Viscosity Gauges φ ω Gas molecule It is based on the principle that gas molecules hitting the sphere surface take away rotational momentum R The angular velocity of the sphere decreases ρ = sphere density α = coefficient of thermal dilatation T = temperature v a = thermal velocity 30/5/2011 G. Franchetti 27

28 (K. Jousten, CAS 2007) F.J. Redgrave, S.P. Downes, Some comments on the stability of Spinning Rotor Gauges, Vacuum, Vol. 38, /5/2011 G. Franchetti 28

29 Thermal conductivity Gauges hot wire A hot wire is cooled by the energy transport operated by the vacuum gas Accommodation factor By measuring de/dt we measure P 30/5/2011 G. Franchetti 29

30 Energy Balance Energy loss by gas molecules W c /2 W R Energy loss by Radiation V W c /2 ε = emissivity Energy loss by heat conduction When the energy loss by gas molecule is dominant P can be predicted with contained systematic error 30/5/2011 G. Franchetti 30

31 Pirani Gauge Example of power dissipated by a Pirani Gauge vs Vacuum pressure The Gauge tube is kept at constant temperature and the current is measured So that. Through this value E 30/5/2011 G. Franchetti 31

32 Ionization Gauges Principle electrons V L accelerating gap 30/5/2011 G. Franchetti 32

33 E new electrons i = current proportional to the ionization rate i V positive ions 30/5/2011 G. Franchetti 33

34 Electrons ionization rate Sensitivity 30/5/2011 G. Franchetti 34

35 Hot Cathode Gauges Anode Electric field Grid 180V 30 V Hot Cathode 30/5/2011 G. Franchetti 35

36 Hot Cathode Gauges In this region the electrons can ionize vacuum particles Anode i Grid 180V 30 V Hot Cathode i A current between grid and anode is proportional to the vacuum pressure 30/5/2011 G. Franchetti 36

37 Limit of use Upper limit: Lower limit: it is roughly the limit of the linear response Xray limit Anode Xray new electron The new electron change the ionization current P m Xray Xray limit Grid P 30/5/2011 G. Franchetti 37

38 AlpertBayard Gauge Xray The Xray limit is easily suppressed by a factor ~ Hot Cathode Anode Xray Grid the probability that a new electron hits the anode is now very small 30/5/2011 G. Franchetti 38

39 Schematic of the original design (K. Jousten, CAS 2007) 30/5/2011 G. Franchetti 39

40 Penning Gauge (cold cathode gauges) E = electric field B = magnetic field anode cathode Electrons motion 30/5/2011 G. Franchetti 40

41 30/5/2011 G. Franchetti 41 One electron is trapped Under proper condition of (E,B) electrons get trapped in the Penning Gauge

42 One electron is trapped one vacuum neutral gas enters into the trap 30/5/2011 G. Franchetti 42

43 Ionization process Neutral vacuum atom Before Collision Collision Ionization Charged vacuum atom Electron at ionization speed Electron at ionization speed New electron 30/5/2011 G. Franchetti 43

44 Ionization Charged vacuum atom this ion has a too large mass and relatively slow velocity, therefore its motion is dominated by the electric field and not by the magnetic field Electron at ionization speed New electron 30/5/2011 G. Franchetti 44

45 Motion of stripped ion Ionization Charged vacuum atom New electron 30/5/2011 G. Franchetti 45

46 30/5/2011 G. Franchetti 46 Negative space charge formation More electrons are formed through the ionization of the vacuum gas and remains inside the trap

47 30/5/2011 G. Franchetti 47 When the discharge gets saturated each new ionization produce a current I

48 The time necessary for the discharge formation depends upon the level of the vacuum lower pressure longer time of formation Sensitivity of a SIP (the same as for the Penning Gauge). J.M. Lafferty, Vacuum Science,p /5/2011 G. Franchetti 48

49 Summary on Gauges N. Marquardt 30/5/2011 G. Franchetti 49

50 Partial Pressure Measurements These gauges allow the determination of the gas components Partial pressure gauges are composed Ion Source Mass Analyzer Ion current detection System data output 30/5/2011 G. Franchetti 50

51 Ion Sources Vacuum gas is ionized via electronimpact the rate of production of ions is proportional to each ion species Electronimpact ionization process e Before Impact v M After impact M m e inelastic scattering: kinetic energy transfer from the electron to the molecule e m e v e m e v 30/5/2011 G. Franchetti 51

52 The minimum energy to ionize M is called appearance potential At the appearance potential the production rate is low Electron energy (ev) 15 IP = 15 ev M e appearance potential A. von Engel, Ionized Gases, AVS Classics Ser., p. 63. AIP Press, /5/2011 G. Franchetti 52

53 Open source BayardAlpert gauge Ion source acceleration gap ion collector electrons source ionization region electrons ions E E V f V g V g < V c V c 30/5/2011 G. Franchetti 53

54 A schematic Mass analyzer F = ion transmission factor Ion Detection 30/5/2011 G. Franchetti 54

55 Ion Detection Faraday Cup Secondary electron Multiplier (SEM) G = Gain # electrons output # ion input Idea: an ion enters into the tube, and due to the potential is accelerated to the walls. At each collision new electrons are produced in an avalanche process d L V 0 = applied voltage V = initial energy of the electron K = δ V c where J.Adams, B.W. Manley IEEE Transactions on Nuclear Science, vol. 13, issue 3, p. 88 δ = secondary emission coefficient V c = collision energy 30/5/2011 G. Franchetti 55

56 Mass Analyzers Quadrupolar mass spectrometer y r 0 s Ion equation of motion x define: U, V constant 30/5/2011 G. Franchetti 56

57 By rescaling of the coordinates the equation of motion becomes Mathieu Equation The ion motion can be stable or unstable Stability of motion horizontal vertical q=0, a>0 unstable stable q=0, a<0 stable unstable The presence of the term q, changes the stability condition Development of stable motion Stable or unstable motion is referred to a channel which is infinitely long, but typically a length correspondent to 100 linear oscillation is considered enough Example: For N 2 at E k = 10 ev v s = 8301 m/s For a length of L = 100 mm 100 rf oscillation f = 8.3 MHz typically f ~ 2 MHz 30/5/2011 G. Franchetti 57

58 10 5 a Stability Chart of Mathieu equation 10 a 5 Stable in y q q 5 5 Stable in x /5/2011 G. Franchetti 58

59 a 10 a q a q 0 =0.706 a 0 =0.237 Stability region in both planes q 10 30/5/2011 G. Franchetti 59

60 a (0.706; 0.237) Given a certain species of mass M 1 there are two values U 1, V 1 so that q=q 0 and a=a 0 By varying V and keeping the ratio V/U constant, the tip of the stability is crossed and a current is measured at V=V 1 q i Stability region in both planes V 30/5/2011 G. Franchetti 60

61 Magnetic Sector Analyzer Example: A 90 0 magnetic sector mass spectrometer B is varied and when a current is detected then E z is the ions kinetic energy Resolving power W source = source slit width W collector = collector slit width J.M. Lafferty, Vacuum Science, p /5/2011 G. Franchetti 61

62 Omegatron 30/5/2011 G. Franchetti 62

63 The revolution time is independent from ion energy collector B If the frequency of the RF is 1/τ a resonant process takes place and particle spiral out E Resolving power 30/5/2011 G. Franchetti 63

64 Conclusion Creating and controlling vacuum will always be a relevant part of any accelerator new development. THANK YOU FOR YOUR ATTENTION These two lectures provides an introduction to the topic, which is very extensive: further reading material is reported in the following bibliography 30/5/2011 G. Franchetti 64

65 Kinetic theory and entropy,c.h. Collie, Longam Group, 1982 Thermal Physics, Charles Kittel, (John Wiley and Sons, 1969). Basic Vacuum Technology (2 nd Edn), A Chambers, R K Fitch, B S Halliday, IoP Publishing, 1998, ISBN Modern Vacuum Physics, A Chambers, Chapman & Hall/CRC, 2004, ISBN The Physical Basis of Ultrahigh Vacuum, P. A. Redhead, J. P. Hobson, E. V. Kornelsen, AIP, 1993, ISBN Foundation of Vacuum Science, J.M. Lafferty, Wiley & Sons, 1998 Vacuum in accelerators, CERN Accelerator School, CERN June 2007 Vacuum technology, CERN Accelerator School, CERN Acknowledgements: Maria Cristina Bellachioma 30/5/2011 G. Franchetti 65

( KS A ) (1) , vapour, vapor (USA) , saturation vapour pressure. , standard reference conditions for gases. , degree of saturation

( KS A ) (1) , vapour, vapor (USA) , saturation vapour pressure. , standard reference conditions for gases. , degree of saturation ( KS A 3014-91 ) (1), standard reference conditions for gases 0, 101325 Pa (1 =760mmHg ), vacuum, low ( rough ) vacuum 100Pa, medium vacuum 100 01 Pa, high vacuum 01 10 5 Pa, ultra high vacuum ( UHV )

More information

Lecture 3 Vacuum Science and Technology

Lecture 3 Vacuum Science and Technology Lecture 3 Vacuum Science and Technology Chapter 3 - Wolf and Tauber 1/56 Announcements Homework will be online from noon today. This is homework 1 of 4. 25 available marks (distributed as shown). This

More information

Vacuum for Accelerators

Vacuum for Accelerators Vacuum for Accelerators Oswald Gröbner Baden, 22 September 2004 1) Introduction and some basics 2) Pumps used in accelerators 3) Desorption phenomena 4) Practical examples Oswald Gröbner, Retired from

More information

Previous Lecture. Electron beam lithoghraphy e - Electrons are generated in vacuum. Electron beams propagate in vacuum

Previous Lecture. Electron beam lithoghraphy e - Electrons are generated in vacuum. Electron beams propagate in vacuum Previous Lecture Electron beam lithoghraphy e - Electrons are generated in vacuum Electron beams propagate in vacuum Lecture 6: Vacuum & plasmas Objectives From this vacuum lecture you will learn: What

More information

Angular Correlation Experiments

Angular Correlation Experiments Angular Correlation Experiments John M. LoSecco April 2, 2007 Angular Correlation Experiments J. LoSecco Notre Dame du Lac Nuclear Spin In atoms one can use the Zeeman Effect to determine the spin state.

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

Generation of vacuum (pumps) and measurements

Generation of vacuum (pumps) and measurements Generation of vacuum (pumps) and measurements Generation of vacuum (pumps): ᴥ pumping systems general considerations on their use and match with physical quantities introduced for the dimensioning of vacuum

More information

Vacuum. Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006

Vacuum. Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006 Physics,, Technology and Techniques of the Vacuum Kai Schwarzwälder, Institut für Physik Universität Basel October 6 th 2006 Outline Introduction and basics Defintion of Vacuum Vacuum A vacuum is a volume

More information

Sputter Ion Pump (Ion Pump) By Biswajit

Sputter Ion Pump (Ion Pump) By Biswajit Sputter Ion Pump (Ion Pump) By Biswajit 08-07-17 Sputter Ion Pump (Ion Pump) An ion pump is a type of vacuum pump capable of reaching pressures as low as 10 11 mbar under ideal conditions. An ion pump

More information

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators Mauro Audi, Academic, Government & Research Marketing Manager ION Pumps Agilent Technologies 1957-59 Varian Associates invents the first

More information

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer Huashun Zhang Ion Sources With 187 Figures and 26 Tables Э SCIENCE PRESS Springer XI Contents 1 INTRODUCTION 1 1.1 Major Applications and Requirements 1 1.2 Performances and Research Subjects 1 1.3 Historical

More information

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular

Vacuum Pumps. Two general classes exist: Gas transfer physical removal of matter. Mechanical, diffusion, turbomolecular Vacuum Technology Vacuum Pumps Two general classes exist: Gas transfer physical removal of matter Mechanical, diffusion, turbomolecular Adsorption entrapment of matter Cryo, sublimation, ion Mechanical

More information

Lecture 4. Ultrahigh Vacuum Science and Technology

Lecture 4. Ultrahigh Vacuum Science and Technology Lecture 4 Ultrahigh Vacuum Science and Technology Why do we need UHV? 1 Atmosphere = 760 torr; 1 torr = 133 Pa; N ~ 2.5 10 19 molecules/cm 3 Hertz-Knudsen equation p ZW 1/ 2 ( 2mk T) At p = 10-6 Torr it

More information

Vacuum Science and Technology in Accelerators

Vacuum Science and Technology in Accelerators Vacuum Science and Technology in Accelerators Ron Reid Consultant ASTeC Vacuum Science Group (ron.reid@stfc.ac.uk) Lecture 1: 1 of 25 Aims To give a basic understanding of vacuum Underlying physical principles

More information

Vacuum I. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1

Vacuum I. G. Franchetti CAS - Bilbao. 30/5/2011 G. Franchetti 1 Vacuum I G. Franchetti CAS - Bilbao 30/5/2011 G. Franchetti 1 Index Introduction to Vacuum Vacuum and the Beam Flow Regimes Creating Vacuum 30/5/2011 G. Franchetti 2 Vacuum in accelerators All beam dynamics

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

Study of Distributed Ion-Pumps in CESR 1

Study of Distributed Ion-Pumps in CESR 1 Study of Distributed Ion-Pumps in CESR 1 Yulin Li, Roberto Kersevan, Nariman Mistry Laboratory of Nuclear Studies, Cornell University Ithaca, NY 153-001 Abstract It is desirable to reduce anode voltage

More information

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

PHYSICAL VAPOR DEPOSITION OF THIN FILMS PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Ion Implanter Cyclotron Apparatus System

Ion Implanter Cyclotron Apparatus System Ion Implanter Cyclotron Apparatus System A. Latuszyñski, K. Pyszniak, A. DroŸdziel, D. M¹czka Institute of Physics, Maria Curie-Sk³odowska University, Lublin, Poland Abstract In this paper the authors

More information

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior.

Vacuum. Residual pressure can thwart the best cryogenic design. Each gas molecule collision carries ~kt from the hot exterior to the cold interior. Vacuum Residual pressure can thwart the best cryogenic design Each gas molecule collision carries ~kt from the hot exterior to the cold interior. 1 millitorr = 3.5x10¹³/cm³ Gas atoms leaving the hot surfaces

More information

Generation of vacuum (pumps): Vacuum (pressure) measurements:

Generation of vacuum (pumps): Vacuum (pressure) measurements: Generation of vacuum (pumps) p and measurements Generation of vacuum (pumps): ᴥ pumping p systems general considerations on their use and match with physical quantities introduced for the dimensioning

More information

λ = 5 10 p (i.e. 5 cm at 10 3 Torr, or ( )

λ = 5 10 p (i.e. 5 cm at 10 3 Torr, or ( ) Getter pumping C. Benvenuti R&B Energy Research, Geneva, Switzerland Abstract A surface may provide a useful pumping action when able to retain adsorbed gas molecules for the duration of a given experiment.

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

To move a particle in a (straight) line over a large distance

To move a particle in a (straight) line over a large distance 2.1 Introduction to Vacuum Technology 2.1.1 Importance of Vacuum Technology for Processing and Characterization Under partial vacuum conditions (pressures orders of magnitude below ambient atmospheric

More information

UHV - Technology. Oswald Gröbner

UHV - Technology. Oswald Gröbner School on Synchrotron Radiation UHV - Technology Trieste, 20-21 April 2004 1) Introduction and some basics 2) Building blocks of a vacuum system 3) How to get clean ultra high vacuum 4) Desorption phenomena

More information

VACUUM PUMPING METHODS

VACUUM PUMPING METHODS VACUUM PUMPING METHODS VACUUM PUMPS (METHODS) Positive Displacement Vacuum Gas Transfer Vacuum Kinetic Vacuum Entrapment Vacuum Adsorption Reciprocating Displacement Rotary Drag Fluid Entrainment Ion Transfer

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

MOLECULAR SURFACE PUMPING: CRYOPUMPING

MOLECULAR SURFACE PUMPING: CRYOPUMPING 51 MOLECULAR SURFACE PUMPING: CRYOPUMPING C. Benvenuti CERN, Geneva, Switzerland Abstract Weak van der Waals attractive forces may provide molecular gas pumping on surfaces cooled at sufficiently low temperatures.

More information

Vacuum Solutions for Ion Thruster Testing

Vacuum Solutions for Ion Thruster Testing Vacuum Solutions for Ion Thruster Testing Stefan Lausberg Application & Product Support VA 1.2 Mon 9:45 H25 DPG-Frühjahrstagung Regensburg 2016 Oerlikon Leybold Vacuum DPG-Frühjahrstagung Regensburg Stefan

More information

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD Chapter 4 DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD 4.1 INTRODUCTION Sputter deposition process is another old technique being used in modern semiconductor industries. Sputtering

More information

ICPMS Doherty Lecture 1

ICPMS Doherty Lecture 1 ICPMS Doherty Lecture 1 Mass Spectrometry This material provides some background on how to measure isotope abundances by means of mass spectrometry. Mass spectrometers create and separate ionized atoms

More information

Deuterium Gas Analysis by Residual Gas Analyzer

Deuterium Gas Analysis by Residual Gas Analyzer Journal of Physics: Conference Series Deuterium Gas Analysis by Residual Gas Analyzer To cite this article: B K Das et al 2012 J. Phys.: Conf. Ser. 390 012009 View the article online for updates and enhancements.

More information

Lecture 5-8 Instrumentation

Lecture 5-8 Instrumentation Lecture 5-8 Instrumentation Requirements 1. Vacuum Mean Free Path Contamination Sticking probability UHV Materials Strength Stability Permeation Design considerations Pumping speed Virtual leaks Leaking

More information

Vacuum techniques (down to 1 K)

Vacuum techniques (down to 1 K) Vacuum techniques (down to 1 K) For isolation (deep Knudsen regime) liquid helium dewar / inner vacuum jacket Leak testing at level 10-11 Pa m3/s (10-10 mbar l/s) liquid helium dewar & transfer syphon

More information

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7

Advanced Lab Course. X-Ray Photoelectron Spectroscopy 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT Qualitative analysis Chemical Shifts 7 Advanced Lab Course X-Ray Photoelectron Spectroscopy M210 As of: 2015-04-01 Aim: Chemical analysis of surfaces. Content 1 INTRODUCTION 1 2 BASICS 1 3 EXPERIMENT 3 3.1 Qualitative analysis 6 3.2 Chemical

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

BALKAN PHYSICS LETTERS Bogazici University Press 15 November 2016 BPL, 24, , pp , (2016)

BALKAN PHYSICS LETTERS Bogazici University Press 15 November 2016 BPL, 24, , pp , (2016) 139 BALKAN PHYSICS LETTERS Bogazici University Press 15 November 2016 BPL, 24, 241016, pp. 139 145, (2016) VACUUM STUDIES ON ELECTRON GUN AND INJECTOR LINE OF TARLA FACILITY E. COŞGUN, E.P. DEMİRCİ, Ö.

More information

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT Romanian Reports in Phisics, Vol. 56, No., P. 71-76, 004 CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT A. R. PETRE 1, M. BÃZÃVAN 1, V. COVLEA 1, V.V. COVLEA 1, ISABELLA IOANA OPREA, H. ANDREI

More information

Non-Evaporable Getters

Non-Evaporable Getters Non-Evaporable Getters Dr. Oleg B. Malyshev Senior Vacuum Scientist ASTeC Vacuum Science Group, STFC Daresbury Laboratory, UK VS-2, 18-19 October 2011, Ricoh Arena, Coventry 1 Sorption and diffusion Gas

More information

Repetition: Physical Deposition Processes

Repetition: Physical Deposition Processes Repetition: Physical Deposition Processes PVD (Physical Vapour Deposition) Evaporation Sputtering Diode-system Triode-system Magnetron-system ("balanced/unbalanced") Ion beam-system Ionplating DC-glow-discharge

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Secondary ion mass spectrometry (SIMS)

Secondary ion mass spectrometry (SIMS) Secondary ion mass spectrometry (SIMS) ELEC-L3211 Postgraduate Course in Micro and Nanosciences Department of Micro and Nanosciences Personal motivation and experience on SIMS Offers the possibility to

More information

N NBI DEVELOPMENT STATUS IN KURCHATOV INSTITUTE

N NBI DEVELOPMENT STATUS IN KURCHATOV INSTITUTE Russian Research Centre KURCHATOV INSTITUTE Institute of Nuclear Fusion N NBI DEVELOPMENT STATUS IN KURCHATOV INSTITUTE Presented by V.M. Kulygin Injectors, Padova, ITALY, 9 11 May, 2005 Negative Ion Based

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

Vacuum Technology for Particle Accelerators

Vacuum Technology for Particle Accelerators Vacuum Technology for Particle Accelerators (Max IV laboratory) CERN Accelerator School: Introduction to Accelerator Physics 8 th October 2016, Budapest, Hungary 1 Contents What is vacuum and why do we

More information

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate. 1 The Q Machine 60 cm 198 cm Oven 50 cm Axial Probe Plasma 6 cm 30 cm PUMP End Plate Magnet Coil Radial Probe Hot Plate Filament Cathode 2 THE Q MACHINE 1. GENERAL CHARACTERISTICS OF A Q MACHINE A Q machine

More information

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n 20.2 Ion Sources electron ionization produces an M + ion and extensive fragmentation chemical ionization produces an M +, MH +, M +, or M - ion with minimal fragmentation MALDI uses laser ablation to transfer

More information

Mass Spectrometry in MCAL

Mass Spectrometry in MCAL Mass Spectrometry in MCAL Two systems: GC-MS, LC-MS GC seperates small, volatile, non-polar material MS is detection devise (Agilent 320-MS TQ Mass Spectrometer) Full scan monitoring SIM single ion monitoring

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Ma5: Auger- and Electron Energy Loss Spectroscopy

Ma5: Auger- and Electron Energy Loss Spectroscopy Ma5: Auger- and Electron Energy Loss Spectroscopy 1 Introduction Electron spectroscopies, namely Auger electron- and electron energy loss spectroscopy are utilized to determine the KLL spectrum and the

More information

The Vacuum Case for KATRIN

The Vacuum Case for KATRIN The Vacuum Case for KATRIN Institute of Nuclear Physics, Forschungszentrum Karlsruhe,Germany, for the KATRIN Collaboration Lutz.Bornschein@ik.fzk.de The vacuum requirements of the KATRIN experiment have

More information

Repetition: Practical Aspects

Repetition: Practical Aspects Repetition: Practical Aspects Reduction of the Cathode Dark Space! E x 0 Geometric limit of the extension of a sputter plant. Lowest distance between target and substrate V Cathode (Target/Source) - +

More information

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 )

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) 1 POSTER JP1.00100 [Bull. APS 51, 165 (2006)] DPP06 Meeting of The American Physical Society Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 ) Su-Hyun Kim, Robert Merlino,

More information

NEXTorr HV 100 HIGHLIGHTS

NEXTorr HV 100 HIGHLIGHTS NEXTorr HV 100 HIGHLIGHTS General Features High pumping speed for all active gases Pumping speed for noble gases and methane High sorption capacity and increased lifetime Constant pumping speed in HV and

More information

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition

Metal Deposition. Filament Evaporation E-beam Evaporation Sputter Deposition Metal Deposition Filament Evaporation E-beam Evaporation Sputter Deposition 1 Filament evaporation metals are raised to their melting point by resistive heating under vacuum metal pellets are placed on

More information

Contents. 2. Fluids. 1. Introduction

Contents. 2. Fluids. 1. Introduction Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

THIN FLEXIBLE POLYMER SUBSTRATES COATED BY THICK FILMS IN ROLL-TO-ROLL VACUUM

THIN FLEXIBLE POLYMER SUBSTRATES COATED BY THICK FILMS IN ROLL-TO-ROLL VACUUM ARCOTRONICS INDUSTRIES SpA Via San Lorenzo, 19 40037 Sasso Marconi (BO) Italy Tel. (+39) 051939111 Fax (+39) 051840684 http://www.arcotronics.com THIN FLEXIBLE POLYMER SUBSTRATES COATED BY THICK FILMS

More information

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein.

Discovered by German scientist Johann Hittorf in 1869 and in 1876 named by Eugen Goldstein. DO PHYSICS ONLINE CATHODE RAYS CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum tubes - evacuated glass tubes that are equipped with at least two metal

More information

CHAPTER 6: Etching. Chapter 6 1

CHAPTER 6: Etching. Chapter 6 1 Chapter 6 1 CHAPTER 6: Etching Different etching processes are selected depending upon the particular material to be removed. As shown in Figure 6.1, wet chemical processes result in isotropic etching

More information

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption

Recap: Introduction 12/1/2015. EVE 402 Air Pollution Generation and Control. Adsorption EVE 402 Air Pollution Generation and Control Chapter #6 Lectures Adsorption Recap: Solubility: the extent of absorption into the bulk liquid after the gas has diffused through the interface An internal

More information

Vacuum Technology and film growth. Diffusion Resistor

Vacuum Technology and film growth. Diffusion Resistor Vacuum Technology and film growth Poly Gate pmos Polycrystaline Silicon Source Gate p-channel Metal-Oxide-Semiconductor (MOSFET) Drain polysilicon n-si ion-implanted Diffusion Resistor Poly Si Resistor

More information

Ionization Detectors. Mostly Gaseous Detectors

Ionization Detectors. Mostly Gaseous Detectors Ionization Detectors Mostly Gaseous Detectors Introduction Ionization detectors were the first electrical devices developed for radiation detection During the first half of the century: 3 basic types of

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

Chemistry Instrumental Analysis Lecture 35. Chem 4631

Chemistry Instrumental Analysis Lecture 35. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 35 Principle components: Inlet Ion source Mass analyzer Ion transducer Pumps Signal processor Mass analyzers Quadrupole Time of Flight Double Focusing Ion

More information

LECTURE 5 SUMMARY OF KEY IDEAS

LECTURE 5 SUMMARY OF KEY IDEAS LECTURE 5 SUMMARY OF KEY IDEAS Etching is a processing step following lithography: it transfers a circuit image from the photoresist to materials form which devices are made or to hard masking or sacrificial

More information

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur Lecture - 19 Low Pressure Measurement Welcome to the lesson 19 of Industrial Instrumentation.

More information

Study of DC Cylindrical Magnetron by Langmuir Probe

Study of DC Cylindrical Magnetron by Langmuir Probe WDS'2 Proceedings of Contributed Papers, Part II, 76 8, 22. ISBN 978-737825 MATFYZPRESS Study of DC Cylindrical Magnetron by Langmuir Probe A. Kolpaková, P. Kudrna, and M. Tichý Charles University Prague,

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Rough (low) vacuum : Medium vacuum : High vacuum (HV) : Ultrahigh vacuum (UHV) :

Rough (low) vacuum : Medium vacuum : High vacuum (HV) : Ultrahigh vacuum (UHV) : 4. UHV & Effects of Gas Pressure 4.1 What is Ultra-high Vacuum (UHV)? 4.2 Why is UHV required for Surface Studies? 4.3 Exercises - Effects of Gas Pressure Vacuum technology has advanced considerably over

More information

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma THE PLASMA Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces a current within a stream of Argon (Ar) gas, which

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless )

K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless ) III. Gas flow. The nature of the gas : Knudsen s number K n λ d 2. Relative flow : U ρ d η U : stream velocity ρ : mass density Reynold s number R ( dimensionless ) 3. Flow regions - turbulent : R > 2200

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

3.5. Accelerator Mass Spectroscopy -AMS -

3.5. Accelerator Mass Spectroscopy -AMS - 3.5. Accelerator Mass Spectroscopy -AMS - AMS is a method which counts radioactive particles ( 14 C) rather than measuring the characteristic decay activity. Comparison Traditional 14 C dating and AMS

More information

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur

Nova 600 NanoLab Dual beam Focused Ion Beam IITKanpur Nova 600 NanoLab Dual beam Focused Ion Beam system @ IITKanpur Dual Beam Nova 600 Nano Lab From FEI company (Dual Beam = SEM + FIB) SEM: The Electron Beam for SEM Field Emission Electron Gun Energy : 500

More information

1.4 The Tools of the Trade!

1.4 The Tools of the Trade! 1.4 The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors

PHY492: Nuclear & Particle Physics. Lecture 25. Particle Detectors PHY492: Nuclear & Particle Physics Lecture 25 Particle Detectors http://pdg.lbl.gov/2006/reviews/contents_sports.html S(T ) = dt dx nz = ρa 0 Units for energy loss Minimum ionization in thin solids Z/A

More information

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces

More information

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS. ESS The RGA freenotes Theory page 1 of 14 RGA Theory Notes Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

More information

Experimental techniques of Surface Science and how a theorist understands them

Experimental techniques of Surface Science and how a theorist understands them Experimental techniques of Surface Science and how a theorist understands them Karsten Reuter Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, D-14195 Berlin reuter@fhi-berlin.mpg.de 0.

More information

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado

The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado Experiment 9 1 Introduction The Franck-Hertz Experiment Physics 2150 Experiment No. 9 University of Colorado During the late nineteenth century, a great deal of evidence accumulated indicating that radiation

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Chap. 5 Ion Chambers the electroscope

Chap. 5 Ion Chambers the electroscope Chap. 5 Ion Chambers the electroscope Electroscope: an early device used to study static electricity continues to be used for personal dosimeters. Put a (known) charge on the central electrode, leaves

More information

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. # 41 Instrumentation in Cryogenics (Refer Slide Time: 00:31) So, welcome

More information

POLARIZED DEUTERONS AT THE NUCLOTRON 1

POLARIZED DEUTERONS AT THE NUCLOTRON 1 POLARIZED DEUTERONS AT THE NUCLOTRON 1 Yu.K.Pilipenko, S.V.Afanasiev, L.S.Azhgirey, A.Yu.Isupov, V.P.Ershov, V.V.Fimushkin, L.V.Kutuzova, V.F.Peresedov, V.P.Vadeev, V.N.Zhmyrov, L.S.Zolin Joint Institute

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

1.5. The Tools of the Trade!

1.5. The Tools of the Trade! 1.5. The Tools of the Trade! Two things are required for material analysis: excitation mechanism for originating characteristic signature (radiation) radiation detection and identification system (spectroscopy)

More information

Ionization Detectors

Ionization Detectors Ionization Detectors Basic operation Charged particle passes through a gas (argon, air, ) and ionizes it Electrons and ions are collected by the detector anode and cathode Often there is secondary ionization

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

Lecture 10. Vacuum Technology and Plasmas Reading: Chapter 10. ECE Dr. Alan Doolittle

Lecture 10. Vacuum Technology and Plasmas Reading: Chapter 10. ECE Dr. Alan Doolittle Lecture 10 Vacuum Technology and Plasmas Reading: Chapter 10 Vacuum Science and Plasmas In order to understand deposition techniques such as evaporation, sputtering,, plasma processing, chemical vapor

More information

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods Methods for catalyst preparation Methods discussed in this lecture Physical vapour deposition - PLD

More information

Surface Analysis - The Principal Techniques

Surface Analysis - The Principal Techniques Surface Analysis - The Principal Techniques Edited by John C. Vickerman Surface Analysis Research Centre, Department of Chemistry UMIST, Manchester, UK JOHN WILEY & SONS Chichester New York Weinheim Brisbane

More information

Low Energy Electrons and Surface Chemistry

Low Energy Electrons and Surface Chemistry G. Ertl, J. Küppers Low Energy Electrons and Surface Chemistry VCH 1 Basic concepts 1 1.1 Introduction 1 1.2 Principles of ultrahigh vacuum techniques 2 1.2.1 Why is UHV necessary? 2 1.2.2 Production of

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

AND LIMITATIONS K. BALOGH

AND LIMITATIONS K. BALOGH SENSITIVITY OF THE 40 Ar 39 Ar METHOD: NEW POSSIBILITIES AND LIMITATIONS K. BALOGH Institute of Nuclear Research, Hungarian Academy of Sciences, 4026 Debrecen, Bem t. 18/c, Hungary; balogh@moon.atomki.hu

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES VISUAL PHYSICS ONLINE MODULE 7 NATURE OF LIGHT ELECTROMAGNETIC WAVES SPECTRA PRODUCED BY DISCHARGE TUBES CATHODE RAYS (electron beams) Streams of electrons (negatively charged particles) observed in vacuum

More information