Cloud Droplet Growth by Condensation and Aggregation EPM Stratocumulus and Arctic Stratocumulus

Size: px
Start display at page:

Download "Cloud Droplet Growth by Condensation and Aggregation EPM Stratocumulus and Arctic Stratocumulus"

Transcription

1 Cloud Droplet Growth by Condensation and Aggregation EPM Stratocumulus and Arctic Stratocumulus US Department of Energy, ARM

2 Typical EPMS Characteristics Altitude: ~ 2 km Depth: 1-2 km Typically cooling clouds due to contribution to shortwave albedo Strong diurnal cycle Published by AAAS J M Creamean et al. Science 2013;339:

3 Ship-based Observations of the Diurnal Cycle of Southeast Pacific Marine Stratocumulus Clouds and Precipitation Aim to resolve complex diurnal processes that define EPMS Using meteorological data from ship-based study Provides several cloud-droplet study inputs: Burleyson, C. et al. Ship-Based Observations of the Diurnal Cycle of Southeast Pacific Marine Stratocumulus Clouds and Precipitation (2013). doi: /jas-d

4 The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface Layer and Cloud-Top Inversion Layer Moisture Sources Explores relation of radiative properties to moisture source (inversions, ice, presence of liquid cloud water above cloud top) Using observations collected during field campaign in Barrow, Alaska McFarquhar et al Provides several cloud-droplet study inputs: De, I. J. S. The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to SurfaceLayer and Cloud-Top Inversion-Layer Moisture Sources (2013). doi: /jasd

5 Drizzle and likelihood of precipitation Figure 3 from Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat Anita D Rapp et al 2013 Environ. Res. Lett doi: / /8/1/014027

6 EPMS Model K: Heat Conduction Term D: Diffusivity term L: Latent Heat ρl: Liquid Water Density ρ: Ice Crystal Density R: Gas Constant e: Saturation Pressure S: Supersaturation κ: Thermal Conductivity Dv: Water Vapor Diffusivity C: Morphological multiplier

7 Modeling Assumptions Temperature in EPMS Does not vary much spatially T < 5 Saturation Pressure Varies with Temperature Variance is ignored due to small spatial range Thermal conductivity and Water Vapor Diffusivity Small changes with temperature Other condensing vapors ignored due to small availability Morphology of droplet Assumed Spherical Upwelling and Downwelling negligible Water Vapor Mass Mixing Ratio Assumed constant Ice Crystal Morphology Assumed Spherical Ice Crystal Density Assumed Constant

8 Arctic Stratus Model R: Snowflake Radius r: Aggregate water vapor radius u T : Terminal Velocity n: Particle Size Distribution E: Collection Efficiency w l : Liquid Water Mixing Ratio ρ l : Snowflake Density ρ a : Air Density c p : Specific Heat L li :Latent heat Γ d : Dry adiabatic lapse rate Γ s : Saturated adiabatic lapse rate u z : Upwelling velocity

9 Arctic Stratus Modeling Assumptions Terminal Velocities Approximated difference of 1 m/s Collection Efficiency Assumed perfect Upwelling and Downwelling ignored, though not negligible Snowball Density Assumed incompressible Size Distribution Negligible at large radius Use Forward model to describe discrepancy

10 Results Model evaluated growth rates of cloud droplets in EPMS and AS clouds Final radius held constant Also, the growth rates of snowflakes due to aggregation

11 Final droplet size held constant in EPMS cloud

12 Results of snowflake growth Growth depends on both mixing ratio (amount of water vapor) and initial size

13 Final droplet size held constant in AS cloud (258 K) Usually takes 15 to 30 minutes for snow crystals. Growth solely depends on S values

14 Example of seeding in AS clouds

15 Discussion Results display relationship of growth rate with supersaturation and radius increase. T and e s held constant Overall, condensational growth (EPMS) occurs ~5 to 10 times faster than accretion growth (AS) AS clouds do not depend on T Model results have implications for geoengineering Cloud seeding Creating heavier droplets (larger CCN) But what about the indirect effect (Twomey effect)?

Clouds on Mars Cloud Classification

Clouds on Mars Cloud Classification Lecture Ch. 8 Cloud Classification Descriptive approach to clouds Drop Growth and Precipitation Processes Microphysical characterization of clouds Complex (i.e. Real) Clouds Examples Curry and Webster,

More information

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu Chapter 7: Precipitation Processes From: Introduction to Tropical Meteorology, 1st Edition, Version 1.1.2, Produced by the COMET Program Copyright 2007-2008, 2008, University Corporation for Atmospheric

More information

Chapter 7 Precipitation Processes

Chapter 7 Precipitation Processes Chapter 7 Precipitation Processes Chapter overview: Supersaturation and water availability Nucleation of liquid droplets and ice crystals Liquid droplet and ice growth by diffusion Collision and collection

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

Climate Dynamics (PCC 587): Feedbacks & Clouds

Climate Dynamics (PCC 587): Feedbacks & Clouds Climate Dynamics (PCC 587): Feedbacks & Clouds DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 6: 10-14-13 Feedbacks Climate forcings change global temperatures directly

More information

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez Mid High Latitude Cirrus Precipitation Processes Jon Sauer, Dan Crocker, Yanice Benitez Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA *To whom correspondence

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere.

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere. Prentice Hall EARTH SCIENCE Tarbuck Lutgens Water s Changes of State 1. Precipitation is any form of water that falls from a cloud. a. Examples: Snow, rain, hail, sleet 3 States of matter of water: 1.

More information

Weather, Atmosphere and Meteorology

Weather, Atmosphere and Meteorology S c i e n c e s Weather, Atmosphere and Meteorology Key words: Atmosphere, Ozone, Water vapor, solar radiation, Condensation, Evaporation, Humidity, Dew-Point Temperature, Cirrus Clouds, Stratus Clouds,

More information

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding Chapter 7: Precipitation Processes Precipitations Water Vapor Saturated Need cloud nuclei Cloud Droplet formed around Cloud Nuclei Growth of Cloud Droplet Forms of Precipitations Cloud Seeding Precipitation

More information

Bell Ringer. 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder?

Bell Ringer. 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder? Bell Ringer 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder? Cloud Notes What are clouds? A cloud is made up of tiny water droplets and/or

More information

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc. NATS 1750 Lecture Wednesday 28 th November 2012 Processes that lift air Orographic lifting Elevated terrains act as barriers Result can be a rainshadow desert Frontal wedging Cool air acts as a barrier

More information

PRECIPITATION PROCESSES

PRECIPITATION PROCESSES PRECIPITATION PROCESSES Loknath Adhikari This summary deals with the mechanisms of warm rain processes and tries to summarize the factors affecting the rapid growth of hydrometeors in clouds from (sub)

More information

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei Warm Cloud Processes Dr. Christopher M. Godfrey University of North Carolina at Asheville Warm clouds lie completely below the 0 isotherm 0 o C Some definitions Liquid water content (LWC) Amount of liquid

More information

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1)

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1) PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio

More information

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived From Ground-Based AERI Observations Dave Turner University of Wisconsin-Madison Pacific Northwest National Laboratory 8 May 2003

More information

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 17 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff Skills Worksheet Directed Reading B Section: Water in the Air 1. What do we call the condition of the atmosphere at a certain time and place? a. the water cycle b. weather c. climate d. precipitation THE

More information

Chapter 7. Water and Atmospheric Moisture. Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog

Chapter 7. Water and Atmospheric Moisture. Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog Chapter 7 Water and Atmospheric Moisture Robert W. Christopherson Charlie Thomsen Water kept both the terrestrial and marine ecosystems closely linked with the atmosphere. (1) Air carries water vapor and

More information

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Stanley C. Hatfield Southwestern Illinois College Changes of state of water, H 2 O Water is the only substance in atmosphere that exists

More information

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc.

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc. Chapter 5: Forms of Condensation and Precipitation Water vapor's role in the Earth's weather is major. Its the product of evaporation. It is lifted up, condenses and forms clouds. It is also a greenhouse

More information

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops: Precipitation is any form of water that falls from a cloud and reaches the ground. How do cloud drops grow? Chapter 7 When air is saturated with respect to a flat surface it is unsaturated with respect

More information

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp ); 10 Precipitation Learning Goals After studying this chapter, students should be able to: 1. describe the two methods by which cloud droplets can grow to produce precipitation (pp. 232 236); 2. distinguish

More information

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN Chapter 8 - Precipitation Rain Drops, Cloud Droplets, and CCN Recall the relative sizes of rain drops, cloud drops, and CCN: raindrops - 2000 μ m = 2 mm fall at a speed of 4-5 ms -1 cloud drops - 20 μ

More information

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting Precipitation AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Precipitation formation Rain Ice Lecture 14 Oct 11 2018 1 Cloud Development: Orographic Lifting

More information

Warm Rain Precipitation Processes

Warm Rain Precipitation Processes Warm Rain Precipitation Processes Cloud and Precipitation Systems November 16, 2005 Jonathan Wolfe 1. Introduction Warm and cold precipitation formation processes are fundamentally different in a variety

More information

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting 2/3/2014 Orographic Lifting Processes That Lift Air Frontal Wedging A front is the boundary between two adjoining air masses having contrasting characteristics. Convergence and Localized Convective Lifting

More information

Atmospheric Moisture and Precipitation

Atmospheric Moisture and Precipitation Atmospheric Water Atmospheric Moisture and Precipitation Properties of Water The Hydrosphere and the Hydrologic Cycle Humidity The Adiabatic Processes Clouds Precipitation Air Quality Main topics for today

More information

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above.

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above. Hilo 9/19/06 2:00 am HST Td T Trade wind inversion is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above. 1 Mountain/lee waves in a stable

More information

The atmosphere s water

The atmosphere s water The atmosphere s water Atmospheric Moisture and Precipitation Properties of Water The Hydrosphere and the Hydrologic Cycle Humidity The Adiabatic Process Clouds Precipitation Air Quality Main points for

More information

Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide

Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Name: Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Rating Before Learning Goals Rating After 1 2 3 4 Describe weather. 1 2 3 4 1 2 3 4 List and define the variables used to describe weather.

More information

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics Wojciech Grabowski National Center for Atmospheric Research, Boulder, Colorado parameterization

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1 Climate Modeling Lecture 8 Radiative-Convective Models Manabe and Strickler (1964) Course Notes chapter 5.1 The Hydrological Cycle Hadley Circulation Prepare for Mid-Term (Friday 9 am) Review Course Notes

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas INTRODUCTION TO ATMOSPHERIC MOISTURE Atmospheric Moisture The Nature of Water The Hydrologic Cycle Evaporation Measures of Humidity Condensation The Buoyancy of Air Precipitation

More information

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius

In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius In Situ Comparisons with the Cloud Radar Retrievals of Stratus Cloud Effective Radius A. S. Frisch and G. Feingold Cooperative Institute for Research in the Atmosphere National Oceanic and Atmospheric

More information

INTRODUCTION TO METEOROLOGY PART ONE SC 213 MAY 21, 2014 JOHN BUSH

INTRODUCTION TO METEOROLOGY PART ONE SC 213 MAY 21, 2014 JOHN BUSH INTRODUCTION TO METEOROLOGY PART ONE SC 213 MAY 21, 2014 JOHN BUSH WEATHER PATTERNS Extratropical cyclones (low pressure core) and anticyclones (high pressure core) Cold fronts and warm fronts Jet stream

More information

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km Clouds and Climate Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few cm/sec.

More information

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th.

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th. Chapter 5: Forms of Condensation and Precipitation The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! A cloud is a visible

More information

Diabatic Processes. Diabatic processes are non-adiabatic processes such as. entrainment and mixing. radiative heating or cooling

Diabatic Processes. Diabatic processes are non-adiabatic processes such as. entrainment and mixing. radiative heating or cooling Diabatic Processes Diabatic processes are non-adiabatic processes such as precipitation fall-out entrainment and mixing radiative heating or cooling Parcel Model dθ dt dw dt dl dt dr dt = L c p π (C E

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

Chapter 5. Atmospheric Moisture

Chapter 5. Atmospheric Moisture Chapter 5 Atmospheric Moisture hydrologic cycle--movement of water in all forms between earth & atmosphere Humidity: amount of water vapor in air vapor pressure saturation vapor pressure absolute humidity

More information

Clouds, Haze, and Climate Change

Clouds, Haze, and Climate Change Clouds, Haze, and Climate Change Jim Coakley College of Oceanic and Atmospheric Sciences Earth s Energy Budget and Global Temperature Incident Sunlight 340 Wm -2 Reflected Sunlight 100 Wm -2 Emitted Terrestrial

More information

Snow Microphysics and the Top-Down Approach to Forecasting Winter Weather Precipitation Type

Snow Microphysics and the Top-Down Approach to Forecasting Winter Weather Precipitation Type Roger Vachalek Journey Forecaster National Weather Service Des Moines, Iowa www.snowcrystals.com Why is Snow Microphysics Important? Numerical Prediction Models better forecast areas of large scale forcing

More information

a. Air is more dense b. Associated with cold air (more dense than warm air) c. Associated with sinking air

a. Air is more dense b. Associated with cold air (more dense than warm air) c. Associated with sinking air Meteorology 1. Air pressure the weight of air pressing down on Earth 2. Temperature and altitude determine air pressure 3. The more air particles are present, the more air density or pressure exists 4.

More information

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth.

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth. Meteorology I. The Atmosphere - the thin envelope of gas that surrounds the earth. A. Atmospheric Structure - the atmosphere is divided into five distinct layers that are based on their unique characteristics.

More information

1. Droplet Growth by Condensation

1. Droplet Growth by Condensation 1. Droplet Growth by Condensation It was shown before that a critical size r and saturation ratio S must be exceeded for a small solution droplet to become a cloud droplet. Before the droplet reaches the

More information

Atmospheric Basics Atmospheric Composition

Atmospheric Basics Atmospheric Composition Atmospheric Basics Atmospheric Composition Air is a combination of many gases, each with its own unique characteristics. About 99 percent of the atmosphere is composed of nitrogen and oxygen, with the

More information

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d.

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. Chapter-6 Multiple Choice Questions 1. The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. deposition 2. The movement of water among the great global

More information

Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate

Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate Darrel Baumgardner PhD. Droplet Measurement Technologies February 18-22 3:30-4:30 pm break

More information

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006 ATS 351 Lab 7 Precipitation March 7, 2006 Droplet Growth by Collision and Coalescence Growth by condensation alone takes too long ( 15 C -) Occurs in clouds with tops warmer than 5 F Greater the speed

More information

P1.61 Impact of the mass-accomodation coefficient on cirrus

P1.61 Impact of the mass-accomodation coefficient on cirrus P1.61 Impact of the mass-accomodation coefficient on cirrus Robert W. Carver and Jerry Y. Harrington Department of Meteorology, Pennsylvania State University, University Park, PA 1. Introduction Recent

More information

Water in the Air. Pages 38-45

Water in the Air. Pages 38-45 Water in the Air Pages 38-45 Quick Write What is the water cycle? Draw and label a diagram of the water cycle. Chapter 2, Section 1 Does this look familiar? Please open your text to page 38 and copy and

More information

1. Water Vapor in Air

1. Water Vapor in Air 1. Water Vapor in Air Water appears in all three phases in the earth s atmosphere - solid, liquid and vapor - and it is one of the most important components, not only because it is essential to life, but

More information

8. Clouds and Climate

8. Clouds and Climate 8. Clouds and Climate 1. Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Meteorology Clouds Photochemistry Atmospheric Escape EAS 4803/8803 - CP 20:1 Cloud formation Saturated Vapor Pressure: Maximum amount of water vapor partial

More information

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 About Water on the Earth: The Hydrological Cycle Review 3-states of water, phase change and Latent Heat Indices of Water Vapor Content in the

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 04 Lecture 07. Peter Lynch VIS WATER IN THE ATMOSPHERE MAPH 10050

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 04 Lecture 07. Peter Lynch VIS WATER IN THE ATMOSPHERE MAPH 10050 Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

Why Is the Mountain Peak Cold? Lecture 7: Air cools when it rises. Vertical Thermal Structure. Three Things Need To Be Explained

Why Is the Mountain Peak Cold? Lecture 7: Air cools when it rises. Vertical Thermal Structure. Three Things Need To Be Explained Lecture 7: Air cools when it rises Air expands as it rises Air cools as it expands Air pressure Lapse rates Why Is the Mountain Peak Cold? Sunlight heats the atmosphere from below Convection occurs and

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Characteristics of Water solid state at 0 o C or below (appearing as ice, snow, hail and ice crystals) liquid state between 0 o C and 100 o C (appearing as rain and cloud droplets)

More information

Precipitation. AT350: Ahrens Chapter 8

Precipitation. AT350: Ahrens Chapter 8 Precipitation AT350: Ahrens Chapter 8 Precipitation Formation How does precipitation form from tiny cloud drops? Warm rain process The Bergeron (ice crystal) process Most important at mid and northern

More information

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative)

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative) Introduction Atmospheric aerosols affect the cloud mycrophysical structure & formation (observations, numerical studies) An increase of the aerosol particles: - increases CCN concentrations - decreases

More information

Graupel and Hail Growth

Graupel and Hail Growth Graupel and Hail Growth I. Growth of large ice particles In this section we look at some basics of graupeln and hail growth. Important components of graupeln and hail growth models include production of

More information

Aerosol Effects on Water and Ice Clouds

Aerosol Effects on Water and Ice Clouds Aerosol Effects on Water and Ice Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Contributions from Johann Feichter, Johannes Hendricks,

More information

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside!

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside! Air stability About clouds Precipitation A mass of moist, stable air gliding up and over these mountains condenses into lenticular clouds. Fig. 5-CO, p.110 air in unstable equilibrium will move--up/down

More information

Warm rain variability and its association with cloud mesoscalestructure t and cloudiness transitions. Photo: Mingxi Zhang

Warm rain variability and its association with cloud mesoscalestructure t and cloudiness transitions. Photo: Mingxi Zhang Warm rain variability and its association with cloud mesoscalestructure t and cloudiness transitions Robert Wood, Universityof Washington with help and data from Louise Leahy (UW), Matt Lebsock (JPL),

More information

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr.

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr. ESCI 34 - Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr. DeCaria References: Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

How is precipitation from low clouds important for climate?

How is precipitation from low clouds important for climate? How is precipitation from low clouds important for climate? CloudSat estimated precipitation rate from low clouds Low clouds over the SE Pacific, Nov 11 th 2014 Robert Wood, University of Washington With

More information

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch. 6.1-6.6, p209-245 Reference: Ch.3 of Cloud Dynamics by Houze Topics: Cloud microphysics: cloud droplet nucleation and growth, precipitation

More information

Cloud Brightening and Climate Change

Cloud Brightening and Climate Change Cloud Brightening and Climate Change 89 Hannele Korhonen and Antti-Ilari Partanen Contents Definitions... 778 Aerosols and Cloud Albedo... 778 Cloud Brightening with Sea-Salt Aerosol... 779 Climate Effects

More information

Chapter 4 Water Vapor

Chapter 4 Water Vapor Chapter 4 Water Vapor Chapter overview: Phases of water Vapor pressure at saturation Moisture variables o Mixing ratio, specific humidity, relative humidity, dew point temperature o Absolute vs. relative

More information

CLOUDS, PRECIPITATION, AND WEATHER RADAR

CLOUDS, PRECIPITATION, AND WEATHER RADAR CHAPTER 7 CLOUDS, PRECIPITATION, AND WEATHER RADAR MULTIPLE CHOICE QUESTIONS 1. The activation temperature of most ice-forming nuclei is 0 C. a. above b. about c. well below 2. Hygroscopic nuclei water

More information

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen 1 Physical Environment: EVPP 110 Lecture Fall 2003 Dr. Largen 2 Physical Environment: Atmosphere Composition Heat transfer Atmospheric moisture Atmospheric circulation Weather and climate 3 Physical Environment:

More information

Project 3 Convection and Atmospheric Thermodynamics

Project 3 Convection and Atmospheric Thermodynamics 12.818 Project 3 Convection and Atmospheric Thermodynamics Lodovica Illari 1 Background The Earth is bathed in radiation from the Sun whose intensity peaks in the visible. In order to maintain energy balance

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

Explain the parts of the water cycle that are directly connected to weather.

Explain the parts of the water cycle that are directly connected to weather. Name: Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Rating Before Learning Goals Rating After 1 2 3 4 Describe weather. 1 2 3 4 1 2 3 4 List and define the variables used to describe weather.

More information

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds

Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2214 Satellite-based estimate of global aerosol-cloud radiative forcing by marine warm clouds Y.-C. Chen, M. W. Christensen, G. L. Stephens, and J. H. Seinfeld

More information

Top of the atmosphere. instantaneous change. Increased CCN cloud albedo effect RF (AR4) = -0.7 W/m 2

Top of the atmosphere. instantaneous change. Increased CCN cloud albedo effect RF (AR4) = -0.7 W/m 2 Top of the atmosphere warm cloud top instantaneous change rapid adjustments ΔA ship track = 9 % Unperturbed warm cloud Increased CCN cloud albedo effect RF (AR4) = -0.7 W/m 2 Surface Drizzle suppression

More information

Sungsu Park, Chris Bretherton, and Phil Rasch

Sungsu Park, Chris Bretherton, and Phil Rasch Improvements in CAM5 : Moist Turbulence, Shallow Convection, and Cloud Macrophysics AMWG Meeting Feb. 10. 2010 Sungsu Park, Chris Bretherton, and Phil Rasch CGD.NCAR University of Washington, Seattle,

More information

Condensation: Dew, Fog and Clouds AT350

Condensation: Dew, Fog and Clouds AT350 Condensation: Dew, Fog and Clouds AT350 T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor ~12/42~29% POLAR

More information

Atmospheric Moisture. Relative humidity Clouds Rain/Snow. Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere

Atmospheric Moisture. Relative humidity Clouds Rain/Snow. Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere Atmospheric Moisture Relative humidity Clouds Rain/Snow Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere Atmospheric moisture Water in the atmosphere Requires - vapor pressure- the amount

More information

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Weather Weather Patterns Weather Forecasts Chapter Wrap-Up How do scientists describe and predict weather? What do you think? Before you begin,

More information

Cloud Condensation Nuclei Hygroscopic Parameter Kappa

Cloud Condensation Nuclei Hygroscopic Parameter Kappa Cloud Condensation Nuclei Hygroscopic Parameter Kappa Covers Reading Material in Chapter 17.5 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Cloud Condensation Nuclei (CCN) Form a cloud

More information

Weather. Describing Weather

Weather. Describing Weather CHAPTER 13 Weather LESSON 1 Describing Weather What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) What processes control

More information

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China Meteorology Volume 2010, Article ID 412024, 4 pages doi:10.1155/2010/412024 Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing,

More information

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences.

The Climatology of Clouds using surface observations. S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences. The Climatology of Clouds using surface observations S.G. Warren and C.J. Hahn Encyclopedia of Atmospheric Sciences Gill-Ran Jeong Cloud Climatology The time-averaged geographical distribution of cloud

More information

The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources

The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture Sources 574 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 71 The Sensitivity of Springtime Arctic Mixed-Phase Stratocumulus Clouds to Surface-Layer and Cloud-Top Inversion-Layer Moisture

More information

Chapter 5 - Atmospheric Moisture

Chapter 5 - Atmospheric Moisture Chapter 5 - Atmospheric Moisture Understanding Weather and Climate Aguado and Burt Water Water Vapor - water in a gaseous form, not droplets. Water can also achieve solid and liquid phases on Earth Temperature

More information

Cloud Formation and Classification

Cloud Formation and Classification Cloud Formation and Classification Cloud Formation clouds form when air above the surface cools below the dew point condensation nuclei small particles in the atmosphere around which water droplets can

More information

Marine stratocumulus clouds

Marine stratocumulus clouds Marine stratocumulus clouds E. Pacific E. Atlantic Subtropical high-p regions Typical cold sea surface temperatures, in conjunc6on with the subsidence associated with the subtropical high, are responsible

More information

Thursday, June 5, Chapter 5: Condensation & Precipitation

Thursday, June 5, Chapter 5: Condensation & Precipitation Thursday, June 5, 2014 Chapter 5: Condensation & Precipitation Chapter 5: Condensation and Precipitation Formation of Condensation Saturated Air Condensation Nuclei Results of Condensation Clouds Fog Dew

More information

Modeling Challenges At High Latitudes. Judith Curry Georgia Institute of Technology

Modeling Challenges At High Latitudes. Judith Curry Georgia Institute of Technology Modeling Challenges At High Latitudes Judith Curry Georgia Institute of Technology Physical Process Parameterizations Radiative transfer Surface turbulent fluxes Cloudy boundary layer Cloud microphysics

More information

ESCI Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria

ESCI Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria ESCI 34 - Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria References: A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 1 Microphysics of Clouds and Precipitation

More information

Climate Dynamics (PCC 587): Clouds and Feedbacks

Climate Dynamics (PCC 587): Clouds and Feedbacks Climate Dynamics (PCC 587): Clouds and Feedbacks D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P H E R I C S C I E N C E S D A Y 7 : 1

More information

On the Limitations of Satellite Passive Measurements for Climate Process Studies

On the Limitations of Satellite Passive Measurements for Climate Process Studies On the Limitations of Satellite Passive Measurements for Climate Process Studies Steve Cooper 1, Jay Mace 1, Tristan L Ecuyer 2, Matthew Lebsock 3 1 University of Utah, Atmospheric Sciences 2 University

More information