Vertical velocity, horizontal divergence and turbulence associated with tropical mesoscale convective system

Size: px
Start display at page:

Download "Vertical velocity, horizontal divergence and turbulence associated with tropical mesoscale convective system"

Transcription

1 ndian ournal of Radio & Space Physics Vol. 3. April 21. pp Vertical velocity, horizontal divergence and turbulence associated with tropical mesoscale convective system D Narayana Rao. H Randhir Singh & S Vijaya Bhaskara Rao Department of Physics. S V University. Tirupati 1 2 Received March 2; accepted 29 September 2 The MST radars have been used to measure directly the vertical motions above the radar site. Vertical velocity profiles and horizontal divergence/convergence derived from the vertical velocity using the mass continuity equation as well as eddy dissipation rate estimated under strong-to-moderate convection period are presented in the paper. Data obtained from the ndian MST radar located at Gadanki( 1 3 SN, 9. E) have been used. The height range of the study is from kn to 2 kn. The aim of the present study is to calculate the horizontal divergence from the vertical velocity and then to find the extent of the enhancement in the vertical velocity and horizontal divergence as well as turbulence distribution during the well developed tropical mesoscale disturbances. Strong enhancement is observed in the vertical velocity and the horizontal divergence/convergence. Maximum turbulence has been observed near the top of the cloud and above. Eddy dissipation rate 2 3 of the order of.m s- has also been observed. 1 ntroduction Vertical velocity of air is a key variable in meteorology. The MST radars offer the unique capability measuring the vertical velocity of air in the atmosphere. This capability has been amply demonstrated by measuring relatively larger vertical velocities in mesoscale circulation systems such as convective cells l. One of the major dynamic features of the tropical atmosphere is the tropical mesoscale convection complex (MCC) or cloud cluster. Tropical 2 MCCs comprise large area (approximately 1 km ) of clouds systems that are organized both on the synoptic and the mesoscale. t contains distinct regions of both stratiform and covection precipitation and strongly influences the large scale atmospheric circulation both by releasing latent heat and by altering the local radiation budget. Vertical circulation within the stratiform portion of these complexes consists primarily of deep but gentle updraft ( 1 1 cmls) in the cloud layer above the freezing levels2-. These updrafts are superposed over unsaturated mesoscale downdrafts.6 Somewhat different picture describes the convective portion of the complexes, where both moderate convection and the narrow region of intense updrafts and downdrafts (the hot tower first described by Riehl and Malkus ) are supported by the low level convergence. These systems have been studied extensively during GARP Atlantic Tropical Experiment (GATE) and nternational Monsoon Experiment (MONEX). t is of interest to assess the amount of divergence and the vertical velocity that are likely to occur in the monsoon systems. Knowledge of vertical motion in mesoscale convective systems (MCS) is important for understanding the physical processes within these systems as well as to understand how these features interact with large environment through transport of heat, moisture and momentum Unfortunately, the amount of divergence and the vertical velocity is so small that accurate measurement of them is very Table -ndian MST radar specifications Parameter Specification Operating frequency No. of Yagi antennas Antenna dimensions A verage power aperture product Beam width Peak power Max. duty ratio nter-pulse period(lpp} Pulse width 3 MHz m x 1 3 m 2 x 1 Wm Max. No. of range bins Max. No. of coherent integrations Max. No. of FFf points Side lobe Gain Beam positions 3 2. MW 2.% l s 1-32 s; ntegral multiples of 2 of uncoded and 1 6 & 32s coded with ls baud length db 36 db Zenith; ±2 off zenith in EW and NS directions

2 92 NDAN RADO & SPACE PHYS, APRL 21 difficult. The development of radars has solved this problem. With the help of MST radar, one can get vertical velocity directly with very good height and time resolution from which one can estimate divergence. This paper presents horizontal divergence observed in moderate to strong convection period for the first time using ndian MST radar. 2 System description and the data base Data used for the present study are obtained from the ndian MST radar located at Gadanki( l 3 SN, 9. E). The ndian MST radar is a highly sensitive phased-array radar, operating at 3 MHz. t consists of a phased array of 1 2 crossed three-element Yagi antennas occupying an area of 1 3x 1 3 m2, generating a radiation pattern with a beam of 3, a gain of 36 db and a side lobe level of -2 db. The MST radar system specifications are given in Table 1. Detailed system description of ndian MST radar system has been given by Rao et al.9 On 6 une 1 996, thunder storm occurred over MST radar site. A range time intensity plot observed on the same day is shown in Fig. 1. The data were collected and analysis was carried out for the convective event of 6 une The starting time of the event is 1 2 hrs 1ST and ending time is hrs 1ST. The time interval between each scan varies from 2 to min. 3 Methodology for horizontal divergence calculation Three largely independent methods, namely, the kinematic, adiabatic and the vorticity methods have db S c a l e. ". : :" -::=;::::: ' '. : :'" r::::i: ::::: - :;::';'::::.::=-...: " ' fl : n "... _....) -- :. 19..:«:; ] == == TME, hrs 1ST Fig. l -Range-time intensity plot observed on 6 une

3 NARAYANA RAO et al. : DYNAMCS ASSOCATED WTH TROPCAL MESOSCALE CONVECfVE SYSTEMS been used in the past to compute the vertical velocities. n this paper, kinematic method has been used with a different approach. Usually divergence is calculated by the grid method, using four meteorological stations to estimate the vertical velocities. Here, we have used vertical velocities obtained from ndian MST radar observations and calculated the divergence using the continuity equation. The continuity equation in cartesian coordinates is as follows: op + V.(pU ) = O ot... (1)... (2) op = ot op + v. op = ox oy and the conditions are : (U. (W. op (U ) _p o + p. ox oy oz oz or, Ow = O OV... (3) where, (-)ve D indicates convergence and (+)ve D indicates divergence, p is the density taken from nearest radiosonde station and w is the vertical velocity. Results and discussion.1 Spectral analysis air and the other for precipitation. By windowing, we separated the clear air echo and precipitation echo. So, in this study the vertical velocity is of air only and does not contain any hydro-meteors fall velocity..2 Vertical velocities in MCS Vertical velocity profiles obtained under the conditions of strong (6 une 1 996) convection are shown in Fig. 3. The time of observation is shown on the top of each profile. Figure 3(a) indicates the condition just before the start of the convection, Fig. 3 gives the sign of convection, and Fig. 3 [(d)-(h)] is during mature stage of convection for 6 une n mature stage the upward vertical velocity is reaching up to mls.!he downward velocity is about 3 mls with a peak near melting layer. Figure 3 [(i)-(j)] indicates dissipation stage of the MCS where velocity reduces to 1 mls. The downward motion is up to km and upward motion is from 9 km to top of the profiles in mature stage. Figure shows time-height plot of vertical velocity..3 Horizontal divergence in MCS Applying above conditions, Eq. (2) reduces to + 93 Figure 2[(a) and ] shows the spectral plot for 6 une Figure 2(a) shows the spectral plot corresponding to the clear air and Fig. 2 shows the spectra during the precipitation. n Fig. 2 two clear echoes can easily be seen-one corresponds to clear Figure [(a)-(j)] shows the vertical profiles of horizontal divergence calculated from the vertical velocity using continuity equation at different times during the convection on 6 une The time height plot of horizontal convergence and divergence for 6 une 1996 is also shown in Fig. 6[(a) and ]. Figure (a) indicates the event before the convection starts, while Fig. (j) gives sign of dissipation of MCS. Figure [-(g)] indicates the mature stage of MCS. From Fig. [(a)-(j)] it is observed that magnitude of horizontal divergence/convergence is about xl O- s- l, while the magnitude of horizontal divergence/convergence in the mature stage of MCS - is reaching up to x l O s- l. From Fig. 6[(a) and ] it can be seen that convergence is present from to 9 km and divergence is present from 9. km to the top of the plot, i.e. lower tropospheric convergence and upper tropospheric divergence persist during mature MCS. From Fig. 6[(a) and], we can estimate the exact time when the well developed tropical disturbance was present over MST radar site by observing the magnitude of horizontal divergence/convergence and vertical motion.. Turbulence due to a convective system Different methods have been used for estimating the energy dissipation rate from the STMST radar measurements. Here, we have adopted the method

4 NDAN RADO & SPACE PHYS. APRL () =.3 " -: 1.6 "-' 1. '-"" =: a. O(L DOPPu;R, Hz DOPPLER. Hz \.9, us.6 Fig. 2-Spectral plot observed on 6 une (a) during clear air and during precipitation :2(iST) 1 :2 (1ST (a) 1 l:36 1 :3 (1ST (d) (c) :QO(ST) (i) ) ) : +r-,-,-,..-rf+.r.,..,,-rri -t-n-,-,rr-r'-+-rr."...,...,.-l +r-.-,-,--ri ,..j +r-."'t't'1r-t-i+-. f-,-, l VERTCAL VELOCTY, m/s : 1 (ST) (j) B - ) l> +TTT...-T!'rh"""""'''''..-l - - Fig. 3-Vertical velocity profiles observed on 6 une during different stages of convection

5 NARAYANA RAO el al. : DYNAMCS ASSOCATED WTH TROPCAL MESOSCALE CONVECTVE SYSTEMS given by Cohn 1 to estimate the mean energy dissipation rate as follows: 1. where, () = 1 m (height resolution) y =. 1 (heat / momentum diffusion const)... () d- = Half power spectral width a= 1.6 (Kolmogorof const) Figure shows the time height vanatlon of eddy dissipation rate. From Fig. it can be seen that maximum c is near upper part of the cloud that is in connection with updraft. At 1 36 hrs 1ST very high values of the order. m2 s-3 are observed. Same approach gives, in relatively calm period, value of about 2- times lower than the one observed here. The values observed are in good agreement with the. values observed by Rao et at. mls S!!) 9 Summary and conclusions We have examined the structure of vertical velocity, horizontal divergence and turbulence associated with tropical MCS. t is observed that: TlMt hn 1ST Fig. -Time-height plot of vertical velocity 19 ' 1 ]1:9: " 1 :2:9 () ( 1 :3: 1ST 13 1 :39:3 1ST (g) (it) ) 1 9: 19:3 (i) D ( D $( -h-r-r-r--+-r--;:::::r.--r-l +-r-,-,r-r-''-r-,-,.--rl - +-r r--,-,-,--i +-r-,-,r-r-t-..--r-r--rl ----rr--.-+'--r--.--l HORZONTAL DVERGENCE ',CONVERGENCE, xl - S - 1 Fig. -Vertical profiles of horizontal divergence/convergence observed during the convection on 6 une 1 996

6 96 NDAN RADO & SPACE PHYS, APRL 21 Xl - S -1 o TME, h's 1ST :; O t 13 o TME. h's 1ST Fig. 6--T ime-height plot of horizontal (a) convergence and divergence observed on 6 une Zone of important energy dissipation is near the top of the cloud. (ii) Horizontal divergence/convergence as large as - 1 x l O s- was found on 6 une (iii) Lower tropospheric convergence and upper tropospheric divergence is present during the strong convection. (i) (iv) The upward vertical velocity is of the order - mls from to 1 6 km. (v) The downward vertical velocity is 2-3 rns from to km. This kind of study is very useful to study the fi ne scale dynamics of the upper part of the convective clouds.

7 9 NARA YANA RAO et al. : DYNAMCS ASSOCATED WTH TROPCAL MESOSCALE CONVECTVE SYSTEMS 2U E ;..... ". '..c::::.., "'" ".. ::. x 1 - m! s 6 : = 3 \.!) 1 2 :: T M E, hrs 1ST Fig. -Time-height variation o f eddy dissipation rate (t:) Acknowledgements The National MST Radar Facility (NMRF) has been set up jointly by the Council of Scientific and ndustrial Research, the Defence Research and Development Organization (DRDO), the Department of Environment (DOE) and the Department of Space (DOS) (nodal agency) of Government of ndia. The authors are thankful to UGC-SVU centre for MST Radar Applications, S V University, Tirupati, for providing necessary facility to carry out the research work. References Crochet M F Cuq. Ralph F M & Venkateswaran S V. Dyn Atmos Oceans (Netherlands), 1 ( 1 99). 2 Gramache F & Houze R A (r). Mon Weather Rev (USA), 1 1 ( 1 92) Houze R A (r). Meteorol Soc (apan). 6 ( 192) 396. Houze R A & Hobbs P V, Adv Geophys ( UK). 2 ( 1 92) 22. Zipser E, Appl Meteorol (USA). ( 1969) 99 6 Zipser E, Mon Weather Rev (USA), 1 ( 1 9) 1 6. Riehl H & Malkus S, Geophys ( UK), 6 ( 19) 3. ohnson R H & Young G S, Atmos Sci ( USA), ( 193) Rao P B, Radio Sci ( USA), 3 ( 1 99) Cohn S A. Atmos & Ocean Teclmol ( USA), 1 2 ( 1 99). 11 Narayana Rao D, Radio Sci ( USA), 32 ( 199) 1 3.

Retrieval of the vertical temperature profile of atmosphere from MST radar backscattered signal

Retrieval of the vertical temperature profile of atmosphere from MST radar backscattered signal Indian Journal of Radio & Space Physics Vol. 35, August 6, pp. 8-85 Retrieval of the vertical temperature profile of atmosphere from MST radar backscattered signal I M L Das 1, & Pramod Kumar 1 M N Saha

More information

October 1986 R. H. Johnson 721. Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems:

October 1986 R. H. Johnson 721. Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems: October 1986 R. H. Johnson 721 Lower-Tropospheric Warming and Drying in Tropical Mesoscale Convective Systems: Implications for the Problem of Cumulus Parameterization By Richard H. Johnson Department

More information

VHF/UHF radar observations of tropical mesoscale convective systems over southern India

VHF/UHF radar observations of tropical mesoscale convective systems over southern India VHF/UHF radar observations of tropical mesoscale convective systems over southern India K. Kishore Kumar, A. R. Jain, D. Narayana Rao To cite this version: K. Kishore Kumar, A. R. Jain, D. Narayana Rao.

More information

VHF radar echoes in the vicinity of tropopause during the passage of tropical cyclone: First observations from the Gadanki MST radar

VHF radar echoes in the vicinity of tropopause during the passage of tropical cyclone: First observations from the Gadanki MST radar JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd009014, 2008 VHF radar echoes in the vicinity of tropopause during the passage of tropical cyclone: First observations from the Gadanki MST

More information

Vertical Motion in Near-Equatorial Winter Monsoon Convection

Vertical Motion in Near-Equatorial Winter Monsoon Convection 682 Journal of the Meteorological Society of Japan Vol. 60, No. 2 Vertical Motion in Near-Equatorial Winter Monsoon Convection By Richard H. Johnson Department of Atmospheric Science, Colorado State University

More information

Seasonal variation of vertical eddy diffusivity in the troposphere, lower stratosphere and mesosphere over a tropical station

Seasonal variation of vertical eddy diffusivity in the troposphere, lower stratosphere and mesosphere over a tropical station Seasonal variation of vertical eddy diffusivity in the troposphere, lower stratosphere and mesosphere over a tropical station D. Narayana Rao, M. V. Ratnam, T. N. Rao, S. V. B. Rao To cite this version:

More information

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms 777 GROUNDSCHOOL 2018 Temperature, Stability, Fronts, & Thunderstorms The Atmosphere Heating Transfer of heat occurs thru Radiation Advection Convection Matter changes states due to the amount of heat

More information

Fine structure of vertical motion in the stratiform precipitation region observed by Equatorial Atmosphere Radar (EAR) in Sumatra, Indonesia

Fine structure of vertical motion in the stratiform precipitation region observed by Equatorial Atmosphere Radar (EAR) in Sumatra, Indonesia P6A.4 Fine structure of vertical motion in the stratiform precipitation region observed by Equatorial Atmosphere Radar (EAR) in Sumatra, Indonesia Noriyuki, NISHI*, Graduate School of Science, Kyoto University,

More information

Cloud Clusters and Large-Scale Vertical Motions

Cloud Clusters and Large-Scale Vertical Motions 396 Journal of the Meteorological Society of Japan Vol. 60, No. 1 Cloud Clusters and Large-Scale Vertical Motions in the Tropics By Robert A, Houze, Jr. Department of Atmospheric Sciences, University of

More information

Dynamics and Thermodynamics of Monsoon Cloud Systems Using Radars and Satellites

Dynamics and Thermodynamics of Monsoon Cloud Systems Using Radars and Satellites Dynamics and Thermodynamics of Monsoon Cloud Systems Using Radars and Satellites Kusuma G Rao Space sciences Indian Space Research Organization Bangalore India 1.Patterns in Cloud systems organization-large

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA Latent heating rate profiles at different tropical cyclone stages during 2008 Tropical Cyclone Structure experiment: Comparison of ELDORA and TRMM PR retrievals Myung-Sook Park, Russell L. Elsberry and

More information

MST radar observations of the Leonid meteor storm during

MST radar observations of the Leonid meteor storm during Indian Journal of Radio & Space Physics Vol 40 April 2011, pp 67-71 MST radar observations of the Leonid meteor storm during 1996-2007 N Rakesh Chandra 1,$,*, G Yellaiah 2 & S Vijaya Bhaskara Rao 3 1 Nishitha

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

For the operational forecaster one important precondition for the diagnosis and prediction of

For the operational forecaster one important precondition for the diagnosis and prediction of Initiation of Deep Moist Convection at WV-Boundaries Vienna, Austria For the operational forecaster one important precondition for the diagnosis and prediction of convective activity is the availability

More information

Chapter 14 Thunderstorm Fundamentals

Chapter 14 Thunderstorm Fundamentals Chapter overview: Thunderstorm appearance Thunderstorm cells and evolution Thunderstorm types and organization o Single cell thunderstorms o Multicell thunderstorms o Orographic thunderstorms o Severe

More information

A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines

A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines A more detailed and quantitative consideration of organized convection: Part I Cold pool dynamics and the formation of squall lines Note: Lecture notes presented here based on course Daily Weather Laboratory

More information

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET 2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET Peter A. Cook * and Ian A. Renfrew School of Environmental Sciences, University of East Anglia, Norwich, UK 1. INTRODUCTION 1.1

More information

VHF signal power suppression in stratiform and convective precipitation

VHF signal power suppression in stratiform and convective precipitation VHF signal power suppression in stratiform and convective precipitation A. J. Mcdonald, K. P. Monahan, D. A. Hooper, C. Gaffard To cite this version: A. J. Mcdonald, K. P. Monahan, D. A. Hooper, C. Gaffard.

More information

The Effect of Sea Spray on Tropical Cyclone Intensity

The Effect of Sea Spray on Tropical Cyclone Intensity The Effect of Sea Spray on Tropical Cyclone Intensity Jeffrey S. Gall, Young Kwon, and William Frank The Pennsylvania State University University Park, Pennsylvania 16802 1. Introduction Under high-wind

More information

Objectives of CPEA Project

Objectives of CPEA Project Observation System for Equatorial Convective Activities at Koto Tabang, Sumatra Coupling Processes in the Equatorial Atmosphere: CPEA T. Kozu*1, T. Shimomai*1, Y. Fujiyoshi*3, Y. Shibagaki*4, H. Hashiguchi*5,

More information

P11.2 COLLAPSE OF TRANSITIONING MESOSCALE CONVECTIVE SYSTEMS OFF THE COAST OF AFRICA

P11.2 COLLAPSE OF TRANSITIONING MESOSCALE CONVECTIVE SYSTEMS OFF THE COAST OF AFRICA P11.2 COLLAPSE OF TRANSITIONING MESOSCALE CONVECTIVE SYSTEMS OFF THE COAST OF AFRICA Amber E. Reynolds 1,3 *, Gerald Heymsfield 1, Gregory Jenkins 2, Christopher Weiss 3 1 NASA Goddard Space Flight Center,

More information

2.2 Sounding composite construction. 2.3 Vertical velocity retrieval

2.2 Sounding composite construction. 2.3 Vertical velocity retrieval 7.1 DROPSONDE DERIVED STRUCTURE OF MESOSCALE CONVECTIVE SYSTEMS OBSERVED DURING BAMEX James Correia Jr and R. W. Arritt ; Dept. of Agronomy, Iowa State University, Ames, IA 1. Introduction The Bow echo

More information

rrropospliere-stratospliere P,~cliange (]Juring rrropica[ Cyc[ones

rrropospliere-stratospliere P,~cliange (]Juring rrropica[ Cyc[ones Cliapter # 7 rrropospliere-stratospliere P,cliange (]Juring rrropica[ Cyc[ones 7.1. Introduction Dynamical, chemical and radiative coupling between the stratosphere and troposphere are among the many important

More information

Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes

Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes Photographs Todd Lindley Bright band associated with stratiform precipitation in a squall line system 1 Bright

More information

10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat

10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat 10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat Stephen R. Guimond Florida State University, Department of Meteorology and Center for Ocean-Atmospheric

More information

HAZARDOUS WEATHER 1. Dr. Julie Laity Geography 266

HAZARDOUS WEATHER 1. Dr. Julie Laity Geography 266 HAZARDOUS WEATHER 1 Dr. Julie Laity Geography 266 Violent Weather Thunderstorms Atmospheric turbulence Lightning and thunder Hail Derechos Tornadoes Tornado measurement and science Tropical Cyclones Hurricanes

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

1. INTRODUCTION. investigating the differences in actual cloud microphysics.

1. INTRODUCTION. investigating the differences in actual cloud microphysics. MICROPHYSICAL PROPERTIES OF DEVELOPING VERSUS NON-DEVELOPING CLOUD CLUSTERS DURING TROPICAL CYCLOGENESIS 4B.5 Nathan D. Johnson,* William C. Conant, and Elizabeth A. Ritchie Department of Atmospheric Sciences,

More information

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO

ture and evolution of the squall line developed over the China Continent. We made data analysis of the three Doppler radar observation during the IFO Simulation Experiment of Squall Line Observed in the Huaihe River Basin, China Kazuhisa Tusboki 1 and Atsushi Sakakibara 2 1 Hydrospheric Atmospheric Research Center, Nagoya University 2 Research Organization

More information

Diurnal variation of tropospheric temperature at a tropical station

Diurnal variation of tropospheric temperature at a tropical station Diurnal variation of tropospheric temperature at a tropical station K. Revathy, S. R. Prabhakaran Nayar, B. V. Krishna Murthy To cite this version: K. Revathy, S. R. Prabhakaran Nayar, B. V. Krishna Murthy.

More information

NOTES AND CORRESPONDENCE. On the Use of 50-MHz RASS in Thunderstorms

NOTES AND CORRESPONDENCE. On the Use of 50-MHz RASS in Thunderstorms 936 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 0 NOTES AND CORRESPONDENCE On the Use of 50-MHz RASS in Thunderstorms PETER T. MAY Bureau of Meteorology Research Centre, Melbourne, Victoria, Australia

More information

Secondary circulation within a tropical cyclone observed with L-band wind profilers

Secondary circulation within a tropical cyclone observed with L-band wind profilers Annales Geophysicae (2004) 22: 3951 3958 SRef-ID: 1432-0576/ag/2004-22-3951 European Geosciences Union 2004 Annales Geophysicae Secondary circulation within a tropical cyclone observed with L-band wind

More information

On the Potential of VHF Wind Profilers for Studying Convective Processes in the Tropics

On the Potential of VHF Wind Profilers for Studying Convective Processes in the Tropics On the Potential of VHF Wind Profilers for Studying Convective Processes in the Tropics Abstract In this paper we provide a set of examples to demonstrate the potential of VHF radar wind profilers for

More information

ERAD Enhancement of precipitation by liquid carbon dioxide seeding. Proceedings of ERAD (2002): c Copernicus GmbH 2002

ERAD Enhancement of precipitation by liquid carbon dioxide seeding. Proceedings of ERAD (2002): c Copernicus GmbH 2002 Proceedings of ERAD (2002): 150 154 c Copernicus GmbH 2002 ERAD 2002 Enhancement of precipitation by liquid carbon dioxide seeding K. Nishiyama 1, K. Wakimizu 2, Y. Suzuki 2, H. Yoshikoshi 2, and N. Fukuta

More information

Inner core dynamics: Eyewall Replacement and hot towers

Inner core dynamics: Eyewall Replacement and hot towers Inner core dynamics: Eyewall Replacement and hot towers FIU Undergraduate Hurricane Internship Lecture 4 8/13/2012 Why inner core dynamics is important? Current TC intensity and structure forecasts contain

More information

1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15

1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15 1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 15 The Effect of Vertical Air Motions on Rain Rates and Median Volume Diameter Determined from Combined UHF and VHF Wind Profiler Measurements

More information

ESCI 110: 2 s.h. Introduction to Earth Sciences Programs ESCI 322: 3 s.h. Environmental Hydrology ESCI 241: 4 s.h. Meteorology (G2, L)

ESCI 110: 2 s.h. Introduction to Earth Sciences Programs ESCI 322: 3 s.h. Environmental Hydrology ESCI 241: 4 s.h. Meteorology (G2, L) ESCI 110: 2 s.h. Introduction to Earth Sciences Programs General introduction to each of the earth sciences disciplines and to college life. 2 hrs. lec. Offered in fall. Restricted to earth sciences majors.

More information

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall

Lecture 8. Monsoons and the seasonal variation of tropical circulation and rainfall Lecture 8 Monsoons and the seasonal variation of tropical circulation and rainfall According to the second hypothesis, the monsoon is a manifestation of the seasonal variation of the tropical circulation

More information

Chapter 8 cont. Clouds and Storms. Spring 2018

Chapter 8 cont. Clouds and Storms. Spring 2018 Chapter 8 cont. Clouds and Storms Spring 2018 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

QUANTITATIVE PRECIPITATION ESTIMATION AND ERROR ANALYSIS WITH A UHF WIND PROFILING RADAR AND A TWO-DIMENSIONAL VIDEO DISDROMETER

QUANTITATIVE PRECIPITATION ESTIMATION AND ERROR ANALYSIS WITH A UHF WIND PROFILING RADAR AND A TWO-DIMENSIONAL VIDEO DISDROMETER P13B.6 1 QUANTITATIVE PRECIPITATION ESTIMATION AND ERROR ANALYSIS WITH A UHF WIND PROFILING RADAR AND A TWO-DIMENSIONAL VIDEO DISDROMETER Laura M. Kanofsky 1,, Phillip B. Chilson 1, Terry J. Schuur 2,

More information

8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures

8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures 8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures Yaping Li, Edward J. Zipser, Steven K. Krueger, and

More information

Meteorology 311. RADAR Fall 2016

Meteorology 311. RADAR Fall 2016 Meteorology 311 RADAR Fall 2016 What is it? RADAR RAdio Detection And Ranging Transmits electromagnetic pulses toward target. Tranmission rate is around 100 s pulses per second (318-1304 Hz). Short silent

More information

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL

P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL Preprints, 21 st Conference on Severe Local Storms 12-16 August 2002, San Antonio, Texas P10.1 TORNADOGENESIS IN A SIMULATED HP SUPERCELL 1. INTRODUCTION Catherine A. Finley * Department of Earth Sciences

More information

Mesoscale Convective Complexes (or Systems)

Mesoscale Convective Complexes (or Systems) Mesoscale Convective Complexes (or Systems) What is an MCC Mesoscale Convectiv Complexes (MCCs) are organized clusters of storms that have to meet some size and shape criteria: * -32C IR temp > 100,000

More information

Simulations of Midlatitude and Tropical Out-of-Cloud Convectively-Induced Turbulence

Simulations of Midlatitude and Tropical Out-of-Cloud Convectively-Induced Turbulence Simulations of Midlatitude and Tropical Out-of-Cloud Convectively-Induced Turbulence Katelyn Barber University of North Dakota Turbulence Impact Mitigation Workshop 2018 katelyn.barber@und.edu 1 Zovko-Rajak

More information

Vertical motion in the stratiform precipitation region observed with Equatorial Atmospheric Radar (EAR)

Vertical motion in the stratiform precipitation region observed with Equatorial Atmospheric Radar (EAR) Vertical motion in the stratiform precipitation region observed with Equatorial Atmospheric Radar (EAR) NISHI Noriyuki (Kyoto Univ.) with: M.K. Yamamoto, T. Shimomai, S. Mori, A. Hamada, S. Fukao SOWER

More information

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification

ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification ESCI 344 Tropical Meteorology Lesson 11 Tropical Cyclones: Formation, Maintenance, and Intensification References: A Global View of Tropical Cyclones, Elsberry (ed.) Global Perspectives on Tropical Cylones:

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China

Impact of different cumulus parameterizations on the numerical simulation of rain over southern China Impact of different cumulus parameterizations on the numerical simulation of rain over southern China P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Convective rain occurs over southern

More information

The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China

The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China The first tropospheric wind profiler observations of a severe typhoon over a coastal area in South China Lei Li, 1 Pak Wai Chan, 2 Honglong Yang, 1 Rong Zong, 1 Xia Mao, 1 Yin Jiang 1 and Hongbo Zhuang

More information

Characteristics of extreme convection over equatorial America and Africa

Characteristics of extreme convection over equatorial America and Africa Characteristics of extreme convection over equatorial America and Africa Manuel D. Zuluaga, K. Rasmussen and R. A. Houze Jr. Atmospheric & Climate Dynamics Seminar Department of Atmospheric Sciences, University

More information

Mentor: Edward Zipser Professor, Atmospheric Sciences University of Utah. Presenter: Petra Miku

Mentor: Edward Zipser Professor, Atmospheric Sciences University of Utah. Presenter: Petra Miku Presenter: Petra Miku Mentor: Edward Zipser Professor, Atmospheric Sciences University of Utah Split Workshop in Atmospheric Physics and Oceanography, May 22-28, 2011 Split, Croatia 1. Part I: convective

More information

Chapter 8 cont. Clouds and Storms

Chapter 8 cont. Clouds and Storms Chapter 8 cont. Clouds and Storms Spring 2007 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

Simultaneous MST radar and radiosonde measurements at Gadanki (13.5 N, 79.2 E) 2. Determination of various atmospheric turbulence parameters

Simultaneous MST radar and radiosonde measurements at Gadanki (13.5 N, 79.2 E) 2. Determination of various atmospheric turbulence parameters RADIO SCIENCE, VOL. 38, NO. 1, 1014, doi:10.1029/2000rs002528, 2003 Simultaneous MST radar and radiosonde measurements at Gadanki (13.5 N, 79.2 E) 2. Determination of various atmospheric turbulence parameters

More information

Governing Equations and Scaling in the Tropics

Governing Equations and Scaling in the Tropics Governing Equations and Scaling in the Tropics M 1 ( ) e R ε er Tropical v Midlatitude Meteorology Why is the general circulation and synoptic weather systems in the tropics different to the those in the

More information

The Earth System - Atmosphere III Convection

The Earth System - Atmosphere III Convection The Earth System - Atmosphere III Convection Thunderstorms 1. A thunderstorm is a storm that produces lightning (and therefore thunder) 2. Thunderstorms frequently produce gusty winds, heavy rain, and

More information

SEVERE AND UNUSUAL WEATHER

SEVERE AND UNUSUAL WEATHER SEVERE AND UNUSUAL WEATHER Basic Meteorological Terminology Adiabatic - Referring to a process without the addition or removal of heat. A temperature change may come about as a result of a change in the

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

P13A.7 Multi-pass objective analyses of radar data: Preliminary results

P13A.7 Multi-pass objective analyses of radar data: Preliminary results P13A.7 Multi-pass objective analyses of radar data: Preliminary results MARIO MAJCEN, PAUL MARKOWSKI, AND YVETTE RICHARDSON Department of Meteorology, Pennsylvania State University, University Park, PA

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

Is Spectral Processing Important for Future WSR-88D Radar?

Is Spectral Processing Important for Future WSR-88D Radar? Is Spectral Processing Important for Future WSR-88D Radar? Carlos A. Rodríguez Rivera University of Puerto Rico, Mayagüez Campus Mentor: Dr. Robert Palmer University of Oklahoma Abstract: Processing speed

More information

1 of 7 Thunderstorm Notes by Paul Sirvatka College of DuPage Meteorology. Thunderstorms

1 of 7 Thunderstorm Notes by Paul Sirvatka College of DuPage Meteorology. Thunderstorms 1 of 7 Thunderstorm Notes by Paul Sirvatka College of DuPage Meteorology Thunderstorms There are three types of thunderstorms: single-cell (or air mass) multicell (cluster or squall line) supercell Although

More information

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff

Dynamical System Approach to Organized Convection Parameterization for GCMs. Mitchell W. Moncrieff Dynamical System Approach to Organized Convection Parameterization for GCMs Mitchell W. Moncrieff Atmospheric Modeling & Predictability Section Climate & Global Dynamics Laboratory NCAR Year of Tropical

More information

Atmospheric circulation during active and break phases of Indian summer monsoon: A study using MST radar at Gadanki (13.5 N, 79.

Atmospheric circulation during active and break phases of Indian summer monsoon: A study using MST radar at Gadanki (13.5 N, 79. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008jd010341, 2008 Atmospheric circulation during active and break phases of Indian summer monsoon: A study using MST radar at Gadanki (13.5 N, 79.2

More information

30th Conference on Hurricanes and Tropical Meteorology, April 2012, Ponte Vedra Beach, Florida

30th Conference on Hurricanes and Tropical Meteorology, April 2012, Ponte Vedra Beach, Florida Characteristics of Extreme Summer Convection in the Tropical Americas Manuel ld D. Zuluaga and Robert ta A. Houze Jr. University of Washington 30th Conference on Hurricanes and Tropical Meteorology, 15

More information

ATS 351, Spring 2010 Lab #11 Severe Weather 54 points

ATS 351, Spring 2010 Lab #11 Severe Weather 54 points ATS 351, Spring 2010 Lab #11 Severe Weather 54 points Question 1 (10 points): Thunderstorm development a) Sketch and describe the stages of development of a single cell thunderstorm. About how long does

More information

The HIAPER Cloud Radar Performance and Observations During Winter Storm Observations of a Nor easter

The HIAPER Cloud Radar Performance and Observations During Winter Storm Observations of a Nor easter The HIAPER Cloud Radar Performance and Observations During Winter Storm Observations of a Nor easter S. Ellis 1*, R. Rauber 2, P. Tsai 1, J. Emmett 1, E. Loew 1, C. Burghart 1, M. Dixon 1, J. Vivekanandan

More information

Convective scheme and resolution impacts on seasonal precipitation forecasts

Convective scheme and resolution impacts on seasonal precipitation forecasts GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2078, doi:10.1029/2003gl018297, 2003 Convective scheme and resolution impacts on seasonal precipitation forecasts D. W. Shin, T. E. LaRow, and S. Cocke Center

More information

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA Advances in Geosciences Vol. 16: Atmospheric Science (2008) Eds. Jai Ho Oh et al. c World Scientific Publishing Company LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING

More information

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015

PALM - Cloud Physics. Contents. PALM group. last update: Monday 21 st September, 2015 PALM - Cloud Physics PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: Monday 21 st September, 2015 PALM group PALM Seminar 1 / 16 Contents Motivation Approach

More information

P1.17 SENSITIVITY OF THE RETRIEVAL OF STRATOCUMULUS CLOUD LIQUID WATER AND PRECIPITATION FLUX TO DOPPLER RADAR PARAMETERS

P1.17 SENSITIVITY OF THE RETRIEVAL OF STRATOCUMULUS CLOUD LIQUID WATER AND PRECIPITATION FLUX TO DOPPLER RADAR PARAMETERS P1.17 SENSITIVITY OF THE RETRIEVAL OF STRATOCUMULUS CLOUD LIQUID WATER AND PRECIPITATION FLUX TO DOPPLER RADAR PARAMETERS Yefim L. Kogan*, Zena N. Kogan, and David B. Mechem Cooperative Institute for Mesoscale

More information

Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar

Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar Precipitation estimate of a heavy rain event using a C-band solid-state polarimetric radar Hiroshi Yamauchi 1, Ahoro Adachi 1, Osamu Suzuki 2, Takahisa Kobayashi 3 1 Meteorological Research Institute,

More information

WIND PROFILER NETWORK OF JAPAN METEOROLOGICAL AGENCY

WIND PROFILER NETWORK OF JAPAN METEOROLOGICAL AGENCY WIND PROFILER NETWORK OF JAPAN METEOROLOGICAL AGENCY Masahito Ishihara Japan Meteorological Agency CIMO Expert Team on Remote Sensing Upper-Air Technology and Techniques 14-17 March, 2005 Geneva, Switzerland

More information

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS,

More information

Lectures on Tropical Cyclones

Lectures on Tropical Cyclones Lectures on Tropical Cyclones Chapter 1 Observations of Tropical Cyclones Outline of course Introduction, Observed Structure Dynamics of Mature Tropical Cyclones Equations of motion Primary circulation

More information

CHAPTER 11 THUNDERSTORMS AND TORNADOES MULTIPLE CHOICE QUESTIONS

CHAPTER 11 THUNDERSTORMS AND TORNADOES MULTIPLE CHOICE QUESTIONS CHAPTER 11 THUNDERSTORMS AND TORNADOES MULTIPLE CHOICE QUESTIONS 1. A thunderstorm is considered to be a weather system. a. synoptic-scale b. micro-scale c. meso-scale 2. By convention, the mature stage

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

Critical phenomena in atmospheric precipitation Supplementary Information

Critical phenomena in atmospheric precipitation Supplementary Information Critical phenomena in atmospheric precipitation Supplementary Information Ole Peters and J. David Neelin Contents Supplementary Figures and Legends See sections in which supplementary figures are referenced.

More information

Effects Of Cumulus Convection On Rapidly Intensifying Cyclones

Effects Of Cumulus Convection On Rapidly Intensifying Cyclones Effects Of Cumulus Convection On Rapidly Intensifying Cyclones M.K. Yau and R. R. Rogers Department of Atmospheric and Oceanic Sciences McGill University 805 Sherbrooke St. West, Montreal Quebec, Canada

More information

Mesoscale Convective Systems in the Western Mediterranean Rigo, T.(1), and M. Berenguer (2)

Mesoscale Convective Systems in the Western Mediterranean Rigo, T.(1), and M. Berenguer (2) Mesoscale Convective Systems in the Western Mediterranean Rigo, T.(1), and M. Berenguer (2) (1) Servei Meteorologic de Catalunya, Barcelona (2) Centre of Applied Research in Hydrometeorology, Universitat

More information

Kenneth L. Pryor* and Gary P. Ellrod Center for Satellite Applications and Research (NOAA/NESDIS) Camp Springs, MD

Kenneth L. Pryor* and Gary P. Ellrod Center for Satellite Applications and Research (NOAA/NESDIS) Camp Springs, MD P1.57 GOES WMSI PROGRESS AND DEVELOPMENTS Kenneth L. Pryor* and Gary P. Ellrod Center for Satellite Applications and Research (NOAA/NESDIS) Camp Springs, MD 1. INTRODUCTION A multi-parameter index has

More information

Robert Houze University of Washington (with contributions from B. Smull)

Robert Houze University of Washington (with contributions from B. Smull) Robert Houze University of Washington (with contributions from B. Smull) Winter MONEX Summer MONEX Presented at: International Conference on MONEX and its Legacy, 3-7 Feb 2005, New Delhi Johnson & Houze

More information

Estimation of turbulence parameters in the lower atmosphere from MST radar observations

Estimation of turbulence parameters in the lower atmosphere from MST radar observations Q. J. R. Meteorol. Soc. (2004), 10, pp. 5 4 doi: 10.5/qj.0.8 Estimation of turbulence parameters in the lower atmosphere from MST radar observations By K. SATHEESAN 1 and B. V. KRISHNA MURTHY 2 1 Department

More information

Numerical Simulation of a Severe Thunderstorm over Delhi Using WRF Model

Numerical Simulation of a Severe Thunderstorm over Delhi Using WRF Model International Journal of Scientific and Research Publications, Volume 5, Issue 6, June 2015 1 Numerical Simulation of a Severe Thunderstorm over Delhi Using WRF Model Jaya Singh 1, Ajay Gairola 1, Someshwar

More information

A Case Study of Heavy Rain in Owase Area

A Case Study of Heavy Rain in Owase Area 32 Journal of the Meteorological Society of Japan Vol. 54, No. 1 A Case Study of Heavy Rain in Owase Area By Takao Takeda, Noriaki Moriyama and Yasunobu Iwasaka Water Research Institute, Nagoya University,

More information

Role of Low Level Jetstream in Intense Monsoon Rainfall episodes over the West Coast of India

Role of Low Level Jetstream in Intense Monsoon Rainfall episodes over the West Coast of India Role of Low Level Jetstream in Intense Monsoon Rainfall episodes over the West Coast of India Dr. P.V. Joseph Professor Emeritus Department of Atmospheric Sciences Cochin University of Science and Technology

More information

Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5 N, 79.2 E)

Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5 N, 79.2 E) Annales Geophysicae (2001) 19: 985 990 c European Geophysical Society 2001 Annales Geophysicae Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5 N, 79.2 E) M. N. Sasi and V. Deepa

More information

Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas

Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas Vertical wind shear in relation to frequency of Monsoon Depressions and Tropical Cyclones of Indian Seas Prince K. Xavier and P.V. Joseph Department of Atmospheric Sciences Cochin University of Science

More information

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING 13.6 Tsutomu Takahashi* University of Hawaii, Honolulu, Hawaii Kazunori Shimura JFE Techno-Research

More information

The TRMM Precipitation Radar s View of Shallow, Isolated Rain

The TRMM Precipitation Radar s View of Shallow, Isolated Rain OCTOBER 2003 NOTES AND CORRESPONDENCE 1519 The TRMM Precipitation Radar s View of Shallow, Isolated Rain COURTNEY SCHUMACHER AND ROBERT A. HOUZE JR. Department of Atmospheric Sciences, University of Washington,

More information

Chapter 3 Convective Dynamics

Chapter 3 Convective Dynamics Chapter 3 Convective Dynamics Photographs Todd Lindley 3.2 Ordinary or "air-mass storm 3.2.1. Main Characteristics Consists of a single cell (updraft/downdraft pair) Forms in environment characterized

More information

8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES. Miami, FL. Miami, FL

8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES. Miami, FL. Miami, FL 8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES Robert Rogers 1, Sylvie Lorsolo 2, Paul Reasor 1, John Gamache 1, Frank Marks 1 1 NOAA/AOML Hurricane Research

More information

Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach. Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS)

Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach. Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS) Thunderstorm Downburst Prediction: An Integrated Remote Sensing Approach Ken Pryor Center for Satellite Applications and Research (NOAA/NESDIS) Topics of Discussion Thunderstorm Life Cycle Thunderstorm

More information

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS)

Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment. Liu and Moncrieff (2017 JAS) Shear-Parallel Mesoscale Convective Systems in a Moist Low- Inhibition Mei-Yu Front Environment Liu and Moncrieff (2017 JAS) Introduction Balance of lower-tropospheric wind shear and strength of evaporation-generated

More information

Researcher. Department of Atmospheric and Oceanic Sciences. University of Wisconsin-Madison W. Dayton Street, Madison, WI 53706

Researcher. Department of Atmospheric and Oceanic Sciences. University of Wisconsin-Madison W. Dayton Street, Madison, WI 53706 Researcher Department of Atmospheric and Oceanic Sciences University of Wisconsin-Madison 1225 W. Dayton Street, Madison, WI 53706 http://www.aos.wisc.edu/~meteor75 rowe1@wisc.edu PUBLICATIONS Rowe, S.

More information

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica S. Argentini, I. Pietroni,G. Mastrantonio, A. Viola, S. Zilitinchevich ISAC-CNR Via del Fosso del Cavaliere 100,

More information

MST Radar Observations of Gravity Waves and Turbulence near Thunderstorms

MST Radar Observations of Gravity Waves and Turbulence near Thunderstorms 98 JOURNAL OF APPLIED METEOROLOGY VOLUME 41 MST Radar Observations of Gravity Waves and Turbulence near Thunderstorms ANTHONY R. HANSEN, GREGORY D. NASTROM, AND JASON A. OTKIN* Department of Earth Sciences,

More information

The history of Convection According to Betts and Miller

The history of Convection According to Betts and Miller The history of Convection According to Betts and Miller A.K. Betts http://alanbetts.com Martin Miller Symposium Convection in the Earth System ECMWF 6 January, 2011 Early Years July 1969: Martin & Alan

More information

Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia

Mass-flux characteristics of tropical cumulus clouds from wind profiler observations at Darwin, Australia Manuscript (non-latex) Click here to download Manuscript (non-latex): Submitted Version.docx 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Mass-flux characteristics

More information