Do climate models over-estimate cloud feedbacks?

Size: px
Start display at page:

Download "Do climate models over-estimate cloud feedbacks?"

Transcription

1 Do climate models over-estimate cloud feedbacks? Sandrine Bony CNRS, LMD/IPSL, Paris with contributions from Jessica Vial (LMD), David Coppin (LMD) Florent Brient (ETH), Tobias Becker (MPI), Kevin Reed (NCAR) Brian Medeiros (NCAR), Bjorn Stevens (MPI) Grand Challenge Workshop on Climate Sensitivity, Ringberg, March Photo Bjorn Stevens

2 Cloud feedbacks Bony & Stevens, EUCLIPSE book on Clouds & Climate

3 Cloud feedbacks FAT τ -T Bony & Stevens, EUCLIPSE book on Clouds & Climate

4 Cloud feedbacks FAT τ -T Strength of the Mixing Induced Low Cloud (MILC) feedback? Bony & Stevens, EUCLIPSE book on Clouds & Climate

5 Cloud feedbacks FAT Iris effect? τ -T Strength of the Mixing Induced Low Cloud (MILC) feedback? Bony & Stevens, EUCLIPSE book on Clouds & Climate

6 Cloud feedbacks FAT Iris effect? τ -T Strength of the Mixing Induced Low Cloud (MILC) feedback? Do models over-estimate their (positive) low-cloud feedback? Miss a negative cloud feedback? Bony & Stevens, EUCLIPSE book on Clouds & Climate

7 A negative high-cloud feedback associated with an Iris effect? Iris effect: expanding dry, clear areas in a warming climate. Negative LW feedback A strong Iris effect would reconcile models with observations in a number of aspects (low ECS, strong SW cloud feedback, strong HS, etc). Mauritsen and Stevens, Nature Geosci.,2015

8 Is a negative cloud feedback associated with an Iris effect supported by cloud observations?

9 A negative high-cloud feedback associated with an Iris effect? Zelinka and Hartmann (2011) show that when the tropical-mean SST rises during ENSO : high cloud fraction decreases (Iris-like effect) robust physical mechanism SW effects oppose LW effects, resulting in a statistically insignificant net high cloud feedback Zelinka and Hartmann, JGR, 2011 Observational evidence for an Iris effect... but not for a strong negative feedback associated with it

10 A negative high-cloud feedback associated with an Iris effect? Zelinka and Hartmann (2011) show that when the tropical-mean SST rises during ENSO : high cloud fraction decreases (Iris-like effect) robust physical mechanism SW effects oppose LW effects, resulting in a statistically insignificant net high cloud feedback Zelinka and Hartmann, JGR, 2011 Observational evidence for an Iris effect... but not for a strong negative feedback associated with it Does it translate to climate change? Could other mechanisms lead to a stronger Iris effect? e.g. What if convective aggregation increases with temperature? as proposed by CRMs

11 Observational investigation of the radiative impact of changes in convective aggregation For given large-scale forcings (including SST): the atmosphere is drier, clearer (RH, AIRS data) more efficient at radiating heat to space (OLR, CERES data) more aggregation more aggregation Enhanced convective aggregation = Iris-like effect Tobin, Bony & Roca, J. Climate 2012 Tobin et al., JAMES, 2013

12 Observational investigation of the radiative impact of changes in convective aggregation For given large-scale forcings (including SST): the atmosphere is drier, clearer (RH, AIRS data) less efficient at reflecting solar radiation (SW, CERES data) more aggregation more aggregation Tobin, Bony & Roca, J. Climate 2012 Tobin et al., JAMES, 2013

13 Observational investigation of the radiative impact of changes in convective aggregation For given large-scale forcings (including SST): the atmosphere is drier, clearer (RH, AIRS data) LW and SW changes compensate each other (NET, CERES data) more aggregation more aggregation For a given SST: net TOA radiation seems insensitive to aggregation Tobin, Bony & Roca, J. Climate 2012 Tobin et al., JAMES, 2013

14 Is a negative cloud feedback associated with an Iris effect supported by cloud observations? There is evidence for an Iris effect...but not for a negative cloud feedback associated with it (so far) Could a change in convective organization with temperature affect this feedback? Remains to be investigated...

15 Is a negative cloud feedback associated with an Iris effect supported by cloud observations? There is evidence for an Iris effect...but not for a negative cloud feedback associated with it (so far) Could a change in convective organization with temperature affect this feedback? Remains to be investigated... Would GCMs be missing the effects of convective organization and its dependence on temperature?

16 GCMs run in Radiative-Convective Equilibrium 295 K 305 K 3D RCE: aqua-planet no rotation uniform insolation fixed, uniform SST IPSL Like Cloud-Resolving Models: MPI GCMs produce spontaneously a convective organization ( self-aggregation ) NCAR precipitation [mm/d]

17 GCMs run in Radiative-Convective Equilibrium 295 K 305 K 3D RCE: aqua-planet no rotation uniform insolation fixed, uniform SST IPSL Like Cloud-Resolving Models: MPI GCMs produce spontaneously a convective organization ( self-aggregation ) GCMs exhibit an enhanced aggregation of convection at high temperatures NCAR precipitation [mm/d]

18 Effect of rising surface temperatures IPSL GCM Iris effect -like High Hydrological Sensitivity (4 %/K or more) Nearly neutral LW cloud feedback + Strong positive SW cloud feedback = high Climate Sensitivity despite the Iris effect GCMs can produce an Iris-like effect due to changes in convective aggregation with T But SW cloud feedbacks, especially those from low-level clouds, can easily oppose the LW negative feedback associated with the Iris effect

19 Low-cloud feedback Controlled by two competing processes: moistening by surface turbulent fluxes drying by low-tropospheric mixing (shallow convection + shallow circulation) Inter-model differences in the strength of low-tropospheric mixing explains about half of the variance in climate sensitivity (Sherwood et al. 2014).

20 Observational constraints on low-tropospheric (LT) mixing LT mixing by convection Observational constraints suggest a LT convective mixing near the middle of the GCM range LT mixing by large-scale circulation Reanalyses suggest that LT mixing by the large-scale circulation is unrealistically weak in low-sensitivity models Sherwood, Bony and Dufresne, Nature, 2014

21 Additional constraints on convective mixing?

22 Additional constraints on convective mixing? In present-day climate: Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes Nam, Bony, Dufresne and Chepfer, GRL, 2012

23 Additional constraints on convective mixing? In present-day climate: Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes high γ: shallowness index small Brient, Schneider, Tan and Bony, submitted Nam, Bony, Dufresne and Chepfer, GRL, 2012

24 Additional constraints on convective mixing? In present-day climate: Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes The distribution correlates with the strength of low-tropospheric drying by convection shallower low-clouds deeper low-clouds shallower low-clouds convective drying index Brient, Schneider, Tan and Bony, submitted Nam, Bony, Dufresne and Chepfer, GRL, 2012

25 Additional constraints on convective mixing? In present-day climate: Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes The distribution correlates with the strength of low-tropospheric drying by convection deeper low-clouds shallower low-clouds Brient, Schneider, Tan and Bony, submitted Nam, Bony, Dufresne and Chepfer, GRL, 2012

26 Additional constraints on convective mixing? In present-day climate: Models predict contrasted vertical distributions of low-level clouds in shallow cumulus regimes The distribution correlates with the strength of low-tropospheric drying by convection deeper low-clouds shallower low-clouds Consistent with the constraint on convective mixing of Sherwood et al. (2014)

27 Conclusion No strong evidence (so far) that GCMs miss a negative cloud feedback associated with the Iris effect Process-oriented observational constraints suggest that lowest-sensitivity models under-estimate the positive low-cloud feedback Suggests that models with ECS lower than 3K are unlikely to be realistic But the investigation should continue...

28 Thank You

A hierarchical approach to climate sensitivity Bjorn Stevens

A hierarchical approach to climate sensitivity Bjorn Stevens A hierarchical approach to climate sensitivity Bjorn Stevens Based on joint work with: T. Becker, S. Bony, D. Coppin, C Hohenegger, B. Medeiros, D. Fläschner, K. Reed as part of the WCRP Grand Science

More information

How to tackle long-standing uncertainties?

How to tackle long-standing uncertainties? How to tackle long-standing uncertainties? Sandrine Bony LMD/IPSL, CNRS, Paris Thanks to all members of the ClimaConf project Bjorn Stevens (MPI) & the WCRP Grand Challenge team Colloque ClimaConf; 20-21

More information

Climate change with an iris-effect. Thorsten Mauritsen and Bjorn Stevens Max Planck Institute for Meteorology, Hamburg

Climate change with an iris-effect. Thorsten Mauritsen and Bjorn Stevens Max Planck Institute for Meteorology, Hamburg Climate change with an iris-effect! Thorsten Mauritsen and Bjorn Stevens Max Planck Institute for Meteorology, Hamburg AR4 Temperature anomaly ( C) w.r.t. 1961 1990 2 1.5 1 0.5 0 } AR4 CMIP3 } Observations

More information

Radiative-Convective Instability. Kerry Emanuel Massachusetts Institute of Technology

Radiative-Convective Instability. Kerry Emanuel Massachusetts Institute of Technology Radiative-Convective Instability Kerry Emanuel Massachusetts Institute of Technology Program Basic radiative-convective equilibrium Macro-instability of the RC state Some consequences Radiative Equilibrium

More information

Radiative-Convective Instability

Radiative-Convective Instability Radiative-Convective Instability Kerry Emanuel, Allison Wing, and Emmanuel Vincent Massachusetts Institute of Technology Self-Aggregation of Deep Moist Convection Cloud Clusters Tropical Cyclone Genesis

More information

Assessing the strength of self-aggregation feedbacks from in situ data

Assessing the strength of self-aggregation feedbacks from in situ data Assessing the strength of self-aggregation feedbacks from in situ data Caroline Muller Laboratoire de Météorologie Dynamique Dave Turner NOAA Allison Wing Florida State University Assessing the strength

More information

Upper tropospheric humidity, radiation, and climate

Upper tropospheric humidity, radiation, and climate Upper tropospheric humidity, radiation, and climate Stefan Buehler (Universität Hamburg), Lukas Kluft, Sally Dacie, Hauke Schmidt and Bjorn Stevens (MPI-M Hamburg) 1st Workshop on the Far-infrared Outgoing

More information

Reduced Complexity Frameworks for Exploring Physics Dynamics Coupling Sensitivities

Reduced Complexity Frameworks for Exploring Physics Dynamics Coupling Sensitivities Reduced Complexity Frameworks for Exploring Physics Dynamics Coupling Sensitivities Kevin A. Reed & Adam R. Herrington School of Marine and Atmospheric Sciences Stony Brook University, Stony Brook, New

More information

Understanding Climate Feedbacks Using Radiative Kernels

Understanding Climate Feedbacks Using Radiative Kernels Understanding Climate Feedbacks Using Radiative Kernels Brian Soden Rosenstiel School for Marine and Atmospheric Science University of Miami Overview of radiative kernels Recent advances in understanding

More information

The linear additivity of the forcings' responses in the energy and water cycles. Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild

The linear additivity of the forcings' responses in the energy and water cycles. Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild The linear additivity of the forcings' responses in the energy and water cycles Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild WCRP OSP, Denver, 27th October 2011 1 Motivation How will precipitation

More information

BJORN STEVENS, SANDRINE BONY, MARK WEBB

BJORN STEVENS, SANDRINE BONY, MARK WEBB CLOUDS ON-OFF KLIMATE INTERCOMPARISON EXPERIMENT (COOKIE) BJORN STEVENS, SANDRINE BONY, MARK WEBB 1. Synopsis Cloud-radiative effects are expected to control many aspects of the current and future climates,

More information

Radiative Control of Deep Tropical Convection

Radiative Control of Deep Tropical Convection Radiative Control of Deep Tropical Convection Dennis L. Hartmann with collaboration of Mark Zelinka and Bryce Harrop Department of Atmospheric Sciences University of Washington Outline Review Tropical

More information

Cloud - Radiation Interactions

Cloud - Radiation Interactions Cloud - Radiation Interactions Sandrine Bony LMD/IPSL, CNRS, Paris Outline : Why are these interactions so critical for climate modelling? Impact on the global energy balance Interactions with atmospheric

More information

Lectures Outline : Cloud fundamentals - global distribution, types, visualization and link with large scale circulation

Lectures Outline : Cloud fundamentals - global distribution, types, visualization and link with large scale circulation Lectures Outline : Cloud fundamentals - global distribution, types, visualization and link with large scale circulation Cloud Formation and Physics - thermodynamics, cloud formation, instability, life

More information

Long-Term Climate Projections : Perspectives on a Scientific Assessment

Long-Term Climate Projections : Perspectives on a Scientific Assessment Long-Term Climate Projections : Perspectives on a Scientific Assessment Sandrine Bony LMD/IPSL, CNRS, Paris (France) Co-Chair of the WCRP Working Group on Coupled Models (WGCM) With the Writing Team of

More information

EUREC 4 A. A proposal for a HALO deployment out of Barbados to measure the winter North Atlantic Trades in February 2020

EUREC 4 A. A proposal for a HALO deployment out of Barbados to measure the winter North Atlantic Trades in February 2020 EUREC 4 A A proposal for a HALO deployment out of Barbados to measure the winter North Atlantic Trades in February 2020 Felix Ament, Sandrine Bony, Susanne Crewell, Bernhard Mayer, Markus Rapp, Bjorn Stevens,

More information

Parameterizing large-scale dynamics using the weak temperature gradient approximation

Parameterizing large-scale dynamics using the weak temperature gradient approximation Parameterizing large-scale dynamics using the weak temperature gradient approximation Adam Sobel Columbia University NCAR IMAGe Workshop, Nov. 3 2005 In the tropics, our picture of the dynamics should

More information

Clouds, Circulation and Climate Sensitivity

Clouds, Circulation and Climate Sensitivity Clouds, Circulation and Climate Sensitivity A WCRP Grand Challenge coordinated by WGCM in close collaboration with GEWEX, SPARC and WGNE Lead coordinators : Sandrine Bony (LMD/IPSL) & Bjorn Stevens (MPI)

More information

Getting our Heads out of the Clouds: The Role of Subsident Teleconnections in Climate Sensitivity

Getting our Heads out of the Clouds: The Role of Subsident Teleconnections in Climate Sensitivity Getting our Heads out of the Clouds: The Role of Subsident Teleconnections in Climate Sensitivity John Fasullo Climate Analysis Section, NCAR Getting our Heads out of the Clouds: The Role of Subsident

More information

Radiative-Convective Instability

Radiative-Convective Instability Radiative-Convective Instability Kerry Emanuel, Allison Wing, and Emmanuel Vincent Massachusetts Institute of Technology Self-Aggregation of Deep Moist Convection Cloud Clusters Tropical Cyclone Genesis

More information

The central role of clouds in ENSO variability

The central role of clouds in ENSO variability The central role of clouds in ENSO variability Gaby Rädel Max- Planck- Ins-tute for Meteorology, Hamburg with: Thorsten Mauritsen, Bjorn Stevens, Daniela Matei ENSO Workshop Australia, Sydney, 4 6 February

More information

SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment

SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment SPOOKIE: The Selected Process On/Off Klima Intercomparison Experiment Mark Webb, Adrian Lock (Met Office), Sandrine Bony (IPSL), Chris Bretherton (UW), Tsuyoshi Koshiro, Hideaki Kawai (MRI), Thorsten Mauritsen

More information

Cloud Feedbacks: their Role in Climate Sensitivity and How to Assess them

Cloud Feedbacks: their Role in Climate Sensitivity and How to Assess them Cloud Feedbacks: their Role in Climate Sensitivity and How to Assess them Sandrine Bony, Jean Louis Dufresne Hélène Chepfer, Marjolaine Chiriaco, Ionela Musat, Geneviève Sèze LMD/IPSL et SA/IPSL, Paris,

More information

Shallowness of tropical low clouds as a predictor of climate models response to warming

Shallowness of tropical low clouds as a predictor of climate models response to warming Clim Dyn (216) 47:433 449 DOI 1.17/s382-15-2846- Shallowness of tropical low clouds as a predictor of climate models response to warming Florent Brient 1 Tapio Schneider 1,2 Zhihong Tan 1,2 Sandrine Bony

More information

Clouds and Climate Group in CMMAP. and more

Clouds and Climate Group in CMMAP. and more Clouds and Climate Group in CMMAP and more Clouds and Climate Group in CMMAP Many names: - Low Cloud Feedbacks - Cloud-Climate Interactions - Clouds and Climate - Clouds & Climate Modeling (after our merger

More information

Article Title: Cloud feedback mechanisms and their representation in global climate models. Article Type: Advanced Review

Article Title: Cloud feedback mechanisms and their representation in global climate models. Article Type: Advanced Review Article Title: Cloud feedback mechanisms and their representation in global climate models Article Type: Advanced Review Authors: Paulo Ceppi Department of Meteorology, University of Reading, Reading,

More information

Radiation in climate models.

Radiation in climate models. Lecture. Radiation in climate models. Objectives:. A hierarchy of the climate models.. Radiative and radiative-convective equilibrium.. Examples of simple energy balance models.. Radiation in the atmospheric

More information

Crux of AGW s Flawed Science (Wrong water-vapor feedback and missing ocean influence)

Crux of AGW s Flawed Science (Wrong water-vapor feedback and missing ocean influence) 1 Crux of AGW s Flawed Science (Wrong water-vapor feedback and missing ocean influence) William M. Gray Professor Emeritus Colorado State University There are many flaws in the global climate models. But

More information

Transpose-AMIP. Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior

Transpose-AMIP. Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior Transpose-AMIP Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior WGNE - THORPEX-PDP workshop, Zurich, 08/07/10 What is Transpose-AMIP? Basically,

More information

On the interpretation of inter-model spread in CMIP5 climate sensitivity

On the interpretation of inter-model spread in CMIP5 climate sensitivity Climate Dynamics manuscript No. (will be inserted by the editor) 1 2 On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates 3 Jessica Vial Jean-Louis Dufresne Sandrine Bony

More information

Slow Drivers and the Climatology of Precipitation

Slow Drivers and the Climatology of Precipitation Slow Drivers and the Climatology of Precipitation Bjorn Stevens (selections from work in progress with Traute Crueger, Cathy Hohenegger, Benjamin Möbis, Dagmar Popke and Aiko Voigt) This is a different

More information

Coupling between clouds and their environment: using observations to constrain models

Coupling between clouds and their environment: using observations to constrain models Coupling between clouds and their environment: using observations to constrain models Louise Nuijens ECMWF Annual Seminar 2015 Brian Medeiros, Irina Sandu and Maike Alhgrimm Photograph: Frederic Batier

More information

Interactions among Cloud, Water Vapor, Radiation and. Large-scale Circulation in the Tropical Climate. Department of Atmospheric Sciences

Interactions among Cloud, Water Vapor, Radiation and. Large-scale Circulation in the Tropical Climate. Department of Atmospheric Sciences Interactions among Cloud, Water Vapor, Radiation and Large-scale Circulation in the Tropical Climate Part 1: Sensitivity to Uniform Sea Surface Temperature Changes Kristin Larson * and Dennis L. Hartmann

More information

Where does the memory of convection stem from? Why can it be useful for parameterizations?

Where does the memory of convection stem from? Why can it be useful for parameterizations? Where does the memory of convection stem from? Why can it be useful for parameterizations? D'où vient la mémoire de la convection? En quoi cela peut-il être utile pour les paramétrisations? Maxime Colin,

More information

Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation

Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation Diagnosis of Relative Humidity Changes in a Warmer Climate Using Tracers of Last Saturation 8 March, 2011 Jonathon Wright Department of Applied Mathematics & Theoretical Physics University of Cambridge

More information

Radiative-Convective Equilibrium Model Intercomparison Project

Radiative-Convective Equilibrium Model Intercomparison Project Radiative-Convective Equilibrium Model Intercomparison Project Allison A. Wing 1, Kevin A. Reed 2, Masaki Satoh 3, Bjorn Stevens, Sandrine Bony 4, and Tomoki Ohno 3 1 Florida State University, Tallahassee,

More information

How Will Low Clouds Respond to Global Warming?

How Will Low Clouds Respond to Global Warming? How Will Low Clouds Respond to Global Warming? By Axel Lauer & Kevin Hamilton CCSM3 UKMO HadCM3 UKMO HadGEM1 iram 2 ECHAM5/MPI OM 3 MIROC3.2(hires) 25 IPSL CM4 5 INM CM3. 4 FGOALS g1. 7 GISS ER 6 GISS

More information

Atmospheric Water Vapour in the Climate System: Climate Models 2/3

Atmospheric Water Vapour in the Climate System: Climate Models 2/3 Atmospheric Water Vapour in the Climate System: Climate Models 2/3 Evaluating Climate Models and Feedbacks Richard P. Allan University of Reading Atmospheric Water Vapour in the Climate System: Climate

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming?

How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming? How may low-cloud radiative properties simulated in the current climate influence low-cloud feedbacks under global warming? F. Brient, S. Bony To cite this version: F. Brient, S. Bony. How may low-cloud

More information

Climate Feedbacks from ERBE Data

Climate Feedbacks from ERBE Data Climate Feedbacks from ERBE Data Why Is Lindzen and Choi (2009) Criticized? Zhiyu Wang Department of Atmospheric Sciences University of Utah March 9, 2010 / Earth Climate System Outline 1 Introduction

More information

Parameterizing large-scale circulations based on the weak temperature gradient approximation

Parameterizing large-scale circulations based on the weak temperature gradient approximation Parameterizing large-scale circulations based on the weak temperature gradient approximation Bob Plant, Chimene Daleu, Steve Woolnough and thanks to GASS WTG project participants Department of Meteorology,

More information

Carbon dioxide s direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory

Carbon dioxide s direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory Carbon dioxide s direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory Timothy M. Merlis McGill University Key point The spatial structure of

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine Lecture Ch. 12 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 12 For Wednesday: Read Ch.

More information

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Xiaoqing Wu, Liping Deng and Sunwook Park Iowa State University 2009 DYNAMO Workshop Boulder, CO April 13-14,

More information

KRISTIN LARSON AND DENNIS L. HARTMANN

KRISTIN LARSON AND DENNIS L. HARTMANN VOL. 16, NO. 10 JOURNAL OF CLIMATE 15 MAY 2003 Interactions among Cloud, Water Vapor, Radiation, and Large-Scale Circulation in the Tropical Climate. Part I: Sensitivity to Uniform Sea Surface Temperature

More information

Spread in model climate sensitivity traced to atmospheric convective mixing

Spread in model climate sensitivity traced to atmospheric convective mixing Spread in model climate sensitivity traced to atmospheric convective mixing Steven C. Sherwood 1, Sandrine Bony 2 and Jean-Louis Dufresne 2 1 Climate Change Research Centre and ARC Centre of Excellence

More information

Key Feedbacks in the Climate System

Key Feedbacks in the Climate System Key Feedbacks in the Climate System With a Focus on Climate Sensitivity SOLAS Summer School 12 th of August 2009 Thomas Schneider von Deimling, Potsdam Institute for Climate Impact Research Why do Climate

More information

Radiative Convective Equilibrium in Single Column CAM. I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop

Radiative Convective Equilibrium in Single Column CAM. I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop Radiative Convective Equilibrium in Single Column CAM I Kuan Hu, Brian Mapes, Richard Neale, and Andrew Gettelman 22 nd CESM Workshop Motivation The Earth s atmosphere is an extremely thin sheet of air

More information

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR In this chapter, comparisons between the model-produced and analyzed streamlines,

More information

WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity

WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity Schloss Ringberg, 3700 Rottach-Egern, Germany March 24-28, 2014 This work was performed under the auspices of the U.S. Department

More information

Overview of proposed CFMIP3/CMIP6 GCM Experiments

Overview of proposed CFMIP3/CMIP6 GCM Experiments Overview of proposed CFMIP3/CMIP6 GCM Experiments CFMIP Committee: Mark Webb, Chris Bretherton, Sandrine Bony, Hervé Douville, Jen Kay, Steve Klein, Pier Siebesma, Bjorn Stevens, George Tselioudis, Masahiro

More information

An Interconnected Planet

An Interconnected Planet An Interconnected Planet How Clouds, Aerosols, and the Ocean Cause Distant Rainfall Anomalies Dargan M. W. Frierson University of Washington CESM Workshop, 6-15-15 New Connections Recent research has uncovered

More information

Convective self-aggregation, cold pools, and domain size

Convective self-aggregation, cold pools, and domain size GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 1 5, doi:10.1002/grl.50204, 2013 Convective self-aggregation, cold pools, and domain size Nadir Jeevanjee, 1,2 and David M. Romps, 1,3 Received 14 December 2012;

More information

Testing the Fixed Anvil Temperature hypothesis in a cloudresolving

Testing the Fixed Anvil Temperature hypothesis in a cloudresolving Testing the Fixed Anvil Temperature hypothesis in a cloudresolving model Zhiming Kuang Department of Earth and Planetary Sciences and Division of Engineering and Applied Sciences, Harvard University Dennis

More information

Sun and Earth s Climate

Sun and Earth s Climate Kevin E Trenberth Sun and Earth s Climate BAMS cover March 2009 NCAR Here comes the sun So where does all that solar radiation go? If the sun keeps shining why don t we continue to get warmer? Aaagh! But

More information

The influence of fixing the Southern Ocean shortwave radiation model bias on global energy budgets and circulation patterns

The influence of fixing the Southern Ocean shortwave radiation model bias on global energy budgets and circulation patterns The influence of fixing the Southern Ocean shortwave radiation model bias on global energy budgets and circulation patterns Jennifer Kay, Vineel Yettella (CU-Boulder) Brian Medeiros, Cecile Hannay (NCAR)

More information

Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005

Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005 Variability in Global Top-of-Atmosphere Shortwave Radiation Between 2000 And 2005 Norman G. Loeb NASA Langley Research Center Hampton, VA Collaborators: B.A. Wielicki, F.G. Rose, D.R. Doelling February

More information

PHYSICAL MECHANISMS CONTROLLING SELF-AGGREGATION OF CONVECTION IN IDEALIZED NUMERICAL MODELING SIMULATIONS

PHYSICAL MECHANISMS CONTROLLING SELF-AGGREGATION OF CONVECTION IN IDEALIZED NUMERICAL MODELING SIMULATIONS 3B.7 PHYSICAL MECHANISMS CONTROLLING SELF-AGGREGATION OF CONVECTION IN IDEALIZED NUMERICAL MODELING SIMULATIONS Allison A. Wing* and Kerry A. Emanuel Program in Atmospheres, Oceans, and Climate, Massachusetts

More information

Large-scale changes in the atmospheric water cycle in models and observations

Large-scale changes in the atmospheric water cycle in models and observations Large-scale changes in the atmospheric water cycle in models and observations Richard Allan University of Reading Strength of Feedback (Wm-2/oC) Uncertainty in strength of cloud feedback Total range Range

More information

Rotating and non-rotating global radiativeconvective

Rotating and non-rotating global radiativeconvective Rotating and non-rotating global radiativeconvective equilibrium in CAM Kevin A. Reed National Center for Atmospheric Research Brian Medeiros, Julio Bacmeister, Peter Lauritzen, John Truesdale, Andrew

More information

Using a Multi-Physics Ensemble for Exploring Diversity. in Cloud-Shortwave Feedback in GCMs

Using a Multi-Physics Ensemble for Exploring Diversity. in Cloud-Shortwave Feedback in GCMs 1 2 3 4 5 Using a Multi-Physics Ensemble for Exploring Diversity in Cloud-Shortwave Feedback in GCMs 6 7 8 9 10 11 12 13 14 15 16 Masahiro Watanabe 1, Hideo Shiogama 2, Tokuta Yokohata 2, Youichi Kamae

More information

An Introduction to Climate Modeling

An Introduction to Climate Modeling An Introduction to Climate Modeling A. Gettelman & J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline What is Climate & why do we care Hierarchy of atmospheric modeling strategies

More information

CFMIP-CMIP6 Experiments

CFMIP-CMIP6 Experiments CFMIP-CMIP6 Experiments Mark Webb, Timothy Andrews, Alejandro Bodas-Salcedo, Sandrine Bony, Chris Bretherton, Robin Chadwick, Hélène Chepfer, Hervé Douville, Peter Good, Jennifer Kay, Stephen Klein, Roger

More information

WaVaCS summerschool Autumn 2009 Cargese, Corsica

WaVaCS summerschool Autumn 2009 Cargese, Corsica Introduction Part I WaVaCS summerschool Autumn 2009 Cargese, Corsica Holger Tost Max Planck Institute for Chemistry, Mainz, Germany Introduction Overview What is a parameterisation and why using it? Fundamentals

More information

Spread in model climate sensitivity traced to atmospheric convective mixing

Spread in model climate sensitivity traced to atmospheric convective mixing ARTICLE doi:10.1038/nature12829 Spread in model climate sensitivity traced to atmospheric convective mixing Steven C. Sherwood 1, Sandrine Bony 2 & Jean-Louis Dufresne 2 Equilibrium climate sensitivity

More information

Moisture modes, cloud-radiative feedbacks and the MJO

Moisture modes, cloud-radiative feedbacks and the MJO Moisture modes, cloud-radiative feedbacks and the MJO Adam Sobel Eric Maloney with bits from Shuguang Wang, Jim Benedict; thanks also Gilles Bellon, Dargan Frierson, Daehyun Kim EUCLIPSE summer school

More information

On the connection between tropical circulation, convective mixing, and climate sensitivity

On the connection between tropical circulation, convective mixing, and climate sensitivity Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 1) DOI:1.1/qj.5 On the connection between tropical circulation, convective mixing, and climate sensitivity L. Tomassini, a

More information

On the relationships among cloud cover, mixed-phase partitioning, and planetary

On the relationships among cloud cover, mixed-phase partitioning, and planetary 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs Daniel T. McCoy* 1, Ivy Tan 2, Dennis L. Hartmann

More information

Evaluation of the IPSL climate model in a weather-forecast mode

Evaluation of the IPSL climate model in a weather-forecast mode Evaluation of the IPSL climate model in a weather-forecast mode CFMIP/GCSS/EUCLIPSE Meeting, The Met Office, Exeter 2011 Solange Fermepin, Sandrine Bony and Laurent Fairhead Introduction Transpose AMIP

More information

Interannual variability of top-ofatmosphere. CERES instruments

Interannual variability of top-ofatmosphere. CERES instruments Interannual variability of top-ofatmosphere albedo observed by CERES instruments Seiji Kato NASA Langley Research Center Hampton, VA SORCE Science team meeting, Sedona, Arizona, Sep. 13-16, 2011 TOA irradiance

More information

As the atmosphere warms under greenhouse gas

As the atmosphere warms under greenhouse gas Cloud feedback mechanisms and their representation in global climate models Paulo Ceppi, 1 * Florent Brient, 2 Mark D. Zelinka 3 and Dennis L. Hartmann 4 Edited by Eduardo Zorita, Domain Editor and Editor-in-Chief

More information

Cloud Radiative Feedbacks in GCMs : A Challenge for the Simulation of Tropical Climate Variability and Sensitivity

Cloud Radiative Feedbacks in GCMs : A Challenge for the Simulation of Tropical Climate Variability and Sensitivity Cloud Radiative Feedbacks in GCMs : A Challenge for the Simulation of Tropical Climate Variability and Sensitivity Sandrine Bony LMD/IPSL, CNRS, UPMC Boite 99, 4 Place Jussieu, 75252 Paris, France bony@lmd.jussieu.fr

More information

How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions

How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions Cent. Eur. J. Geosci. 1(3) 2009 368-375 DOI: 10.2478/v10085-009-0028-1 Central European Journal of Geosciences How surface latent heat flux is related to lower-tropospheric stability in southern subtropical

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

A workshop on the theme of clouds, circulation and climate sensitivity March in Schloss Ringberg, Germany

A workshop on the theme of clouds, circulation and climate sensitivity March in Schloss Ringberg, Germany Clouds, circulation, and climate sensitivity simulated by NICAM Global nonhydrostatic model simulations with single and double momentum cloud microphysics schemes and evaluation using satellite simulators

More information

Presentation A simple model of multiple climate regimes

Presentation A simple model of multiple climate regimes A simple model of multiple climate regimes Kerry Emanuel March 21, 2012 Overview 1. Introduction 2. Essential Climate Feedback Processes Ocean s Thermohaline Circulation, Large-Scale Circulation of the

More information

Computing and Partitioning Cloud Feedbacks using Cloud. Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and

Computing and Partitioning Cloud Feedbacks using Cloud. Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Generated using version 3.0 of the official AMS L A TEX template 1 2 Computing and Partitioning Cloud Feedbacks using Cloud Property Histograms. 3 Part II: Attribution to Changes in Cloud Amount, Altitude,

More information

NOTES AND CORRESPONDENCE. On the Radiative and Dynamical Feedbacks over the Equatorial Pacific Cold Tongue

NOTES AND CORRESPONDENCE. On the Radiative and Dynamical Feedbacks over the Equatorial Pacific Cold Tongue 15 JULY 2003 NOTES AND CORRESPONDENCE 2425 NOTES AND CORRESPONDENCE On the Radiative and Dynamical Feedbacks over the Equatorial Pacific Cold Tongue DE-ZHENG SUN NOAA CIRES Climate Diagnostics Center,

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

PUBLICATIONS. Journal of Advances in Modeling Earth Systems

PUBLICATIONS. Journal of Advances in Modeling Earth Systems PUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE 10.1002/2015MS000511 Key Points: Convective self-aggregation in the Unified Model is driven mainly by direct radiative feedbacks

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine. The Atmospheric Heat Engine. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine. The Atmospheric Heat Engine. Atmospheric Heat Engine Lecture Ch. 1 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 1 For Wednesday: Read Ch.

More information

Thermodynamic Control on the Poleward shift of the Extratropical Jet in. Climate Change Simulations - Role of systematic lifting of high clouds and

Thermodynamic Control on the Poleward shift of the Extratropical Jet in. Climate Change Simulations - Role of systematic lifting of high clouds and 1 Thermodynamic Control on the Poleward shift of the Extratropical Jet in 2 Climate Change Simulations - Role of systematic lifting of high clouds and 3 their radiative effects 4 Ying Li and David W. J.

More information

Extratropical and Polar Cloud Systems

Extratropical and Polar Cloud Systems Extratropical and Polar Cloud Systems Gunilla Svensson Department of Meteorology & Bolin Centre for Climate Research George Tselioudis Extratropical and Polar Cloud Systems Lecture 1 Extratropical cyclones

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

Using Satellite Simulators to Diagnose Cloud-Processes in CMIP5 Models

Using Satellite Simulators to Diagnose Cloud-Processes in CMIP5 Models Using Satellite Simulators to Diagnose Cloud-Processes in CMIP5 Models Stephen A. Klein Program for Climate Model Diagnosis and Intercomparison / LLNL Alejandro Bodas-Salcedo & Mark Webb United Kingdom

More information

Scale-aware and definition-aware evaluation of CESM1 near-surface precipitation frequency using CloudSat observations

Scale-aware and definition-aware evaluation of CESM1 near-surface precipitation frequency using CloudSat observations Scale-aware and definition-aware evaluation of CESM1 near-surface precipitation frequency using CloudSat observations Jen Kay, University of Colorado (CU) Tristan L Ecuyer (UW-Madison), Angie Pendergrass

More information

Patterns in the CERES Global Mean Data, Part 3

Patterns in the CERES Global Mean Data, Part 3 Patterns in the CERES Global Mean Data, Part 3 1361 51 Wild et al. 2015 Total Solar Irradiance, Albedo, and Cloud Radiative Effects Miklos Zagoni 31 st CERES Science Team Meeting, May 7 9, 2019, Hampton,

More information

Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model

Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model 15 MAY 2007 K U A N G A N D H A R T M A N N 2051 Testing the Fixed Anvil Temperature Hypothesis in a Cloud-Resolving Model ZHIMING KUANG Department of Earth and Planetary Sciences, and Division of Engineering

More information

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1 EAS488/B8800 Climate & Climate Change Homework 2: Atmospheric Radiation and Climate, surface energy balance, and atmospheric general circulation Posted: 3/12/18; due: 3/26/18 Answer keys 1. (10 points)

More information

Crib Sheet David Randall Atmosphere, Clouds and Climate Princeton U Press Cooke

Crib Sheet David Randall Atmosphere, Clouds and Climate Princeton U Press Cooke Crib Sheet David Randall Atmosphere, Clouds and Climate Princeton U Press 2012. Cooke Units Radiation Budget Planetary Energy Balance Turbulence Feedbacks snow and Ice feedback water vapor feedback combining

More information

CALIPSO and the clouds. Hélène Chepfer LMD/IPSL, University Pierre and Marie Curie

CALIPSO and the clouds. Hélène Chepfer LMD/IPSL, University Pierre and Marie Curie CALIPSO and the clouds Hélène Chepfer LMD/IPSL, University Pierre and Marie Curie Outline On the use of Calipso to evaluate climate models (GOCCP and COSP/lidar) Low level tropical clouds Deep convecgve

More information

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2214 Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds Y.-C. Chen, M. W. Christensen, G. L. Stephens, and J. H. Seinfeld

More information

Sensitivity to the CAM candidate schemes in climate and forecast runs along the Pacific Cross-section

Sensitivity to the CAM candidate schemes in climate and forecast runs along the Pacific Cross-section Sensitivity to the CAM candidate schemes in climate and forecast runs along the Pacific Cross-section Cécile Hannay, Dave Williamson, Jerry Olson, Jim Hack, Jeff Kiehl, Richard Neale and Chris Bretherton*

More information

Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1

Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Multiple Equilibria in a Cloud Resolving Model: Using the Weak Temperature Gradient Approximation to Understand Self-Aggregation 1 Sharon Sessions, Satomi Sugaya, David Raymond, Adam Sobel New Mexico Tech

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations

Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Evaluation of CMIP5 Simulated Clouds and TOA Radiation Budgets in the SMLs Using NASA Satellite Observations Erica K. Dolinar Xiquan Dong and Baike Xi University of North Dakota This talk is based on Dolinar

More information

Earth s Radiation Budget & Climate

Earth s Radiation Budget & Climate Earth s Radiation Budget & Climate Professor Richard Allan University of Reading NERC Advanced Training Course Earth Observations for Weather & Climate Studies 5 9 September 2016 Quantify the main terms

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information