Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Size: px
Start display at page:

Download "Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)"

Transcription

1 Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University, Sapporo, Japan Eprint hep-lat/ A. Ohnishi, 2006/11/15 1

2 Quark and Hadronic Matter Phase Diagram Dense quark & hadronic matter contains rich physics, but Lattice QCD simulation is not yet reliable. Model/Approximate approaches are necessary! Monte-Carlo calc. of Lattice QCD: Improved ReWeighting Method (Fodor-Katz) Taylor Expansion in μ (Bielefeld U.) Analytic Continuation (de Forcrand-Philipssen) Model / Phen. Approaches: NJL, QMC, RMF,... Strong Coupling Limit of Lattice QCD z A. Ohnishi, QM2006@Shanghai, 2006/11/15 2

3 Strong Coupling Limit of Lattice QCD Chiral Restoration at μ=0. Damgaard, Kawamoto, Shigemoto, PRL53(1984),2211 Phase Diagram with Nc=3 Nishida, PRD69, (2004) A. Ohnishi, 2006/11/15 3

4 Previous Works in Strong Coupling Limit LQCD Strong Coupling Limit Lattice QCD re-attracts interests Ref T μ Nc Baryon CSC Nf Damgaard-Kawamoto-Shigemoto('84) Finite 0 U(Nc) X X 1 Damgaard-Hochberg-Kawamoto('85) 0 Finite 3 Yes X 1 Bilic-Karsch-Redlich('92) Finite Finite 3 X X 1 ~ 3 Azcoiti-Di Carlo-Galante-Laliena('03) 0 Finite 3 Yes Yes 1 Nishida-Fukushima-Hatsuda('04) Finite Finite 2 Yes (*) Yes (*) 1 Nishida('04) Finite Finite 3 X X 1~2 Kawamoto-Miura-AO-Ohnuma('05) Finite Finite 3 Yes Yes (+) 1 *: bosonic baryon=diquark in SU(2) +: analytically included, but ignored in numerical calc. Baryons should be important at High Baryon Densities, but they have been ignored in finite T treatments! This work: Baryonic effects at Finite T (and μ) for SU c (3) A. Ohnishi, QM2006@Shanghai, 2006/11/15 4

5 Strong Coupling Limit Lattice QCD QCD Lattice Action Z D[,,U ]exp [ S G S F s S F t m 0 M ] S G = 1 g 2 x S F s = 1 2 x, j + [TrU TrU ] j x x U j x x j U + x j j x x U ν + U μ + U μ U ν U j U j + χ U μ χ χ Uμ + χ (U j ) 3 M= χ χ S F t = 1 2 x e x U 0 x x 0 e x 0 U + 0 x x Strong Coupling Limit: g We can ignore S G and perform one-link integral after 1/d expansion. M(x) M(x+j) B= /6 B= /6 du U ab U + cd = 1 N ad bc c du U ab U cd U ef = 1 6 ace bdf S F s 1 2 M V M M B V B B = 1 4 N c x, j 0 M x M x j x, j 0 j 8 [ B x B x j B x j B x ] A. Ohnishi, QM2006@Shanghai, 2006/11/15 5

6 SCL-LQCD w/o Baryons Lattice Action (staggered fermion) in SCL Z D[,,U ]exp [ S F s S F t m 0 S G ] Spatial Link Integral D[,,U 0 ]exp[ 1 2 M,V M M B,V B B G 0 ] Strong Coupling 1/d Expansion (1/ d) Bosonization (Hubburd-Stratonovich transformation) Quark and U 0 Integral Damgaad-Kawamoto-Shigemoto 1984, Faldt-Petersson 1986, Bilic-Karsch-Redlich 1992, Nishida 2004,... D[,,U 0, ]exp[ 1 2,V M,V M M G 0 ] G exp N 3 S N [ 1 2 a 2 T log G U ] =exp N 3 S F eff /T Local Bi-linear action in quarks Effective Free Energy A. Ohnishi, QM2006@Shanghai, 2006/11/15 6

7 SCL-LQCD with Baryons Effective Action up to O(1/ d) Z D[,,U 0 ]exp[ 1 2 M,V M M B,V B B G 0 ] M = a a B= abc a b c /6 = D[,,U 0, b,b]exp[ 1 2 M V M M bv B 1 b b, B B,b G 0 ] Decomposition of bb by using diquark condensate (Azcoiti et al., 2004) exp[ b, B B,b ]=exp [ 1 6 b, 1 6, b ] = [ D[ a, * a ]exp * * 2 b 3 2 b ] 3 exp M 2 /2 M b b/9 2 Decomposition of Mbb using baryon potential field ω exp M b b/9 2 = D [ ]exp [ M b b 9 2 note: with one species of staggered fermion! b b 2 =0 2] 2 2 M A. Ohnishi, QM2006@Shanghai, 2006/11/15 7

8 Effective Free Energy with Baryon Effects Effective Action in local bilinear form of quarks S F = 1 2 M V M M 1 2, b, V B 1 g b, M G 0 = N 3 s N Bosonization + MFA +No diquark cond. quark & gluon int. * * D D + 2 a 2 2 a, M G 0 b, V B 1 g b b int. F eff, = 1 2 a F q eff a F b eff g = 1 2 a 2 1 O(ω 2 ) O(ω 4 ) 2 a 2 F q eff a F b eff g Linear Approx. (ω ~ ασ/a ω ) F eff = 1 2 b 2 F q eff b F b eff g A. Ohnishi, QM2006@Shanghai, 2006/11/15 8

9 Effective Free Energy with Baryon Effects F eff = 1 2 b 2 F q eff b ;T, F b eff g is analytically derived based on many previous works, including Strong Coupling Limit (Kawamoto-Smit, 1981) 1/d expansion (Kluberg-Stern-Morel-Petersson, 1983) Lattice chemical potential (Hasenfratz-Karsch, 1983) Quark and time-like gluon analytic integral (Damgaad-Kawamoto-Shigemoto, 1984, Faldt-Petersson, 1986) F q eff ;T, = T log C C 1 4 C 3 Decomposition of baryon-3 quark coupling (Azcoiti-Di Carlo-Galante-Laliena, 2003) and auxiliary baryon potential and baryon integral (Kawamoto-Miura-AO-Ohnuma, hep-lat/ ) C =cosh sinh 1 /T C 3 =cosh 3 /T A. Ohnishi, QM2006@Shanghai, 2006/11/15 9

10 Phase diagram in SCL-LQCD with Baryons (Kawamoto-Miura-AO-Ohnuma, hep-lat/ ) What is the baryonic composite effect on phase diagram? Auxiliary baryon integral & diquarks generate terms M 2 modifies the energy scale! Compare the phase diagram scaled with T c. Baryon Effects Baryons Gain Free Energy Extention of Hadron Phase to Larger μ! A. Ohnishi, QM2006@Shanghai, 2006/11/15 10

11 Small Critical μ : Common in SCL-LQCD? Finite T SCL-LQCD No B: μ c (0)/T c (0) ~ ( ) (Nishida2004, Bilic et al. 1992(Bielefeld),...) Present: μ c (0)/T c (0) < 0.44 (Parameter dep.) Monte-Carlo: μ c (0)/T c (0) > 1 Bilic et al. Fodor-Katz (Improved Reweighting) Bielefeld (Taylor expansion), de Forcrand-Philipsen (AC),... Real World: μ c (0)/T c (0) > 3 T c (0) ~ 170 MeV, μ c (0) > 330 MeV Present A. Ohnishi, QM2006@Shanghai, 2006/11/15 11

12 Towards Realistic Understanding Reality Axis: 1/g 2, n f, m 0,... would enhance μ c /T c ratio Example: 1/g 2 correction enhances μ c /T c by a factor ~(2-3). exp[ 1 g TrU 0j x ] ~exp [ V 2 x V + x j /4 N 2 c g 2 ] exp[ 2 2 V x V + x j /16 N 2 c g 2 ] S F t = 1 2 e V x e V x+ 2 exp V x exp V x+ V x = x U 0 x x 0 Time-like plaquetts can modify effective chemical potential U 0 U μ U 0 + χ Uμ + χ U μ + Preliminary! A. Ohnishi, QM2006@Shanghai, 2006/11/15 12 χ U μ U U χ

13 Summary We obtain an analytical expression of effective free energy at finite T and finite μ with baryonic composite effects in the strong coupling limit of lattice QCD for color SU(3). MFA, QG integral, 1/d expansion (NLO, O(1/ d)), bosonization with diquarks and baryon potential field using bb 2 =0, Linear approx., zero diquark cond.(color Angle Average), variational parameter choice Baryonic action is found to result in Free Energy Gain and Extension of Hadron Phase to Larger μ by around 30 %. Problem: Too small μ c /T c in the Strong Coupling Limit. 1/g 2 correction and other may help. Strong Coupling Limit is useful to understand Dense Matter RG evolution exp(-c/g 2 ) deps., 1/g 2 correction seems to work well Application to chiral RMF (K. Tsubakihara, AO, nucl-th/ ) A. Ohnishi, QM2006@Shanghai, 2006/11/15 13

14 Color Angle Average Problem: Diquark Condensates induce quark-baryon coupling, and Baryon integral becomes difficult. Solution: Color Angle Average Integral of Color Angle Variables D= 2 b 3 Three-Quark and Baryon Coupling is ReBorn! Solve Self-Consistent Equaton A. Ohnishi, QM2006@Shanghai, 2006/11/15 14

15 Effective Free Energy with Diquark Condensate Bosonization of M k b b Introduce k bosons exp M k b b= d k exp[ 1 2 k k M 1/ k M k 1 b b 2 M k bb] = d k exp[ k 2 /2 k M 1/ k M k 1 bb k 2 M 2 /2] Effective Free Energy The same F eff is obtained at v=0. Diquark Effects in interaction start from v 4. c.f. Ipp, Yamamoto A. Ohnishi, QM2006@Shanghai, 2006/11/15 15

16 Backups A. Ohnishi, 2006/11/15 16

17 Parameter Choice In bosonization, two parameters (γ and α) are introduced through identities. Major effects Modify the energy scale Minor effects Controls the higher order potential terms We have fixed them to minimize F eff /T c at vacuum A. Ohnishi, QM2006@Shanghai, 2006/11/15 17

18 1/g correction 2 Gluons tend to break hadrons, then 1/g 2 correction is expected to reduce T c. (Bilic-Cleymans 1995) Naive extapolation of 1/g2 correction seems to give μ c /T c ~ 6/g 2 =5 A. Ohnishi, QM2006@Shanghai, 2006/11/15 18

19 Baryon Integral Baryon integral can be evaluated in an almost analytic way! A. Ohnishi, 2006/11/15 19

20 Energy surface Figures Validity of Linear Approx. A. Ohnishi, 2006/11/15 20

21 RMF with σ Self Energy from SCL-LQCD σ Self Energy from simple SCL-LQCD S 1 2 M V M M 1 2 V M V M U 1 2 b 2 N c log 2 Chiral RMF with logarithmic σ potential (Tsubakihara-AO, nucl-th/ ) A. Ohnishi, QM2006@Shanghai, 2006/11/15 21

22 Chirally Symmetric Relativistic Mean Field and Its Application K. Tsubakihara and AO, nucl-th/ A. Ohnishi, 2006/11/15 22

23 RMF with Chiral Symmetry Good Sym. in QCD, and Spontaneous breaking generates hadron masses. Schematic model: Linear σ model L= c N i Problems and Prescriptions N g N i 5 N χ Sym. is restored at a very small density. σω Coupling stabilizes normal vacuum, but gives too stiff EOS. (Boguta PLB120,34, Ogawa et al. PTP111(2004)75) Loop effects (N.K. Gledenning, NPA480,597; M. Prakash and T. L. Ai nsworth, PRC36, 346; Tamenaga et al.) Higher order terms (Hatsuda-Prakashi 1989, Sahu-Ohnishi, 2000) Dielectric Field (Papazoglou et al. (Frankfurt), 1998) Different Chiral partner assignment (Kunihiro et al., Hatsuda et al. Har ada et al.) A. Ohnishi, QM2006@Shanghai, 2006/11/15 23

24 Problems in RMF with Chiral Symmetry Sudden Change of <σ> σ ω Coupling L = 1 4 F F 1 2 C 2 2 g N N =g B /C 2 V = g 2 B 2 2C 2 Stiff EOS A. Ohnishi, QM2006@Shanghai, 2006/11/15 24

25 Linear σ Model Chiral restor. Below ρ 0. Baryon Loop & Sahu-Ohnishig models Unstable at large σ Boguta model Too Stiff EOS Instability in Chiral Models A. Ohnishi, 2006/11/15 25

26 RMF with σ Self Energy from SCL-LQCD σ Self Energy from simple Strong Coupling Limit LQCD RMF Lagrangian Non-Analytic Type σ Self Energy σ is shifted by f π, and small explicit χ breaking term is added. U =2a f / f, f x = 1 2[ ] x2 log 1 x x 2, a= f 2 2 m 2 2 m A. Ohnishi, QM2006@Shanghai, 2006/11/15 26

27 Nuclear Matter and Finite Nuclei Nuclear Matter: By tuning λ, g ωn, m σ, EOS can be Soft! Finite Nuclei: By tuning g ρn, Global behavior of B.E. is reproduced, except for j-j closed nuclei (C, Si, Ni). A. Ohnishi, QM2006@Shanghai, 2006/11/15 27

28 Free Energy Surface and Phase Diagram At μ 0, quark can gain Free Energy even at σ =0 Two Min. Structure First Order A A B B C C α =1/2 A. Ohnishi, QM2006@Shanghai, 2006/11/15 28

Phase diagram and critical point evolution in NLO and NNLO strong coupling lattice QCD

Phase diagram and critical point evolution in NLO and NNLO strong coupling lattice QCD Phase diagram and critical point evolution in NLO and NNLO strong coupling lattice QCD Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 66-85, Japan E-mail: ohnishi@yukawa.kyoto-u.ac.jp

More information

Higher order net baryon number cumulants in the strong coupling lattice QCD

Higher order net baryon number cumulants in the strong coupling lattice QCD Higher order net baryon number cumulants in the strong coupling lattice QCD Terukazu Ichihara in collaborate with Akira Ohnishi and Kenji Morita Department of Physics and YITP, Kyoto U. News! We got an

More information

Baryon mass spectrum at finite µ in SCLim-LQCD

Baryon mass spectrum at finite µ in SCLim-LQCD Baryon mass spectrum at finite µ in SCLim-LQCD K. Miura, N. Kawamoto, and A. Ohnishi Department of Physics, Faculty of Science, Hokkaido Univ. 09/05,2007, Workshop in Kyoto Univ. References Kawamoto, Miura,

More information

Revisiting the strong coupling limit of lattice QCD

Revisiting the strong coupling limit of lattice QCD Revisiting the strong coupling limit of lattice QCD Philippe de Forcrand ETH Zürich and CERN with Michael Fromm (ETH) Motivation Intro Algorithm Results Concl. 25 + years of analytic predictions: 80 s:

More information

QCD phase diagram from the lattice at strong coupling

QCD phase diagram from the lattice at strong coupling CERN-PH-TH-25-67 QCD phase diagram from the lattice at strong coupling Philippe de Forcrand Institute for Theoretical Physics, ETH Zürich, CH-893 Zürich, Switzerland and CERN, Physics Department, TH Unit,

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

The two-body and the many-body problem in QCD from the lattice

The two-body and the many-body problem in QCD from the lattice The two-body and the many-body problem in QCD from the lattice Philippe de Forcrand ETH Zürich and CERN with Michael Fromm (ETH Frankfurt) and Wolfgang Unger (ETH) Intro Formulation Phase diagram Nuclear

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model

One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model One-loop corrections as the origin of spontaneous chiral symmetry breaking in the massless chiral sigma model a S. Tamenaga, a H. Toki, a, b A. Haga, and a Y. Ogawa a RCNP, Osaka University b Nagoya Institute

More information

The QCD Equation of State at μ B > 0 from Lattice QCD

The QCD Equation of State at μ B > 0 from Lattice QCD The QCD Equation of State at μ B > 0 from Lattice QCD Hiroshi Ohno (BNL-Bielefeld-CCNU Collaboration) CCS, University of Tsukuba Brookhaven National Laboratory arxiv:1701.04325 [hep-lat] 7 th Workshop

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Neutron star matter in view of nuclear experiments

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

Towards lattice QCD baryon forces at the physical point: First results

Towards lattice QCD baryon forces at the physical point: First results Towards lattice QCD baryon forces at the physical point: First results Takumi Doi (Nishina Center, RIKEN) for HAL QCD Collaboration 2015/09/08 HYP 2015 @ Tohoku U. 1 Nuclear- and Astro- physics based on

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me)

Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Exploring the QCD Phase Diagram through Energy Scans Insights (?) from lattice QCD at finite baryo-chemical potential (title given to me) Frithjof Karsch Bielefeld University & Brookhaven National Laboratory

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

The phase diagram of QCD from imaginary chemical potentials

The phase diagram of QCD from imaginary chemical potentials The phase diagram of QCD from imaginary chemical potentials Massimo D Elia Genoa University & INFN Quarks, Hadrons, and the Phase Diagram of QCD, St. Goar, september 3, 2009 In collaboration with Francesco

More information

Fractionized Skyrmions in Dense Compact-Star Matter

Fractionized Skyrmions in Dense Compact-Star Matter Fractionized Skyrmions in Dense Compact-Star Matter Yong-Liang Ma Jilin University Seminar @ USTC. Jan.07, 2016. Summary The hadronic matter described as a skyrmion matter embedded in an FCC crystal is

More information

Hadron-Quark Crossover and Neutron Star Observations

Hadron-Quark Crossover and Neutron Star Observations Hadron-Quark Crossover and Neutron Star Observations Kota Masuda (Univ. of Tokyo / RIKEN) with Tetsuo Hatsuda (RIKEN) and Tatsuyuki Takatsuka (RIKEN) Hadron in nucleus, 31th Oct., 2013 Introduction: NS

More information

Investigation of quark-hadron phase-transition using an extended NJL model

Investigation of quark-hadron phase-transition using an extended NJL model .... Investigation of quark-hadron phase-transition using an extended NJL model Tong-Gyu Lee (Kochi Univ. and JAEA) Based on: Prog. Theor. Exp. Phys. (2013) 013D02. Collaborators: Y. Tsue (Kochi Univ.),

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Recent Progress in Lattice QCD at Finite Density

Recent Progress in Lattice QCD at Finite Density Recent Progress in Lattice QCD at Finite Density Shinji Ejiri (Brookhaven ational Laboratory) Lattice 008, July 14-19, 008 QCD thermodynamics at 0 Heavy-ion experiments (HIC) (low energy RHIC, FAIR) Properties

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Antrittsvorlesung Frankfurt, October 2010 Nuclear Matter between Heaven and Earth: The QCD Phase Diagram Owe Philipsen Introduction to QCD and lattice simulations Phase diagram: the many faces of QCD Computational

More information

Small bits of cold, dense matter

Small bits of cold, dense matter Small bits of cold, dense matter Alessandro Roggero (LANL) with: S.Gandolfi & J.Carlson (LANL), J.Lynn (TUD) and S.Reddy (INT) ArXiv:1712.10236 Nuclear ab initio Theories and Neutrino Physics INT - Seattle

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

Effective theories for QCD at finite temperature and density from strong coupling

Effective theories for QCD at finite temperature and density from strong coupling XQCD 2011 San Carlos, July 2011 Effective theories for QCD at finite temperature and density from strong coupling Owe Philipsen Introduction to strong coupling expansions SCE for finite temperature: free

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA)

EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) EQUATION OF STATE AND FLUCTUATIONS FROM THE LATTICE Claudia Ratti University of Houston (USA) Collaborators: Paolo Alba, Rene Bellwied, Szabolcs Borsanyi, Zoltan Fodor, Jana Guenther, Sandor Katz, Stefan

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Thermodynamics of strongly-coupled lattice QCD in the chiral limit

Thermodynamics of strongly-coupled lattice QCD in the chiral limit CERN-PH-TH-2017-012 Thermodynamics of strongly-coupled lattice QCD in the chiral limit Philippe de Forcrand Institut für Theoretische Physik, ETH Zürich, CH-8093 Zürich, Switzerland CERN, TH Division,

More information

The strange degrees of freedom in QCD at high temperature. Christian Schmidt

The strange degrees of freedom in QCD at high temperature. Christian Schmidt The strange degrees of freedom in QCD at high temperature Christian Schmidt Christian Schmidt LAT 213 1 Abstract We use up to fourth order cumulants of net strangeness fluctuations and their correlations

More information

Critical end point of Nf=3 QCD at finite temperature and density

Critical end point of Nf=3 QCD at finite temperature and density Critical end point of Nf=3 QCD at finite temperature and density a,b, Xiao-Yong Jin b, Yoshinobu Kuramashi b,c,d, Yoshifumi Nakamura b, and Akira Ukawa b a Institute of Physics, Kanazawa University, Kanazawa

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks David Scheffler, Christian Schmidt, Dominik Smith, Lorenz von Smekal Motivation Effective Polyakov loop potential

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

LECTURE ONE LECTURE TWO

LECTURE ONE LECTURE TWO LECTURE ONE -Description of ordinary matter, QCD, Chiral Symmetry and hadron masses -Any experimental evidence for partial restoration of Chiral Symmetry? Meson-Nucleon interaction in the medium -pionic

More information

Role of van der Waals interactions in hadron systems: from nuclear matter to lattice QCD

Role of van der Waals interactions in hadron systems: from nuclear matter to lattice QCD Role of van der Waals interactions in hadron systems: from nuclear matter to lattice QCD Volodymyr Vovchenko a,b,c a Frankfurt Institute for Advanced Studies b Institute for Theoretical Physics, University

More information

Chiral symmetry breaking, instantons, and monopoles

Chiral symmetry breaking, instantons, and monopoles Chiral symmetry breaking, instantons, and monopoles Adriano Di Giacomo 1 and Masayasu Hasegawa 2 1 University of Pisa, Department of Physics and INFN 2 Joint Institute for Nuclear Research, Bogoliubov

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Interplay of kaon condensation and hyperons in dense matter EOS

Interplay of kaon condensation and hyperons in dense matter EOS NPCSM mini-workshop (YITP, Kyoto Univ., Kyoto, October 28(Fri), 2016) Interplay of kaon condensation and hyperons in dense matter EOS Takumi Muto (Chiba Inst. Tech.) collaborators : Toshiki Maruyama (JAEA)

More information

Surprises in the Columbia plot

Surprises in the Columbia plot Surprises in the Columbia plot Philippe de Forcrand ETH Zürich & CERN Fire and Ice, Saariselkä, April 7, 2018 Fire and Ice Launch Audio in a New Window BY ROBERT FROST (1874-1963) Some say the world will

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

arxiv: v2 [hep-lat] 23 Dec 2008

arxiv: v2 [hep-lat] 23 Dec 2008 arxiv:8.964v2 [hep-lat] 23 Dec 28, F. Farchioni, A. Ferling, G. Münster, J. Wuilloud University of Münster, Institute for Theoretical Physics Wilhelm-Klemm-Strasse 9, D-4849 Münster, Germany E-mail: k_demm@uni-muenster.de

More information

Dense QCD and Compact Stars

Dense QCD and Compact Stars Dense QCD and Compact Stars ~1 [fm] nucleus ~10 [fm] Neutron star ~10 [km] NFQCD Symposium (Dec. 1, 2013) Tetsuo Hatsuda (RIKEN) Plan of this Talk 1. QCD Phase Structure 2. Dense Matter and Neutron Star

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Fundamental Challenges of QCD Schladming 6 March 29 Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Wolfram Weise Is the NAMBU-GOLDSTONE scenario of spontaneous CHIRAL SYMMETRY BREAKING well established?

More information

Cluster Expansion Model

Cluster Expansion Model QCD equation of state at finite baryon density with Cluster Expansion Model Volodymyr Vovchenko Goethe University Frankfurt & Frankfurt Institute for Advanced Studies V.V., J. Steinheimer, O. Philipsen,

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

arxiv:hep-lat/ v1 25 Jun 2005

arxiv:hep-lat/ v1 25 Jun 2005 TKYNT-05-16, 2005/June Lee-Yang zero analysis for the study of QCD phase structure Shinji Ejiri Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan (March 1, 2008) Abstract arxiv:hep-lat/0506023v1

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Three Baryon Interaction in the Quark Cluster Model 3B Interaction from Determinant Interaction of Quarks as an example

Three Baryon Interaction in the Quark Cluster Model 3B Interaction from Determinant Interaction of Quarks as an example Three Baryon Interaction in the Quark Cluster Model 3B Interaction from Determinant Interaction of Quarks as an example Akira Ohnishi, Kouji Kashiwa, Kenji Morita YITP, Kyoto U. Seminar at Hokkaido U.,

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ

arxiv:hep-ph/ v1 23 Jan 2003 QCD PHASE DIAGRAM AT SMALL DENSITIES FROM SIMULATIONS WITH IMAGINARY µ arxiv:hep-ph/0301209v1 23 Jan 2003 QCD PHASE DIAGRAM A SMALL DENSIIES FROM SIMULAIONS WIH IMAGINARY µ PH. DE FORCRAND EH Zürich, CH-8093 Zürich, Switzerland and CERN, CH-1211 Genève 23, Switzerland E-mail:

More information

Observing chiral partners in nuclear medium

Observing chiral partners in nuclear medium Observing chiral partners in nuclear medium Su Houng Lee. Order Parameters of chiral symmetry breaking - Correlation function of chiral partners. f (8) and w meson 3. Measuring the mass shift of f (8)

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration

Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Ab initio lattice EFT from light to medium mass nuclei Nuclear Lattice EFT Collaboration Evgeny Epelbaum (Bochum) Hermann Krebs (Bochum) Timo Lähde (Jülich) Dean Lee (NC State) Thomas Luu (Jülich/Bonn)

More information

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-lat] 19 Feb 2012 Cent. Eur. J. Phys. -5 Author version Central European Journal of Physics Determination of Freeze-out Conditions from Lattice QCD Calculations Review Article arxiv:.473v [hep-lat] 9 Feb Frithjof Karsch,

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

The Meson Loop Effect on the Chiral Phase Transition

The Meson Loop Effect on the Chiral Phase Transition 1 The Meson Loop Effect on the Chiral Phase Transition Tomohiko Sakaguchi, Koji Kashiwa, Masatoshi Hamada, Masanobu Yahiro (Kyushu Univ.) Masayuki Matsuzaki (Fukuoka Univ. of Education, Kyushu Univ.) Hiroaki

More information

Possibility of hadron-quark coexistence in massive neutron stars

Possibility of hadron-quark coexistence in massive neutron stars Possibility of hadron-quark coexistence in massive neutron stars Tsuyoshi Miyatsu Department of Physics, Soongsil University, Korea July 17, 2015 Nuclear-Astrophysics: Theory and Experiments on 2015 2nd

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei

E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei KEK-PS External Review, Jan 22-23, 2008 Seminar Hall, Bldg.4 KEK E438: Study of Σ-Nucleus Potential by the (π -, K + ) Reaction on Heavy Nuclei Hiroyuki Noumi RCNP, Osaka-U for E438 1 Precision Hypernuclear

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Kenji Sasaki (YITP, Kyoto University) Collaboration

Kenji Sasaki (YITP, Kyoto University) Collaboration Strangeness Strangeness S=- S=- baryon-baryon baryon-baryon interactions interactions from from Lattice Lattice QCD QCD Kenji Sasaki YITP, Kyoto University for HAL QCD Collaboration H HA ALL H Hadrons

More information

arxiv:hep-lat/ v2 7 Sep 2004

arxiv:hep-lat/ v2 7 Sep 2004 DFCAL-TH 04/1 January 2004 Real and imaginary chemical potential in 2-color QCD P. Giudice and A. Papa arxiv:hep-lat/0401024v2 7 Sep 2004 Dipartimento di Fisica, Università della Calabria & Istituto Nazionale

More information

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s Quark matter probed by dileptons Olena Linnyk July 02, 2010 Information from photons and dileptons 14 12 10 ε/t 4 8 6 4 2 Lattice QCD: µ B =0 µ B =530 MeV 0 0.5 1.0 1.5 2.0 2.5 3.0 T/T c But what are the

More information

Influence of Van der Waals interactions between hadrons on observables from heavy-ion collisions and lattice QCD

Influence of Van der Waals interactions between hadrons on observables from heavy-ion collisions and lattice QCD Influence of Van der Waals interactions between hadrons on observables from heavy-ion collisions and lattice QCD Volodymyr Vovchenko In collaboration with P. Alba, M. Gorenstein, H. Stoecker based on arxiv:69.975

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004

Taylor expansion in chemical potential for 2 flavour QCD with a = 1/4T. Rajiv Gavai and Sourendu Gupta TIFR, Mumbai. April 1, 2004 Taylor expansion in chemical potential for flavour QCD with a = /4T Rajiv Gavai and Sourendu Gupta TIFR, Mumbai April, 004. The conjectured phase diagram, the sign problem and recent solutions. Comparing

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

Effective Field Theory and. the Nuclear Many-Body Problem

Effective Field Theory and. the Nuclear Many-Body Problem Effective Field Theory and the Nuclear Many-Body Problem Thomas Schaefer North Carolina State University 1 Nuclear Effective Field Theory Low Energy Nucleons: Nucleons are point particles Interactions

More information

Flavor quark at high temperature from a holographic Model

Flavor quark at high temperature from a holographic Model Flavor quark at high temperature from a holographic Model Ghoroku (Fukuoka Institute of Technology) Sakaguchi (Kyushu University) Uekusa (Kyushu University) Yahiro (Kyushu University) Hep-th/0502088 (Phys.Rev.D71:106002,2005

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information