U.S. Navy Global Ocean Forecast System (GOFS)

Size: px
Start display at page:

Download "U.S. Navy Global Ocean Forecast System (GOFS)"

Transcription

1 U.S. Navy Global Ocean Forecast System (GOFS) Patrick Hogan, Eric Chassignet, James Cummings GODAE OceanView (GOVST) GOVST-IV Meeting 5-9 November 2012 Rio De Janerio, Brazil

2 HYCOM-NCODA Prediction Systems 1/12 Global 1/25 Gulf of Mexico 1/12 Arctic Cap Available at via OPenDAP or LAS Global 1/12 Analysis: 2003 present Gulf of Mexico 1/25 Analysis: present

3 Global Ocean Forecast System (GOFS) GOFS 2.6 1/8 Navy Coastal Ocean Model (NCOM (Global configuration) GOFS 3.0 1/12 Hybrid Coordinate Ocean Model (HYCOM) + NCODA OI GOFS 3.05 GOFS 3.0 with NCODA 3DVar and CICE GOFS 3.1 GOFS 3.05 with ISOP instead of MODAS GOFS 3.5 1/25 GOFS 3.1 with tides GOFS 4.0 Coupled GOFS 3.5 ocean-wwiii (waves) ESPC (Earth System Prediction Capability)

4 Large Scale Prediction The Nowcast/Forecast Systems Global Ocean Forecast System (GOFS) 3.0 1/12 global HYCOM/NCODA NCODA-MVOI MODAS synthetics Energy-loan ice model GOFS /12 global HYCOM/NCODA NCODA-3DVAR MODAS synthetics Two-way coupled to Los Alamos CICE

5 GOFS 3.1 Large Scale Prediction 1/12 global HYCOM/NCODA NCODA-3DVAR Improved Synthetic Ocean Profiles (ISOP) Two-way coupled to Los Alamos CICE GOFS 3.5 The Nowcast/Forecast Systems 1/25 global HYCOM/NCODA NCODA-3DVAR Improved Synthetic Ocean Profiles (ISOP) Two-way coupled to Los Alamos CICE

6 Why 1/25 horizontal resolution for global HYCOM? Surface EKE (cm 2 /s 2 ) Drifters 1/25 non-assim 1/12 non-assim Doubling the resolution from 1/12 to 1/25 in HYCOM increases surface EKE to levels comparable to drifters (left), and deep EKE and KEM are also increased to levels consistent with deep current meters (Thoppil et al., 2010)

7 Real-time 1/12 Arctic Cap HYCOM/CICE/NCODA Nowcast/Forecast System Community Ice CodE (CICE) HYbrid Coordinate Ocean Model (HYCOM) Hourly coupling the Earth System Modeling Framework (ESMF) 1/12 bipolar horizontal grid pole ward of 40 N. ~ 3.5 km near the North Pole and 6.5 km near 40 N Ice thickness, ice concentration, ice speed and drift in addition to ocean variables. Atmospheric 3-hour 0.5 NOGAPS forcing NCODA 3DVar (ice concentration in addition to ocean observations)

8 Nome Alaska Oil Resupply Mission Used ACNFS Products for Guidance Last seasonal fuel barge was delayed getting into Nome, AK due to an early November 2011 winter storm Russian ice breaking tanker was contracted to deliver 1.3 million gallons of fuel Coast Guard ice breaker Healy was used to provide an escort through the ice ACNFS nowcasts and forecasts were used by National Weather Service (Anchorage) to provide guidance for the convoy ACNFS ice thickness (m) 13 January 2012

9 Los Alamos CICE model was successfully two-way coupled with global HYCOM Global HYCOM/NCODA/CICE Arctic Cap Nowcast/Forecast System that has recently passed Operational Testing Animation of ice thickness (m) for 1 to 30 January 2012 Overlaid black line is the independent National Ice Center ice edge This is a prototype for Global Ocean Forecast System (GOFS) 3.1

10 Global HYCOM/NCODA/CICE in the southern hemisphere Sea ice concentration (%) around Antarctica near extreme ice extents 22 July winter 1 January summer Overlaid black line is the independent National Ice Center ice edge

11 M 2 barotropic tidal elevation: TPXO vs 1/12 Global HYCOM TPXO cm HYCOM Lines of constant phase (overlaid in white) are plotted every 45 The accuracy of HYCOM barotropic tides is comparable to other non-assimilative shallow water tide models (Shriver et al., 2012; JGR-O)

12 M 2 barotropic tidal elevation error: TPXO vs 1/12 Global HYCOM Total error Due to errors in tidal amplitude Due to errors in tidal phase Barotropic tides interacting with bathymetry in a stratified ocean generate the internal tides Phase errors in the barotropic tide are large in the strong internal tide generation regions in the Pacific which help to explain why the tide amplitudes agree well but the RMS error is large (Shriver et al., 2012; JGR-O)

13 M 2 internal tide amplitude: along-track altimetry data vs 1/12 Global HYCOM Altimetry-based analysis cm HYCOM The black boxes denote key generation regions. The amplitude of the internal tide in HYCOM compares well with the altimeter observations However, the RMS error is approximately 50% of the amplitude (Shriver et al., 2012; JGR-O)

14 Skill Score RMS Error Improvements underway for the tides in HYCOM Current Model New Southern Ocean BC A large difference between the data-assimilative TPXO model and HYCOM is the treatment of the floating ice shelves around Antarctica Using the TPXO tides as a boundary condition at the floating ice shelves reduces the rms difference (a and b) and improves the skill (c and d) over much of the globe, not just the Southern Ocean.

15 Demonstrated HYCOM/NCODA with tidal forcing on 1/12 domain August 2008 animation of the daily variance of hourly steric SSH Tides no data assimilation Data assimilation - no tides Data assimilation with tides Transient waves from the insertion of NCODA analysis increments Strong generation of internal tides at hot spots that can propagate 1000s of km away from generation regions need a global model with tides

16 Demonstrated HYCOM/NCODA with tidal forcing on 1/12 domain August 2008 animation of differences between the variances of steric SSH of (tides only + DA without tides) minus (DA with tides) Data assimilation does not appear to be adversely affecting the tidal solution Tides do not adversely affect the large scale circulation

17 Ensemble Evaluation 8 different global simulations that differed by some parameter setting or technique. For example, 5 used Cooper-Haines, 3 used MODAS synthetics. A couple used 35 layers instead of 27. Some used an updated version of NCODA and one used mixed layer depth to modify the MODAS synthetic, etc.

18 SSH: Global Ensemble Variance vs. Time Variance 18

19 SSS: Global Ensemble Variance vs. Time Variance

20 SST: Global Ensemble Variance vs. Time Variance

21 What is Earth System Prediction Capability (ESPC)? Coupled global analysis and prediction framework at accuracies and timescales beyond traditional synoptic weather forecasts. More than just a model. An approach towards advanced understanding and systems-based prediction leveraging multiple U.S. national efforts

22 ESPC (Earth System Prediction Capability) Approach Improve model physics through Coupled modeling Improved parameterizations Improve data assimilation through Joint observational retrievals New hybrid DA approaches Increase forecast information through Stochastic prediction National multi-model ensembles Seamless prediction Increase system resolution affordably through Efficient computational architectures Efficient numerics/ discretization

23 ESPC Demonstrations (Proposed Titles) Extreme Weather Events: Predictability of Blocking Events and High Impact Weather at Lead Times of 1-6 Weeks (Stan Benjamin, ESRL) Seasonal Tropical Cyclone Threat: Predictability of Tropical Cyclone Likelihood, Mean Track, and Intensity from Weekly to Seasonal Timescales (Melinda Peng, NRL MRY) Arctic Sea Ice Extent and Seasonal Ice Free Dates: Predictability from Weekly to Seasonal Timescales (Phil Jones, LANL) Coastal Seas: Predictability of Circulation, Hypoxia, and Harmful Algal Blooms at Lead Times of 1-6 Weeks (Gregg Jacobs, NRL SSC) Open Ocean: Predictability of the Atlantic Meridional Overturning Circulation (AMOC) from Monthly to Decadal Timescales for Improved Weather and Climate Forecasts (Jim Richman, NRL SSC) 23

24 Arctic Sea Ice Extent and Seasonal Ice Free Dates: Predictability from Weekly to Seasonal Timescales Objectives and Thrusts Objectives: Further explore limits of predictability of sea ice extent and volume, and freeze and melt onset dates, at 3-12 month lead times. Extend prediction to regional scale areas of interest (e.g. Northern and Northwest passages). Extend forecast variables to other ice and atmosphere properties such as ice thickness and movement, marginal ice zone, snow, fog, etc. Thrusts: Adequacy of current sea ice models that produce accurate hindcasts for use as forecast models when forcing is less well characterized. Predictability and suitability of different approaches at different forecast timescales. Explicit and ensemble prediction as ice thins and system memory and persistence is reduced. Challenges & Approach Challenges: While models reproduce historical record well when forced with observations (reanalysis) in a bulk sense, the level of fidelity needed for Arctic shipping and other observations is poorly characterized. Hints of predictability at longer time scales (1-2 years) as a forced problem but requires further definition of skill metrics. Predictability may be greatly reduced in likely future thin ice regime. Schedule and Key Performers Phil Jones, Climate, Ocean and Sea Ice Modeling T-3 MS B216 Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM pwjones@lanl.gov CCSM-team (UW-PSC, NCAR, LANL), SEARCH collaborators, AOMIP collaborators, NRL-SSC, NRL-MRY, ESRL, GFDL, NASA, NSIDC. Year 1: Identify participating groups and experimental coupled model projects. Year 2: Coordinate workshops and develop common cases studies, skill metrics, output criteria, data management and analysis plans. Accomplishments FY13 Start leveraging ongoing work at contributing agencies Approach: Repeat analysis of existing CCSM Arctic perfect model ensembles with focus on different regions of Arctic (previous study was basin-wide). Perform perturbed ensembles of retrospective (hindcast) studies initialized to different historical initial conditions and quantify predictability against historical record. Use CCSM/CESM in fully coupled mode with high fidelity ocean or slab ocean mode to assess underlying processes.

25 Open Ocean: Predictability of the Atlantic Meridional Overturning Circulation (AMOC) from Monthly to Decadal Timescales for Improved Weather and Climate Forecasts Objectives and Thrusts Objectives: Assess predictability of basin-scale three-dimensional ocean circulation from monthly to decadal timescales using the RAPID dataset as validating observations. Thrusts: Build upon the existing IPCC AR5 experiments to assess basic predictability of the net transport and sensitivity to forcing. Conduct high resolution coupled model simulations to look at detailed structure and air-ocean feedback. Conduct close collaboration with observational community to identify knowledge gaps in underlying processes and design new field efforts. Challenges & Approach Challenges: It is not clear what is predictable about the AMOC. The AMOC is thought to be an important driver for the oceanic meridional heat flux and sea surface temperature, although the link between the AMOC and climate is not clear. Recent climate model studies have shown a slowdown in the AMOC with possible impacts on European regional seasonal climate, ENSO and hurricanes in the Atlantic Ocean. Schedule and Key Performers Jim Richman, Oceanography Division, Code 7323, Bldg. 1009, Naval Research Laboratory, Stennis Space Center, MS (228) james.richman@nrlssc.navy.mil NRL/SSC, NRL/MRY, CESM, NCAR, LANL, UCSD-SIO, NASA/GISS, NCEP, US AMOC Science Team, Duke U., AOML, NOAA /GFDL, WHOI, Texas A&M Year 1: Identify participating groups and experimental coupled model projects. Year 2: Coordinate workshops and develop common cases studies, skill metrics, output criteria, data management and analysis plans. Accomplishments FY13 Start leveraging ongoing work at contributing agencies Approach: Leverage existing USGCRP and IPCC AR5 simulations assessing AMOC and meridional mass, heat and salt transport Additionally assess ocean reanalysis fields against predictions at various timescales from the Estimating the Circulation and Climate of the Ocean (ECCO) and HYCOM groups for the strength and depth of the AMOC along with the variability and trends.

26 Thanks!

Forecasting Tides in Global HYCOM

Forecasting Tides in Global HYCOM Forecasting Tides in Global HYCOM James G. Richman Oceanography Division Naval Research Laboratory Stennis Space Center, MS In collaboration with Brian Arbic, Univ. Michigan Joe Metzger, Jay Shriver &

More information

An Assessment of the Navy's Sea Ice Outlook Predictions for 2014

An Assessment of the Navy's Sea Ice Outlook Predictions for 2014 An Assessment of the Navy's Sea Ice Outlook Predictions for 2014 Pam Posey 1, Rick Allard 1, David Hebert 1, Joe Metzger 1, Ruth Preller 1, Alan Wallcraft 1, Ole Martin Smedstad 2, Michael Phelps 3 and

More information

Forecasting Tides in Global HYCOM

Forecasting Tides in Global HYCOM Forecasting Tides in Global HYCOM James G. Richman Oceanography Division Naval Research Laboratory Stennis Space Center, MS In collaboration with Brian Arbic, Univ. Michigan Joe Metzger, Jay Shriver &

More information

US Navy Global Prediction Systems

US Navy Global Prediction Systems US Navy Global Prediction Systems Earth System Prediction Capability (ESPC) Melinda S Peng Marine Meteorology Division Naval Research Laboratory Monterey, CA HPC Workshop, ECMWF 1-5 Oct. 2012 Naval METOC

More information

Agency Briefing. Eric Lindstrom, NASA HQ On behalf of: NASA, NSF, NOAA, DOE (and ONR)

Agency Briefing. Eric Lindstrom, NASA HQ On behalf of: NASA, NSF, NOAA, DOE (and ONR) Agency Briefing Eric Lindstrom, NASA HQ On behalf of: NASA, NSF, NOAA, DOE (and ONR) U.S. AMOC Program www.atlanticmoc.org A U.S. interagency program with a focus on AMOC monitoring and prediction capability

More information

The US Navy s Current and Future Sea Ice Forecast Capabilities

The US Navy s Current and Future Sea Ice Forecast Capabilities The US Navy s Current and Future Sea Ice Forecast Capabilities Pamela G. Posey, E. Joseph Metzger, Alan J. Wallcraft, Richard A. Allard, David A. Hebert, Ole Martin Smedstad, Julia Crout and Michael Phelps

More information

Arctic Cap Nowcast Forecast System (ACNFS) end of summer 2013 Ice Extent Projection July Report

Arctic Cap Nowcast Forecast System (ACNFS) end of summer 2013 Ice Extent Projection July Report Arctic Cap Nowcast Forecast System (ACNFS) end of summer 2013 Ice Extent Projection July Report Naval Research Laboratory, Stennis Space Center, MS The NRL Ice Team consists of: Pamela Posey 1, E. Joseph

More information

Earth System Prediction Capability (ESPC)

Earth System Prediction Capability (ESPC) Earth System Prediction Capability (ESPC) November 2012 Jessie Carman, ESPC DPM Earth System Prediction Capability ESPC 1 ESPC Overview Introduction ESPC is an interagency collaboration between DoD (Navy,

More information

Recent Improvements in the U.S. Navy s Ice Modeling Efforts Using CryoSat-2 Ice Thickness for Model Initialization

Recent Improvements in the U.S. Navy s Ice Modeling Efforts Using CryoSat-2 Ice Thickness for Model Initialization Recent Improvements in the U.S. Navy s Ice Modeling Efforts Using CryoSat-2 Ice Thickness for Model Initialization Richard Allard 1, David Hebert 1, Pamela Posey 1, Alan Wallcraft 1, Li Li 2, William Johnston

More information

Earth System Prediction Capability (ESPC)

Earth System Prediction Capability (ESPC) Earth System Prediction Capability () September 2012 Overview Introduction is an interagency collaboration between DoD (Navy, Air Force), NOAA, DoE, NASA, and NSF for coordination of research to operations

More information

SEA ICE PREDICTION NETWORK (SIPN) Pan-Arctic Sea Ice Outlook Core Contributions July 2015 Report

SEA ICE PREDICTION NETWORK (SIPN) Pan-Arctic Sea Ice Outlook Core Contributions July 2015 Report 1. Contributor Name(s)/Group SEA ICE PREDICTION NETWORK (SIPN) Pan-Arctic Sea Ice Outlook Core Contributions July 2015 Report Naval Research Laboratory (NRL), Stennis Space Center, MS The NRL Sea Ice Team

More information

Status of 1/25 Global HYCOM Simulations

Status of 1/25 Global HYCOM Simulations Status of 1/25 Global HYCOM Simulations Luis Zamudio 1 & Joe Metzger 2 1 Center for Ocean-Atmospheric Prediction Studies, Florida State University 2 Naval Research Laboratory, Stennis Space Center, Mississippi

More information

ESPC-2 Operational Implementation and Validation of the Coupled System

ESPC-2 Operational Implementation and Validation of the Coupled System DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC-2 Operational Implementation and Validation of the Coupled System E. Joseph Metzger Naval Research Laboratory, Code

More information

Enhancing predictability of the Loop Current variability using Gulf of Mexico Hycom

Enhancing predictability of the Loop Current variability using Gulf of Mexico Hycom Enhancing predictability of the Loop Current variability using Gulf of Mexico Hycom Matthieu Le Hénaff (1) Villy Kourafalou (1) Ashwanth Srinivasan (1) Collaborators: O. M. Smedstad (2), P. Hogan (2),

More information

Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP

Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP Behind the Climate Prediction Center s Extended and Long Range Outlooks Mike Halpert, Deputy Director Climate Prediction Center / NCEP September 2012 Outline Mission Extended Range Outlooks (6-10/8-14)

More information

An Update on the 1/12 Global HYCOM Effort

An Update on the 1/12 Global HYCOM Effort An Update on the 1/12 Global HYCOM Effort E.J. Metzger 1, O.M. Smedstad 2, A.J. Wallcraft 1, P.G. Posey 1, and D.S. Franklin 2 1 Naval Research Laboratory 2 Qinetiq North America 2013 Layered Ocean Model

More information

National Earth System Prediction Capability (National ESPC)

National Earth System Prediction Capability (National ESPC) National Earth System Prediction Capability (National ESPC) Jessie Carman NOAA/OAR Arctic-Ice Themed Projects The National Earth System Prediction Capability National ESPC 1 National ESPC: respond to community

More information

Challenges to Improving the Skill of Weekly to Seasonal Climate Predictions. David DeWitt with contributions from CPC staff

Challenges to Improving the Skill of Weekly to Seasonal Climate Predictions. David DeWitt with contributions from CPC staff Challenges to Improving the Skill of Weekly to Seasonal Climate Predictions David DeWitt with contributions from CPC staff 1 Outline CPC Background Prediction, monitoring, diagnostics, and climate services

More information

Climate Prediction Center Research Interests/Needs

Climate Prediction Center Research Interests/Needs Climate Prediction Center Research Interests/Needs 1 Outline Operational Prediction Branch research needs Operational Monitoring Branch research needs New experimental products at CPC Background on CPC

More information

Eddy Resolving Global Ocean Prediction including Tides

Eddy Resolving Global Ocean Prediction including Tides DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Eddy Resolving Global Ocean Prediction including Tides Alan J. Wallcraft NRL Code 7323 Stennis Space Center, MS 39529-5004

More information

Coupled Ocean-Wave Model Team (Team 8) Report

Coupled Ocean-Wave Model Team (Team 8) Report Coupled Ocean-Wave Model Team (Team 8) Report George Halliwell (co-lead, NOAA/AOML/PhOD) Hendrik Tolman (co-lead, NOAA/NCEP) Isaac Ginis (URI) Chris Fairall (NOAA/ESRL) Shaowu Bao (NOAA/ESRL) Jian-Wen

More information

ESPC Coupled Global Prediction System

ESPC Coupled Global Prediction System DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC Coupled Global Prediction System James G. Richman Oceanography Division, Code 7323 Naval Research Laboratory Stennis

More information

John Kindle. Sergio derada Igor Shulman Ole Martin Smedstad Stephanie Anderson. Data Assimilation in Coastal Modeing April

John Kindle. Sergio derada Igor Shulman Ole Martin Smedstad Stephanie Anderson. Data Assimilation in Coastal Modeing April John Kindle Sergio derada Igor Shulman Ole Martin Smedstad Stephanie Anderson Data Assimilation in Coastal Modeing April 3 2007 MODELS Motivation: Global->Coastal Real-Time Regional Coastal Models Global

More information

O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2, R. Broome 1, D.S. Franklin 1 and A.J. Wallcraft 2. QinetiQ North America 2. Naval Research Laboratory

O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2, R. Broome 1, D.S. Franklin 1 and A.J. Wallcraft 2. QinetiQ North America 2. Naval Research Laboratory An eddy-resolving ocean reanalysis using the 1/12 global HYbrid Coordinate Ocean Model (HYCOM) and the Navy Coupled Ocean Data Assimilation (NCODA) scheme O.M Smedstad 1, E.J. Metzger 2, R.A. Allard 2,

More information

Ocean currents from altimetry

Ocean currents from altimetry Ocean currents from altimetry Pierre-Yves LE TRAON - CLS - Space Oceanography Division Gamble Workshop - Stavanger,, May 2003 Introduction Today: information mainly comes from in situ measurements ocean

More information

HYCOM and GODAE in Relation to Navy Ocean Prediction

HYCOM and GODAE in Relation to Navy Ocean Prediction HYCOM and GODAE in Relation to Navy Ocean Prediction An Overview Presented by Harley Hurlburt Naval Research Laboratory Stennis Space Center, MS 39529-5004 5004 HYCOM Meeting Naval Research Laboratory

More information

WWOSC Montreal August 18, 2014

WWOSC Montreal August 18, 2014 The U.S. National Earth System Prediction Capability (National ESPC) Project Daniel P. Eleuterio, Office of Naval Research Jessie Carman, NOAA Office of Ocean and Atmosphere Research Fred Toepfer, NOAA

More information

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response

PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Event Response PRMS WHITE PAPER 2014 NORTH ATLANTIC HURRICANE SEASON OUTLOOK June 2014 - RMS Event Response 2014 SEASON OUTLOOK The 2013 North Atlantic hurricane season saw the fewest hurricanes in the Atlantic Basin

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP023750 TITLE: Global Ocean Prediction Using HYCOM DISTRIBUTION: Approved for public release, distribution unlimited This paper

More information

SEA ICE OUTLOOK 2016 Report

SEA ICE OUTLOOK 2016 Report SEA ICE OUTLOOK 2016 Report Core Requirements for Pan-Arctic Contributions: * REQUIRED 1. *Name of Contributor or name of Contributing Organization and associated contributors as you would like your contribution

More information

Ocean Modeling. Matt McKnight Boxuan Gu

Ocean Modeling. Matt McKnight Boxuan Gu Ocean Modeling Matt McKnight Boxuan Gu Engineering the system The Earth Understanding that the Oceans are inextricably linked to the world s climate is easy. Describing this relationship is more difficult,

More information

Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker

Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker Arctic sea ice in IPCC climate scenarios in view of the 2007 record low sea ice event A comment by Ralf Döscher, Michael Karcher and Frank Kauker Fig. 1: Arctic September sea ice extent in observations

More information

Dmitry Dukhovskoy and Mark Bourassa

Dmitry Dukhovskoy and Mark Bourassa Dmitry Dukhovskoy and Mark Bourassa Center for Ocean-Atmospheric Prediction Studies Florida State University Funded by the NASA OVWST, HYCOM consortium and NSF AOMIP Acknowledgement: P. Hughes (FSU), E.J.

More information

Leveraging ISI Multi-Model Prediction for Navy Operations: Proposal to the Office of Naval Research

Leveraging ISI Multi-Model Prediction for Navy Operations: Proposal to the Office of Naval Research DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Leveraging ISI Multi-Model Prediction for Navy Operations: Proposal to the Office of Naval Research PI: James L. Kinter

More information

ESPC-2 Operational Implementation and Validation of the Coupled System

ESPC-2 Operational Implementation and Validation of the Coupled System DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC-2 Operational Implementation and Validation of the Coupled System E. Joseph Metzger Naval Research Laboratory, Code

More information

Yi Chao Jet Propulsion Laboratory California Institute of Technology & Joint Institute for Regional Earth System Science and Engineering (JIFRESSE)

Yi Chao Jet Propulsion Laboratory California Institute of Technology & Joint Institute for Regional Earth System Science and Engineering (JIFRESSE) Strategy to Develop a 3D Ocean Circulation Forecasting System for Cook Inlet Yi Chao Jet Propulsion Laboratory California Institute of Technology & Joint Institute for Regional Earth System Science and

More information

NGGPS Community Sea Ice Model Recommendation Workshop. Rebecca Heim / Gene Petrescu NOAA/NWS Alaska Region

NGGPS Community Sea Ice Model Recommendation Workshop. Rebecca Heim / Gene Petrescu NOAA/NWS Alaska Region NGGPS Community Sea Ice Model Recommendation Workshop Rebecca Heim / Gene Petrescu NOAA/NWS Alaska Region NWS Alaska Region Ice Services Excerpts from NOAAs Arctic Action Plan NOAA s National Weather Service

More information

Short-term sea ice forecasts with the RASM-ESRL coupled model

Short-term sea ice forecasts with the RASM-ESRL coupled model Short-term sea ice forecasts with the RASM-ESRL coupled model A testbed for improving simulations of ocean-iceatmosphere interactions in the marginal ice zone Amy Solomon 12, Janet Intrieri 2, Mimi Hughes

More information

An Update on the 1/12 Global HYCOM Effort

An Update on the 1/12 Global HYCOM Effort An Update on the 1/12 Global HYCOM Effort E. Joseph Metzger, Alan J. Wallcraft, Jay F. Shriver and Harley E. Hurlburt Naval Research Laboratory 10 th HYCOM Consortium Meeting 7-99 November 2006 FSU-COAPS,

More information

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems GFDL, NCEP, & SODA Upper Ocean Assimilation Systems Jim Carton (UMD) With help from Gennady Chepurin, Ben Giese (TAMU), David Behringer (NCEP), Matt Harrison & Tony Rosati (GFDL) Description Goals Products

More information

Susan Bates Ocean Model Working Group Science Liaison

Susan Bates Ocean Model Working Group Science Liaison Susan Bates Ocean Model Working Group Science Liaison Climate Simulation Laboratory (CSL) Accelerated Scientific Discovery (ASD) NCAR Strategic Capability (NSC) Climate Process Teams (CPTs) NSF Earth System

More information

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response

2013 ATLANTIC HURRICANE SEASON OUTLOOK. June RMS Cat Response 2013 ATLANTIC HURRICANE SEASON OUTLOOK June 2013 - RMS Cat Response Season Outlook At the start of the 2013 Atlantic hurricane season, which officially runs from June 1 to November 30, seasonal forecasts

More information

HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling. Naval Research Laboratory, Stennis Space Center, USA

HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling. Naval Research Laboratory, Stennis Space Center, USA HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling By BIROL KARA, ALAN WALLCRAFT AND JOE METZGER Naval Research Laboratory, Stennis Space Center, USA MURAT GUNDUZ Institute

More information

Operational Ocean and Climate Modeling at NCEP

Operational Ocean and Climate Modeling at NCEP Operational Ocean and Climate Modeling at NCEP 5 th Annual CoRP Science Symposium Corvallis, OR Aug. 12-13, 2008 Hua-Lu Pan and Hendrik Tolman Environmental Modeling Center NCEP 1.7B Obs/Day Satellites

More information

NCODA Implementation with re-layerization

NCODA Implementation with re-layerization NCODA Implementation with re-layerization HeeSook Kang CIMAS/RSMAS/U. Miami with W. Carlisle Thacker NOAA/AOML HYCOM meeting December 6 2005 1 GULF OF MEXICO MODEL CONFIGURATION: Horizontal grid: 1/12

More information

Upper Ocean Mixing Processes and Circulation in the Arabian Sea during Monsoons using Remote Sensing, Hydrographic Observations and HYCOM Simulations

Upper Ocean Mixing Processes and Circulation in the Arabian Sea during Monsoons using Remote Sensing, Hydrographic Observations and HYCOM Simulations DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Upper Ocean Mixing Processes and Circulation in the Arabian Sea during Monsoons using Remote Sensing, Hydrographic Observations

More information

Concurrent simulation of the eddying general circulation and tides in a global ocean model

Concurrent simulation of the eddying general circulation and tides in a global ocean model Concurrent simulation of the eddying general circulation and tides in a global ocean model Brian K. Arbic 1 E. Joseph Metzger 2 Alan J. Wallcraft 2 1 Department of Oceanography and Center for Ocean-Atmospheric

More information

New Salinity Product in the Tropical Indian Ocean Estimated from OLR

New Salinity Product in the Tropical Indian Ocean Estimated from OLR New Salinity Product in the Tropical Indian Ocean Estimated from OLR Aquarius Bulusu Subrahmanyam and James J. O Brien Center for Ocean-Atmospheric Prediction Studies, Florida State University V.S.N. Murty

More information

Regional eddy-permitting state estimation of the circulation in the Northern Philippine Sea

Regional eddy-permitting state estimation of the circulation in the Northern Philippine Sea Regional eddy-permitting state estimation of the circulation in the Northern Philippine Sea Bruce D. Cornuelle, Ganesh Gopalakrishnan, Peter F. Worcester, Matthew A. Dzieciuch, and Matthew Mazloff Scripps

More information

The Oceanic Component of CFSR

The Oceanic Component of CFSR 1 The Oceanic Component of CFSR Yan Xue 1, David Behringer 2, Boyin Huang 1,Caihong Wen 1,Arun Kumar 1 1 Climate Prediction Center, NCEP/NOAA, 2 Environmental Modeling Center, NCEP/NOAA, The 34 th Annual

More information

Pacific HYCOM. E. Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, Luis Zamudio and Patrick J. Hogan

Pacific HYCOM. E. Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, Luis Zamudio and Patrick J. Hogan Pacific HYCOM E. Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, Luis Zamudio and Patrick J. Hogan Naval Research Laboratory, Stennis Space Center, MS Center for Ocean-Atmospheric Prediction Studies,

More information

Moving to a simpler NCEP production suite

Moving to a simpler NCEP production suite Moving to a simpler NCEP production suite Unified coupled global modeling Hendrik L. Tolman Director, Environmental Modeling Center NOAA / NWS / NCEP Hendrik.Tolman@NOAA.gov page 1 of 14 Content The suite

More information

1/12 Pacific HYCOM: The End Of A Long Simulation

1/12 Pacific HYCOM: The End Of A Long Simulation 1/12 Pacific HYCOM: The End Of A Long Simulation E. Joseph Metzger,, Harley E. Hurlburt and Alan J. Wallcraft Naval Research Laboratory, Stennis Space Center, MS HYCOM NOPP GODAE Meeting 27-29 29 October

More information

The CONCEPTS Global Ice-Ocean Prediction System Establishing an Environmental Prediction Capability in Canada

The CONCEPTS Global Ice-Ocean Prediction System Establishing an Environmental Prediction Capability in Canada The CONCEPTS Global Ice-Ocean Prediction System Establishing an Environmental Prediction Capability in Canada WWOSC 2014 Montreal, Quebec, Canada Dorina Surcel Colan 1, Gregory C. Smith 2, Francois Roy

More information

The ECMWF coupled data assimilation system

The ECMWF coupled data assimilation system The ECMWF coupled data assimilation system Patrick Laloyaux Acknowledgments: Magdalena Balmaseda, Kristian Mogensen, Peter Janssen, Dick Dee August 21, 214 Patrick Laloyaux (ECMWF) CERA August 21, 214

More information

The Center for Ocean Atmospheric Prediction Studies, FSU, Tallahassee, FL 32306

The Center for Ocean Atmospheric Prediction Studies, FSU, Tallahassee, FL 32306 Global Ocean Prediction Using HYCOM E. Joseph Metzger 1 joe.metzger@nrlssc.navy.mil Eric P. Chassignet 2 echassignet@coaps.fsu.edu James A. Cummings 3 james.cummings@nrlmry.navy.mil Harley E. Hurlburt

More information

Canadian contribution to the Year of Polar Prediction: deterministic and ensemble coupled atmosphere-ice-ocean forecasts

Canadian contribution to the Year of Polar Prediction: deterministic and ensemble coupled atmosphere-ice-ocean forecasts Canadian contribution to the Year of Polar Prediction: deterministic and ensemble coupled atmosphere-ice-ocean forecasts G.C. Smith, F. Roy, J.-F. Lemieux, F. Dupont, J-M Belanger and the CONCEPTS team

More information

Impact of Resolution on Extended-Range Multi-Scale Simulations

Impact of Resolution on Extended-Range Multi-Scale Simulations DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Resolution on Extended-Range Multi-Scale Simulations Carolyn A. Reynolds Naval Research Laboratory Monterey,

More information

Evaluating the Discrete Element Method as a Tool for Predicting the Seasonal Evolution of the MIZ

Evaluating the Discrete Element Method as a Tool for Predicting the Seasonal Evolution of the MIZ DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Evaluating the Discrete Element Method as a Tool for Predicting the Seasonal Evolution of the MIZ Arnold J. Song Cold Regions

More information

NOAA MAPP Program S2S Activities Focus on select products/capabilities/metrics

NOAA MAPP Program S2S Activities Focus on select products/capabilities/metrics NOAA MAPP Program S2S Activities Focus on select products/capabilities/metrics Annarita Mariotti, Dan Barrie, Ali Stevens and Emily Read NOAA OAR/Climate Program Office MAPP Mission and Priority Areas

More information

An Overview of Nested Regions Using HYCOM

An Overview of Nested Regions Using HYCOM An Overview of Nested Regions Using HYCOM Patrick Hogan Alan Wallcraft Luis Zamudio Sergio DeRada Prasad Thoppil Naval Research Laboratory Stennis Space Center, MS 10 th HYCOM Consortium Meeting COAPS,

More information

Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model

Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model S.-J. Lin and GFDL model development teams NOAA/Geophysical Fluid Dynamics Laboratory Workshop on High-Resolution

More information

National Unified Operational Prediction Capability

National Unified Operational Prediction Capability National Unified Operational Prediction Capability Dave McCarren 7 May 2011 1 1 An Air Force, Navy, NOAA Partnership to enable an advanced U. S. National Global Weather Forecast System supporting each

More information

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations

Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Applications of an ensemble Kalman Filter to regional ocean modeling associated with the western boundary currents variations Miyazawa, Yasumasa (JAMSTEC) Collaboration with Princeton University AICS Data

More information

North Pacific Climate Overview N. Bond (UW/JISAO), J. Overland (NOAA/PMEL) Contact: Last updated: September 2008

North Pacific Climate Overview N. Bond (UW/JISAO), J. Overland (NOAA/PMEL) Contact: Last updated: September 2008 North Pacific Climate Overview N. Bond (UW/JISAO), J. Overland (NOAA/PMEL) Contact: Nicholas.Bond@noaa.gov Last updated: September 2008 Summary. The North Pacific atmosphere-ocean system from fall 2007

More information

Sea Ice Prediction Network (SIPN) Webinar: Industry Needs for Seasonal and Sub-seasonal Sea Ice Information and Predictions

Sea Ice Prediction Network (SIPN) Webinar: Industry Needs for Seasonal and Sub-seasonal Sea Ice Information and Predictions Sea Ice Prediction Network (SIPN) Webinar: Industry Needs for Seasonal and Sub-seasonal Sea Ice Information and Predictions Hajo Eicken International Arctic Research Center University of Alaska Fairbanks,

More information

Early results and plans for the future. Robert Atlas

Early results and plans for the future. Robert Atlas Observing System Simulation Experiments: Methodology, Early results and plans for the future Robert Atlas National Oceanic and Atmospheric Administration Atlantic Oceanographic and Meteorological Laboratory

More information

Possible Applications of Deep Neural Networks in Climate and Weather. David M. Hall Assistant Research Professor Dept. Computer Science, CU Boulder

Possible Applications of Deep Neural Networks in Climate and Weather. David M. Hall Assistant Research Professor Dept. Computer Science, CU Boulder Possible Applications of Deep Neural Networks in Climate and Weather David M. Hall Assistant Research Professor Dept. Computer Science, CU Boulder Quick overview of climate and weather models Weather models

More information

COAMPS-TC 2015 Version, Performance, and Future Plans

COAMPS-TC 2015 Version, Performance, and Future Plans COAMPS-TC 2015 Version, Performance, and Future Plans James D. Doyle, R. Hodur 1, J. Moskaitis, S. Chen, E. Hendricks 2, H. Jin, Y. Jin, A. Reinecke, S. Wang Naval Research Laboratory, Monterey, CA 1 IES/SAIC,

More information

S2S Research Activities at NOAA s Climate Program Office (CPO)

S2S Research Activities at NOAA s Climate Program Office (CPO) S2S Research Activities at NOAA s (CPO) Dan Barrie, Program Manager, NOAA September 2016 MAPP Program: Annarita Mariotti (director), Heather Archambault (program manager), Will Chong (program assistant),

More information

Activities of NOAA s NWS Climate Prediction Center (CPC)

Activities of NOAA s NWS Climate Prediction Center (CPC) Activities of NOAA s NWS Climate Prediction Center (CPC) Jon Gottschalck and Dave DeWitt Improving Sub-Seasonal and Seasonal Precipitation Forecasting for Drought Preparedness May 27-29, 2015 San Diego,

More information

Fleet Numerical Meteorology and Oceanography Center. Current Sub-seasonal to Seasonal Capabilities

Fleet Numerical Meteorology and Oceanography Center. Current Sub-seasonal to Seasonal Capabilities Fleet Numerical Meteorology and Oceanography Center Current Sub-seasonal to Seasonal Capabilities presented at Workshop on Metrics, Post-Processing, and Products for S2S 28 Feb 2018 Chuck Skupniewicz Modeling

More information

1/12 Pacific HYCOM: The End Of A Long Simulation

1/12 Pacific HYCOM: The End Of A Long Simulation 1/12 Pacific HYCOM: The End Of A Long Simulation E. Joseph Metzger,, Harley E. Hurlburt and Alan J. Wallcraft Naval Research Laboratory, Stennis Space Center, MS HYCOM NOPP GODAE Meeting 27-29 29 October

More information

Assessing Shelf Sea Tides in Global HYCOM

Assessing Shelf Sea Tides in Global HYCOM Assessing Shelf Sea Tides in Global HYCOM Patrick G. Timko 1, Patrick Hyder 2, Brian K. Arbic 3, and Luis Zamudio 4 1 Bangor University 2 UK Met. Office 3 University of Michigan 4 COAPS, Florida State

More information

NWS Operational Marine and Ocean Forecasting. Overview. Ming Ji. Ocean Prediction Center National Weather Service/NCEP. CIOSS/CoRP

NWS Operational Marine and Ocean Forecasting. Overview. Ming Ji. Ocean Prediction Center National Weather Service/NCEP. CIOSS/CoRP NWS Operational Marine and Ocean Forecasting Overview Ming Ji Ocean Prediction Center National Weather Service/NCEP CIOSS/CoRP CoRP Symposium Corvallis, OR Aug. 12-13, 13, 2008 Titanic Telegram Marine

More information

Initialization of Tropical Cyclone Structure for Operational Application

Initialization of Tropical Cyclone Structure for Operational Application DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Initialization of Tropical Cyclone Structure for Operational Application PI: Tim Li IPRC/SOEST, University of Hawaii at

More information

The ECMWF Extended range forecasts

The ECMWF Extended range forecasts The ECMWF Extended range forecasts Laura.Ferranti@ecmwf.int ECMWF, Reading, U.K. Slide 1 TC January 2014 Slide 1 The operational forecasting system l High resolution forecast: twice per day 16 km 91-level,

More information

Predicting Tropical Cyclone Formation and Structure Change

Predicting Tropical Cyclone Formation and Structure Change Predicting Tropical Cyclone Formation and Structure Change Patrick A. Harr Department of Meteorology Naval Postgraduate School Monterey, CA 93943-5114 phone: (831)656-3787 fax: (831)656-3061 email: paharr@nps.navy.mil

More information

Climate Prediction Center National Centers for Environmental Prediction

Climate Prediction Center National Centers for Environmental Prediction NOAA s Climate Prediction Center Monthly and Seasonal Forecast Operations Wassila M. Thiaw Climate Prediction Center National Centers for Environmental Prediction Acknowlegement: Mathew Rosencrans, Arun

More information

The U. S. Winter Outlook

The U. S. Winter Outlook The 2018-2019 U. S. Winter Outlook Michael Halpert Deputy Director Climate Prediction Center Mike.Halpert@noaa.gov http://www.cpc.ncep.noaa.gov Outline About the Seasonal Outlook Review of 2017-18 U. S.

More information

Alexander Barth, Aida Alvera-Azc. Azcárate, Robert H. Weisberg, University of South Florida. George Halliwell RSMAS, University of Miami

Alexander Barth, Aida Alvera-Azc. Azcárate, Robert H. Weisberg, University of South Florida. George Halliwell RSMAS, University of Miami Ensemble-based based Assimilation of HF-Radar Surface Currents in a West Florida Shelf ROMS Nested into HYCOM and filtering of spurious surface gravity waves. Alexander Barth, Aida Alvera-Azc Azcárate,

More information

Climate reanalysis and reforecast needs: An Ocean Perspective

Climate reanalysis and reforecast needs: An Ocean Perspective Climate reanalysis and reforecast needs: An Ocean Perspective Hao Zuo with M. Balmaseda, S. Tietsche, P. Browne, B. B. Sarojini, E. de Boisseson, P. de Rosnay ECMWF Hao.Zuo@ecmwf.int ECMWF January 23,

More information

Results from High Resolution North Atlantic HYCOM Simulations

Results from High Resolution North Atlantic HYCOM Simulations Results from High Resolution North Atlantic HYCOM Simulations Patrick Hogan, Alan Wallcraft, Harley Hurlburt, Tammy Townsend Naval Research Laboratory Stennis Space Center, MS Eric Chassignet RSMAS, University

More information

HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling. Naval Research Laboratory, Stennis Space Center, USA

HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling. Naval Research Laboratory, Stennis Space Center, USA HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling By BIROL KARA, ALAN WALLCRAFT AND JOE METZGER Naval Research Laboratory, Stennis Space Center, USA MURAT GUNDUZ Institute

More information

REQUEST FOR INFORMATION (RFI) HYCOM. Criteria #1: A strong partnership between the developers of the model and the CESM community

REQUEST FOR INFORMATION (RFI) HYCOM. Criteria #1: A strong partnership between the developers of the model and the CESM community REQUEST FOR INFORMATION (RFI) HYCOM Brief overview The HYbrid Coordinate Ocean Model (Bleck, 2002; Chassignet et al., 2003) is a global non- Boussinesq ocean circulation model that utilizes a generalized

More information

THE BC SHELF ROMS MODEL

THE BC SHELF ROMS MODEL THE BC SHELF ROMS MODEL Diane Masson & Isaac Fine, Institute of Ocean Sciences The Canadian west coast perspective (filling the gap ) AVISO, Eddy Kinetic Energy (cm 2 s -2 ) In this talk Model set-up and

More information

Global Ocean Monitoring: A Synthesis of Atmospheric and Oceanic Analysis

Global Ocean Monitoring: A Synthesis of Atmospheric and Oceanic Analysis Extended abstract for the 3 rd WCRP International Conference on Reanalysis held in Tokyo, Japan, on Jan. 28 Feb. 1, 2008 Global Ocean Monitoring: A Synthesis of Atmospheric and Oceanic Analysis Yan Xue,

More information

Comparison of of Assimilation Schemes for HYCOM

Comparison of of Assimilation Schemes for HYCOM Comparison of of Assimilation Schemes for HYCOM Ashwanth Srinivasan, C. Thacker, Z. Garraffo, E. P. Chassignet, O. M. Smedstad, J. Cummings, F. Counillon, L. Bertino, T. M. Chin, P. Brasseur and C. Lozano

More information

Uncertainty in Ocean Surface Winds over the Nordic Seas

Uncertainty in Ocean Surface Winds over the Nordic Seas Uncertainty in Ocean Surface Winds over the Nordic Seas Dmitry Dukhovskoy and Mark Bourassa Arctic Ocean Center for Ocean-Atmospheric Prediction Studies Florida State University Funded by the NASA OVWST,

More information

Climate Forecast Applications Network (CFAN)

Climate Forecast Applications Network (CFAN) Forecast of 2018 Atlantic Hurricane Activity April 5, 2018 Summary CFAN s inaugural April seasonal forecast for Atlantic tropical cyclone activity is based on systematic interactions among ENSO, stratospheric

More information

What We ve Learned from the AMOC Modeling Efforts about AMOC Processes and its Role in Weather and Climate

What We ve Learned from the AMOC Modeling Efforts about AMOC Processes and its Role in Weather and Climate What We ve Learned from the AMOC Modeling Efforts about AMOC Processes and its Role in Weather and Climate Rong Zhang GFDL/NOAA POS/PSMI Joint Breakout Session 2017 US CLIVAR Summit Baltimore, August 9,

More information

Office of Naval Research Update and Status of Arctic Environmental Programs

Office of Naval Research Update and Status of Arctic Environmental Programs Office of Naval Research Update and Status of Arctic Environmental Programs October 2017 CDR Blake McBride Deputy, Ocean, Atmosphere and Space Research Division Office of Naval Research marvin.mcbride@navy.mil

More information

Dynamical Evaluation of Gulf Stream Simulations in Models with High Vertical Resolution

Dynamical Evaluation of Gulf Stream Simulations in Models with High Vertical Resolution Dynamical Evaluation of Gulf Stream Simulations in Models with High Vertical Resolution Harley E. Hurlburt 1, Eric P. Chassignet 2, E. Joseph Metzger 1, James G. Richman 1, William J. Schmitz, Jr. 3, Jay

More information

Multi-sensor Improved Sea-Surface Temperature (MISST) for IOOS Navy component

Multi-sensor Improved Sea-Surface Temperature (MISST) for IOOS Navy component DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Multi-sensor Improved Sea-Surface Temperature (MISST) for IOOS Navy component Charlie N. Barron NRL Code 7321 Stennis Space

More information

Seasonal to decadal climate prediction: filling the gap between weather forecasts and climate projections

Seasonal to decadal climate prediction: filling the gap between weather forecasts and climate projections Seasonal to decadal climate prediction: filling the gap between weather forecasts and climate projections Doug Smith Walter Orr Roberts memorial lecture, 9 th June 2015 Contents Motivation Practical issues

More information

An Overview of Nested Regions Using HYCOM

An Overview of Nested Regions Using HYCOM An Overview of Nested Regions Using HYCOM Patrick Hogan Alan Wallcraft Luis Zamudio Sergio DeRada Prasad Thoppil Naval Research Laboratory Stennis Space Center, MS 10 th HYCOM Consortium Meeting COAPS,

More information

ESPC Analysis of Interagency Extended-Range Ensemble Prediction

ESPC Analysis of Interagency Extended-Range Ensemble Prediction DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC Analysis of Interagency Extended-Range Ensemble Prediction Carolyn Reynolds Naval Research Laboratory Monterey, CA

More information

PIPS 3.0. Pamela G. Posey NRL Code 7322 Stennis Space Center, MS Phone: Fax:

PIPS 3.0. Pamela G. Posey NRL Code 7322 Stennis Space Center, MS Phone: Fax: PIPS 3.0 Ruth H. Preller Naval Research Laboratory, Code 7322 Stennis Space Center, MS 39529 phone: (228) 688-5444 fax: (228)688-4759 email: preller@nrlssc.navy.mil Pamela G. Posey NRL Code 7322 Stennis

More information

HYBRID GODAS STEVE PENNY, DAVE BEHRINGER, JIM CARTON, EUGENIA KALNAY, YAN XUE

HYBRID GODAS STEVE PENNY, DAVE BEHRINGER, JIM CARTON, EUGENIA KALNAY, YAN XUE STEPHEN G. PENNY UNIVERSITY OF MARYLAND (UMD) NATIONAL CENTERS FOR ENVIRONMENTAL PREDICTION (NCEP) HYBRID GODAS STEVE PENNY, DAVE BEHRINGER, JIM CARTON, EUGENIA KALNAY, YAN XUE NOAA CLIMATE REANALYSIS

More information

Skillful climate forecasts using model-analogs

Skillful climate forecasts using model-analogs Skillful climate forecasts using model-analogs Hui Ding 1,2, Matt Newman 1,2, Mike Alexander 2, and Andrew Wittenberg 3 1. CIRES, University of Colorado Boulder 2. NOAA ESRL PSD 3. NOAA GFDL NCEP operational

More information