SOIL MOISTURE MODELING USING ARTIFICIAL NEURAL NETWORKS

Size: px
Start display at page:

Download "SOIL MOISTURE MODELING USING ARTIFICIAL NEURAL NETWORKS"

Transcription

1 Int'l Conf. Artificial Intelligence ICAI' SOIL MOISTURE MODELING USING ARTIFICIAL NEURAL NETWORKS Dr. Jayachander R. Gangasani Instructor, Department of Computer Science, Dr. Monday Mbila (Contact Author) Associate Professor, Department of Soil Science, Dr. Yinshu Wu Assistant Professor, Department of Mathematics, Dr. Jian Fu Professor, Department of Computer Science, ABSTRACT An artificial neural network (ANN) based algorithm was implemented, tested, and compared with regression models for soil moisture estimation. The research focused on developing soil moisture estimation capability by using an Artificial Neural Network (ANN) based model. The ANN model was calibrated (trained) and validated (tested) with soil moisture profiles measured from the Alabama Mesonet (ALMNet). The performance of the ANN model was evaluated by direct comparison between the soil moisture calculated from regression models, and Mesonet soil moisture measurements. Correlations were observed between the ANN estimates and Mesonet annual measurements. Less strong correlations were observed between the ANN estimates and Mesonet monthly measurements, while the least correlations were observed for the regression model. KEY WORDS: Alabama Mesonet, Artificial Neural Networks, Soil moisture prediction, and Regression models Type of the submission: Regular Research Paper

2 242 Int'l Conf. Artificial Intelligence ICAI'17 INTRODUCTION Soil moisture measurements in agricultural settings provide important information for drought early warning (Thober et al, 2015) as well as predicting floods (Zink et al., 2016). But soil moisture measurement methods are laborious, time consuming, expensive, and limited in application due to point-sampling in spite of heterogeneous distribution of moisture in soils. On the other hand, largescale satellite-based remote measurement techniques do not yet provide the required resolution to resolve spatiotemporal variability present at the scale needed. Therefore exploring the application of predictive models to soil moisture studies is imperative. The use of Artificial Neural Network for modeling soil moisture is a potential solution to this problem, and has already provided promising results (Pandey et al., 2010). Artificial Neural Networks (ANN) is a part of Computer Science that is analogous with artificial intelligence. ANNs are considered to be more relevant and useful than genetic algorithms and fuzzy logic system in dealing with soil and agricultural issues (Jain et al., 1996). Artificial neural networks is the type of network that sees the nodes as artificial neurons thus, these are called artificial neural networks (ANNs). An artificial neuron is a computational model inspired in the natural neurons. Natural neurons receive signals through synapses located on the dendrites or membrane of the neuron. When the signals received are strong enough (surpass a certain threshold), the neuron is activated and emits a signal though the axon. This signal might be sent to another synapse, and might activate other neurons (Carlos, 2003). Neural networks in general use machine learning based on the concept of self-adjustment of internal control parameters. Artificial neural networks are pliable mathematical structures that are capable of identifying complex non-linear relationships among input and output data sets. The principal differences between the various types of ANNs are arrangement of neurons and the many ways to assess the weights and functions for inputs and neurons (training). There are a variety of ANN architectures, such as multi-layer perceptron. The multilayer perceptron (MLP) neural network has been designed to function well for non-linear phenomena. A feed forward MLP network consists of a layer of input neurons and output layer with selected number of input and output neurons, respectively with one or more hidden layers in between the input and the output layer with some number of neurons on each (Melesse, 2006). The objectives of this research were: a) to develop an ANN model that estimates soil moisture content based on data from meteorological stations in Alabama such as precipitation(x0), atmospheric temperature(x1), solar radiation(x2), and wind speed (xp) as the input variables; and b) to evaluate the performance of the ANN model by comparison with other soil moisture models, and with measured soil moisture. DESIGN AND METHODOLOGY Location of the Study Area and Research Sites The study was carried out with data from the Alabama A&M University Main Campus Weather Station. This station is located about three hundred feet from the campus East gate at Latitude: 34 deg; 47 min N; and Longitude: 86 deg; 33 min W. The Station is recognized by the USDA Soil Climate Analysis Network (SCAN) Data & Products resources as: AAMU-JTG; Madison County.

3 Int'l Conf. Artificial Intelligence ICAI' The weather station has the following sensors installed for measuring the variables: soil hydra probes for measuring soil moisture and temperature; propeller-type anemometer for measuring wind speed and direction; pyranometer for solar radiation; tipping bucket rain gauge for measuring precipitation; thermometer for measuring air temperature; and humidity probe for measuring relative humidity. Selection of input variables We evaluated the correlation among the variables and soil moisture based on the following conceptual model: precipitation (x0), soil temperature (x1), solar radiation (x2), wind speed (xp) and soil moisture (y +k). Data Preprocessing After data download, three data preprocessing procedures were conducted to train the ANNs more efficiently for: a) solving the problem of missing data; b) Normalizing the data; and c) Randomizing the data. The missing data was replaced by the average of neighboring values during the same week. Normalization procedure before presenting the input data to the network was needed since mixing variables with large magnitudes and small magnitudes will confuse the learning algorithm on the importance of each variable. Mixing large and small magnitudes could force the procedure to finally reject the variable with the smaller magnitude (Tymvios et al., 2008). Building the Artificial Neural Network At this stage, building the program required specifying the number of hidden layers, neurons in each layer, transfer function in each layer, training function, weight/bias learning function, and performance function. Since this Program aimed to predict the seasonal/monthly soil moisture, the idea was to design the program into a multi-class classification problem using neural network. The Procedure: Training Data: Year Test Data: Year 2014 Training the Network During the training process, the weights of the variables were adjusted in order to make the actual outputs (predicted) close to the target (measured) outputs of the network. In this study, the 10- year data period (from 2004 to 2013), 7-year data period (from 2005 to 2011), and 5-year data period (from 2005 to 2009) from the ALABAMA MESONET were used for training. Programming the Actual Neural Network Model For this work, MATLAB (R2013b) was used to write script files for developing MLP and RBF ANN models and performance functions for calculating the model performance error statistics such as R2, RMSE and MBE. RESULTS AND DISCUSSION Soil Moisture Prediction Using Artificial Neural Network ANN learns to process data by arbitrary classification of the data and comparing the data with known actual classification of the data. The errors from the initial classification of the data is fed

4 244 Int'l Conf. Artificial Intelligence ICAI'17 back into the network, and used to modify the networks algorithm the second time around, and so on for many iterations. Table 1: Results of the ANN prediction Year Precipitation (inches) Soil Temp ( F) Radiation (watts) Wind Speed (mph) Soil Moisture (%) Class Class Class Class Class Class Class Class Class Class Class #? Table 2: Comparison of the Results of the Artificial Neural Network Predicted and Measured Monthly Soil Moisture Discussion Months Measured Predicted % Error Jan Feb Mar Apr May Jun Jul Aug Sep Oct Soil Moisture Prediction Using Multiple Regression Models Artificial Neural Network Model Prediction

5 Int'l Conf. Artificial Intelligence ICAI' The error difference between the actual soil moisture value and the predicted soil moisture from the monthly training data ranged for 3% to 19% with an average of 10% error for the year. Therefore the error for the monthly training data, while larger than that of the 10-year training data, was quite variable. Differences in error for the model are probably due to data size and gaps. This observation suggests that yearly soil moisture prediction may be more accurate, because the 10 days of bad data has greater impact in monthly soil moisture prediction than in yearly soil moisture predictions. For instance, 10 days of bad data due to missing data from bad receivers or sensors in one month will have 10/30 error proportion. This is equal to 33% approximately, meaning that 33% of the data is missing or wrong. However, for yearly soil moisture prediction, 10 days of missing or wrong data translates to 10/365 (2.7%). This means that there is only 2.7% error from missing or bad data in yearly soil moisture prediction compared to 33% error in monthly soil moisture prediction.

6 246 Int'l Conf. Artificial Intelligence ICAI'17 In general, regression models predicted soil moisture variations but those models explained a very low percentage of the soil moisture variability. Multiple regression models explained more of the soil moisture variability (46%) than any of the single variables that were investigated (Table 3). Solar radiation and soil temperature each individually explained about 40% of the variability in soil moisture changes. Wind speed and rainfall explained much less of the soil moisture variability with 20% and 3%, respectively. Artificial neural network predicted soil moisture variations and explained a high percentage (52%) of the soil moisture variability (Figure 1). Figure 1: Comparison of ANN Predicted and Measured Soil Moisture CONCLUSION The study was carried out with data from the Alabama Agricultural and Mechanical University Main Campus Weather Station where a meteorological station is installed to gather information on rain gauge, air temperature and relative humidity, soil moisture and temperature, wind speed and direction, and solar radiation. Data collected for ten years from the station was analyzed and used to develop and train the ANN and regression models to estimate soil moisture content. The impacts of solar radiation, rainfall, wind speed, and soil temperature were considered by using regression and the multiple regression models. Regression models predicted soil moisture variations, but those models explained a low percentage of the soil moisture variability. Multiple regression models explained more of the soil moisture variability than any of the single variables that were investigated (46%). Solar radiation and soil temperature each individually explained about 40% of the variability in soil moisture changes. Wind speed and rainfall explained much less of the soil moisture variability with 20% and 3%, respectively. The ANN model contained between 3% and 19% error difference between the ANN predicted, and the measured soil moisture value. Using the ANN explained 52% of the variability in measured soil moisture content. Overall, the ANN network, show better potential for predicting soil moisture changes using meteorological data generated by the weather stations.

7 Int'l Conf. Artificial Intelligence ICAI' REFERENCES Carlos Gershenson , Neural and Evolutionary Computing (cs.ne); Artificial Intelligence (cs.ai). Jain, A.K., Mao, J., Mohiuddin, K.M., Artificial neural networks: a tutorial. Comput. IEEE March, Melesse Assefa, and Xixi Wang Multitemporal Scale Hydrographic Prediction using Artificial Neural Networks, Journal of the American Water resources Association. Pandey, A, S. K. Jha, J. K. Srivastava, and R. Prasad Artificial neural network for the estimation of soil moisture and surface roughness. Russian Agricultural. Thober S., R. Kumar, J. Sheffield, J. Mai, D. Schafer, and L. Samaniego Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME). Journal of Hydrometeorology. 16: DOI: /JHM- D Tymvios, F., Michaelides, S. and C. Skouteli Estimation of Surface solar radiation with Artificial neural networks, In: Modeling Solar Radiation at the Earth Surface, Viorel Badescu, pp. ( ). Springer, ISBN , Germany. Zink, M, L. Samaniego, R. Kumar, S. Thober, J. Mai, D. Schafer, and Marx The German drought monitor. Environ. Res. Lett. 11: Pp 9.

Global Climates. Name Date

Global Climates. Name Date Global Climates Name Date No investigation of the atmosphere is complete without examining the global distribution of the major atmospheric elements and the impact that humans have on weather and climate.

More information

Research Article Weather Forecasting Using Sliding Window Algorithm

Research Article Weather Forecasting Using Sliding Window Algorithm ISRN Signal Processing Volume 23, Article ID 5654, 5 pages http://dx.doi.org/.55/23/5654 Research Article Weather Forecasting Using Sliding Window Algorithm Piyush Kapoor and Sarabjeet Singh Bedi 2 KvantumInc.,Gurgaon22,India

More information

The Climate of Bryan County

The Climate of Bryan County The Climate of Bryan County Bryan County is part of the Crosstimbers throughout most of the county. The extreme eastern portions of Bryan County are part of the Cypress Swamp and Forest. Average annual

More information

The Climate of Payne County

The Climate of Payne County The Climate of Payne County Payne County is part of the Central Great Plains in the west, encompassing some of the best agricultural land in Oklahoma. Payne County is also part of the Crosstimbers in the

More information

The Climate of Kiowa County

The Climate of Kiowa County The Climate of Kiowa County Kiowa County is part of the Central Great Plains, encompassing some of the best agricultural land in Oklahoma. Average annual precipitation ranges from about 24 inches in northwestern

More information

The Climate of Marshall County

The Climate of Marshall County The Climate of Marshall County Marshall County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeastern Oklahoma. Average

More information

UWM Field Station meteorological data

UWM Field Station meteorological data University of Wisconsin Milwaukee UWM Digital Commons Field Station Bulletins UWM Field Station Spring 992 UWM Field Station meteorological data James W. Popp University of Wisconsin - Milwaukee Follow

More information

LONG TERM LOAD FORECASTING OF POWER SYSTEMS USING ARTIFICIAL NEURAL NETWORK AND ANFIS

LONG TERM LOAD FORECASTING OF POWER SYSTEMS USING ARTIFICIAL NEURAL NETWORK AND ANFIS LONG TERM LOAD FORECASTING OF POWER SYSTEMS USING ARTIFICIAL NEURAL NETWORK AND ANFIS Naji Ammar 1, Marizan Sulaiman 2 and Ahmad Fateh Mohamad Nor 2 1 Higher Institute for Water Technology, Agelat, Libya

More information

DESIGN AND DEVELOPMENT OF ARTIFICIAL INTELLIGENCE SYSTEM FOR WEATHER FORECASTING USING SOFT COMPUTING TECHNIQUES

DESIGN AND DEVELOPMENT OF ARTIFICIAL INTELLIGENCE SYSTEM FOR WEATHER FORECASTING USING SOFT COMPUTING TECHNIQUES DESIGN AND DEVELOPMENT OF ARTIFICIAL INTELLIGENCE SYSTEM FOR WEATHER FORECASTING USING SOFT COMPUTING TECHNIQUES Polaiah Bojja and Nagendram Sanam Department of Electronics and Communication Engineering,

More information

Jackson County 2013 Weather Data

Jackson County 2013 Weather Data Jackson County 2013 Weather Data 61 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Doug Mayo Jackson County Extension Director 1952-2008 Rainfall Data

More information

A Support Vector Regression Model for Forecasting Rainfall

A Support Vector Regression Model for Forecasting Rainfall A Support Vector Regression for Forecasting Nasimul Hasan 1, Nayan Chandra Nath 1, Risul Islam Rasel 2 Department of Computer Science and Engineering, International Islamic University Chittagong, Bangladesh

More information

The Climate of Murray County

The Climate of Murray County The Climate of Murray County Murray County is part of the Crosstimbers. This region is a transition between prairies and the mountains of southeastern Oklahoma. Average annual precipitation ranges from

More information

2003 Water Year Wrap-Up and Look Ahead

2003 Water Year Wrap-Up and Look Ahead 2003 Water Year Wrap-Up and Look Ahead Nolan Doesken Colorado Climate Center Prepared by Odie Bliss http://ccc.atmos.colostate.edu Colorado Average Annual Precipitation Map South Platte Average Precipitation

More information

The Climate of Texas County

The Climate of Texas County The Climate of Texas County Texas County is part of the Western High Plains in the north and west and the Southwestern Tablelands in the east. The Western High Plains are characterized by abundant cropland

More information

The Climate of Pontotoc County

The Climate of Pontotoc County The Climate of Pontotoc County Pontotoc County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeast Oklahoma. Average

More information

The Climate of Grady County

The Climate of Grady County The Climate of Grady County Grady County is part of the Central Great Plains, encompassing some of the best agricultural land in Oklahoma. Average annual precipitation ranges from about 33 inches in northern

More information

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Jackson County 2018 Weather Data 67 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Doug Mayo Jackson County Extension Director 1952-2008 Rainfall Data

More information

Jackson County 2014 Weather Data

Jackson County 2014 Weather Data Jackson County 2014 Weather Data 62 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Doug Mayo Jackson County Extension Director 1952-2008 Rainfall Data

More information

CoCoRaHS Monitoring Colorado s s Water Resources through Community Collaborations

CoCoRaHS Monitoring Colorado s s Water Resources through Community Collaborations CoCoRaHS Monitoring Colorado s s Water Resources through Community Collaborations Nolan Doesken Colorado Climate Center Atmospheric Science Department Colorado State University Presented at Sustaining

More information

Prediction of Monthly Rainfall of Nainital Region using Artificial Neural Network (ANN) and Support Vector Machine (SVM)

Prediction of Monthly Rainfall of Nainital Region using Artificial Neural Network (ANN) and Support Vector Machine (SVM) Vol- Issue-3 25 Prediction of ly of Nainital Region using Artificial Neural Network (ANN) and Support Vector Machine (SVM) Deepa Bisht*, Mahesh C Joshi*, Ashish Mehta** *Department of Mathematics **Department

More information

The Climate of Seminole County

The Climate of Seminole County The Climate of Seminole County Seminole County is part of the Crosstimbers. This region is a transition region from the Central Great Plains to the more irregular terrain of southeastern Oklahoma. Average

More information

Climatography of the United States No

Climatography of the United States No Climate Division: AK 5 NWS Call Sign: ANC Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 90 Number of s (3) Jan 22.2 9.3 15.8

More information

The Climate of Haskell County

The Climate of Haskell County The Climate of Haskell County Haskell County is part of the Hardwood Forest. The Hardwood Forest is characterized by its irregular landscape and the largest lake in Oklahoma, Lake Eufaula. Average annual

More information

Table of Contents. Page

Table of Contents. Page Eighteen Years (1990 2007) of Climatological Data on NMSU s Corona Range and Livestock Research Center Research Report 761 L. Allen Torell, Kirk C. McDaniel, Shad Cox, Suman Majumdar 1 Agricultural Experiment

More information

A comparative study of ANN and angstrom Prescott model in the context of solar radiation analysis

A comparative study of ANN and angstrom Prescott model in the context of solar radiation analysis A comparative study of ANN and angstrom Prescott model in the context of solar radiation analysis JUHI JOSHI 1, VINIT KUMAR 2 1 M.Tech, SGVU, Jaipur, India 2 Assistant. Professor, SGVU, Jaipur, India ABSTRACT

More information

Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting

Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting Journal of Physics: Conference Series PAPER OPEN ACCESS Comparison of Adaline and Multiple Linear Regression Methods for Rainfall Forecasting To cite this article: IP Sutawinaya et al 2018 J. Phys.: Conf.

More information

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh

Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist Belt Area, Anantapur District, Andhra Pradesh Open Journal of Geology, 2012, 2, 294-300 http://dx.doi.org/10.4236/ojg.2012.24028 Published Online October 2012 (http://www.scirp.org/journal/ojg) Study of Hydrometeorology in a Hard Rock Terrain, Kadirischist

More information

A Feature Based Neural Network Model for Weather Forecasting

A Feature Based Neural Network Model for Weather Forecasting World Academy of Science, Engineering and Technology 4 2 A Feature Based Neural Network Model for Weather Forecasting Paras, Sanjay Mathur, Avinash Kumar, and Mahesh Chandra Abstract Weather forecasting

More information

Weather Forecasting using Soft Computing and Statistical Techniques

Weather Forecasting using Soft Computing and Statistical Techniques Weather Forecasting using Soft Computing and Statistical Techniques 1 Monika Sharma, 2 Lini Mathew, 3 S. Chatterji 1 Senior lecturer, Department of Electrical & Electronics Engineering, RKGIT, Ghaziabad,

More information

Memo. I. Executive Summary. II. ALERT Data Source. III. General System-Wide Reporting Summary. Date: January 26, 2009 To: From: Subject:

Memo. I. Executive Summary. II. ALERT Data Source. III. General System-Wide Reporting Summary. Date: January 26, 2009 To: From: Subject: Memo Date: January 26, 2009 To: From: Subject: Kevin Stewart Markus Ritsch 2010 Annual Legacy ALERT Data Analysis Summary Report I. Executive Summary The Urban Drainage and Flood Control District (District)

More information

Jackson County 2019 Weather Data 68 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center

Jackson County 2019 Weather Data 68 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Jackson County 2019 Weather Data 68 Years of Weather Data Recorded at the UF/IFAS Marianna North Florida Research and Education Center Doug Mayo Jackson County Extension Director 1952-2008 Rainfall Data

More information

Variability of Reference Evapotranspiration Across Nebraska

Variability of Reference Evapotranspiration Across Nebraska Know how. Know now. EC733 Variability of Reference Evapotranspiration Across Nebraska Suat Irmak, Extension Soil and Water Resources and Irrigation Specialist Kari E. Skaggs, Research Associate, Biological

More information

Modelling and Prediction of 150KW PV Array System in Northern India using Artificial Neural Network

Modelling and Prediction of 150KW PV Array System in Northern India using Artificial Neural Network International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 5 May 2016 PP.18-25 Modelling and Prediction of 150KW PV Array System in Northern

More information

What is the difference between Weather and Climate?

What is the difference between Weather and Climate? What is the difference between Weather and Climate? Objective Many people are confused about the difference between weather and climate. This makes understanding the difference between weather forecasts

More information

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC This threat overview relies on projections of future climate change in the Mekong Basin for the period 2045-2069 compared to a baseline of 1980-2005.

More information

Remote Sensing Applications for Land/Atmosphere: Earth Radiation Balance

Remote Sensing Applications for Land/Atmosphere: Earth Radiation Balance Remote Sensing Applications for Land/Atmosphere: Earth Radiation Balance - Introduction - Deriving surface energy balance fluxes from net radiation measurements - Estimation of surface net radiation from

More information

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years

Geostatistical Analysis of Rainfall Temperature and Evaporation Data of Owerri for Ten Years Atmospheric and Climate Sciences, 2012, 2, 196-205 http://dx.doi.org/10.4236/acs.2012.22020 Published Online April 2012 (http://www.scirp.org/journal/acs) Geostatistical Analysis of Rainfall Temperature

More information

EE-588 ADVANCED TOPICS IN NEURAL NETWORK

EE-588 ADVANCED TOPICS IN NEURAL NETWORK CUKUROVA UNIVERSITY DEPARTMENT OF ELECTRICAL&ELECTRONICS ENGINEERING EE-588 ADVANCED TOPICS IN NEURAL NETWORK THE PROJECT PROPOSAL AN APPLICATION OF NEURAL NETWORKS FOR WEATHER TEMPERATURE FORECASTING

More information

2016 Meteorology Summary

2016 Meteorology Summary 2016 Meteorology Summary New Jersey Department of Environmental Protection AIR POLLUTION AND METEOROLOGY Meteorology plays an important role in the distribution of pollution throughout the troposphere,

More information

Climate Change Impact Assessment on Indian Water Resources. Ashvin Gosain, Sandhya Rao, Debajit Basu Ray

Climate Change Impact Assessment on Indian Water Resources. Ashvin Gosain, Sandhya Rao, Debajit Basu Ray Climate Change Impact Assessment on Indian Water Resources Ashvin Gosain, Sandhya Rao, Debajit Basu Ray Objectives of the Study To quantify the impact of the climate change on the water resources of the

More information

Applications/Users for Improved S2S Forecasts

Applications/Users for Improved S2S Forecasts Applications/Users for Improved S2S Forecasts Nolan Doesken Colorado Climate Center Colorado State University WSWC Precipitation Forecasting Workshop June 7-9, 2016 San Diego, CA First -- A short background

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Elevation: 6 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Elevation: 2 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Elevation: 13 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Elevation: 1,14 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of

More information

Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University

Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University Northern Colorado Business Innovations November 20, 2013 Loveland, Colorado

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: LAX Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: TOA Elevation: 11 Feet Lat: 33 2W Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number

More information

Chapter-1 Introduction

Chapter-1 Introduction Modeling of rainfall variability and drought assessment in Sabarmati basin, Gujarat, India Chapter-1 Introduction 1.1 General Many researchers had studied variability of rainfall at spatial as well as

More information

Short Term Load Forecasting Using Multi Layer Perceptron

Short Term Load Forecasting Using Multi Layer Perceptron International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Short Term Load Forecasting Using Multi Layer Perceptron S.Hema Chandra 1, B.Tejaswini 2, B.suneetha 3, N.chandi Priya 4, P.Prathima

More information

OVERVIEW OF IMPROVED USE OF RS INDICATORS AT INAM. Domingos Mosquito Patricio

OVERVIEW OF IMPROVED USE OF RS INDICATORS AT INAM. Domingos Mosquito Patricio OVERVIEW OF IMPROVED USE OF RS INDICATORS AT INAM Domingos Mosquito Patricio domingos.mosquito@gmail.com Introduction to Mozambique /INAM Introduction to AGRICAB/SPIRITS Objectives Material & Methods Results

More information

2003 Moisture Outlook

2003 Moisture Outlook 2003 Moisture Outlook Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu Through 1999 Through 1999 Fort Collins Total Water

More information

Climatography of the United States No

Climatography of the United States No Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 63.9 39.3 51.6 86 1976 16 56.6 1986 20 1976 2 47.5 1973

More information

Climatography of the United States No

Climatography of the United States No Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 32.8 21.7 27.3 62 1918 1 35.8 1983-24 1950 29 10.5 1979

More information

The Climate of Oregon Climate Zone 5 High Plateau

The Climate of Oregon Climate Zone 5 High Plateau 105 E55 Unbound issue i". 9 13oes not circulate CZe Special Report 917 May 1993 The Climate of Oregon Climate Zone 5 Property of OREGON STATE UNIVERSITY Library Serials Corvallis, OR 97331-4503 Agricultural

More information

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan

Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Comparison of meteorological data from different sources for Bishkek city, Kyrgyzstan Ruslan Botpaev¹*, Alaibek Obozov¹, Janybek Orozaliev², Christian Budig², Klaus Vajen², 1 Kyrgyz State Technical University,

More information

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions Paul Kucera and Martin Steinson University Corporation for Atmospheric Research/COMET 3D-Printed

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.9 42.0 52.0 89

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 38.8 47.2 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 52.4 35.4 43.9 69

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 53.5 37.6 45.6 78

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.2 4.7 48.5 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 50.2 31.2 40.7 65+

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.4 33.1 47.3 82+

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 66.1 38.3 52.2 91

More information

Site Description: Tower Site

Site Description: Tower Site Resource Summary for Fort Collins Site Final Report Colorado Anemometer Loan Program Monitoring Period: /0/00 11/03/007 Report Date: January 1, 00 Site Description: The site is located adjacent to the

More information

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem ARMEANU ILEANA*, STĂNICĂ FLORIN**, PETREHUS VIOREL*** *University

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 39.3 47.5 77

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 56.6 36.5 46.6 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 44.8 25.4 35.1 72

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 57.9 38.9 48.4 85

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 49.4 37.5 43.5 73

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 69.4 46.6 58.0 92

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 67.5 42. 54.8 92 1971

More information

YACT (Yet Another Climate Tool)? The SPI Explorer

YACT (Yet Another Climate Tool)? The SPI Explorer YACT (Yet Another Climate Tool)? The SPI Explorer Mike Crimmins Assoc. Professor/Extension Specialist Dept. of Soil, Water, & Environmental Science The University of Arizona Yes, another climate tool for

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 58.5 38.8 48.7 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 57.8 39.5 48.7 85 1962

More information

Prediction of Global Solar Radiation in UAE

Prediction of Global Solar Radiation in UAE Prediction of Global Solar Radiation in UAE Using Artificial Neural Networks Ali H. Assi Department of Electrical and Electronic Engineering Lebanese International University Beirut, Lebanon ali.assi@liu.edu.lb

More information

Thunderstorm Forecasting by using Artificial Neural Network

Thunderstorm Forecasting by using Artificial Neural Network Thunderstorm Forecasting by using Artificial Neural Network N.F Nik Ismail, D. Johari, A.F Ali, Faculty of Electrical Engineering Universiti Teknologi MARA 40450 Shah Alam Malaysia nikfasdi@yahoo.com.my

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 46175 Climate Division: CA 6 NWS Call Sign: 3L3 Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1)

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 42713 Climate Division: CA 7 NWS Call Sign: Elevation: -3 Feet Lat: 32 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1)

More information

APPENDIX G-7 METEROLOGICAL DATA

APPENDIX G-7 METEROLOGICAL DATA APPENDIX G-7 METEROLOGICAL DATA METEOROLOGICAL DATA FOR AIR AND NOISE SAMPLING DAYS AT MMR Monthly Normals and Extremes for Honolulu International Airport Table G7-1 MMR RAWS Station Hourly Data Tables

More information

Climatography of the United States No

Climatography of the United States No Climate Division: SC 7 NWS Call Sign: CHS Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 58.9 36.9 47.9

More information

Climatography of the United States No

Climatography of the United States No Climate Division: ND 8 NWS Call Sign: BIS Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 21.1 -.6 10.2

More information

Climatography of the United States No

Climatography of the United States No Climate Division: TN 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 47.6 24.9 36.3 81

More information

Colorado s 2003 Moisture Outlook

Colorado s 2003 Moisture Outlook Colorado s 2003 Moisture Outlook Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu How we got into this drought! Fort

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: FAT Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 53.6 38.4 46. 78

More information

Final Report. COMET Partner's Project. University of Texas at San Antonio

Final Report. COMET Partner's Project. University of Texas at San Antonio Final Report COMET Partner's Project University: Name of University Researcher Preparing Report: University of Texas at San Antonio Dr. Hongjie Xie National Weather Service Office: Name of National Weather

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: 1L2 N Lon: 118 3W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 63.7

More information

Climate Variability in South Asia

Climate Variability in South Asia Climate Variability in South Asia V. Niranjan, M. Dinesh Kumar, and Nitin Bassi Institute for Resource Analysis and Policy Contents Introduction Rainfall variability in South Asia Temporal variability

More information

Site Description: Tower Site

Site Description: Tower Site Resource Summary for Elizabeth Site Final Report Colorado Anemometer Loan Program Monitoring Period: 7/3/06 /26/07 Report Date: January, 0 Site Description: The site is.6 miles northeast of the town of

More information

Local Prediction of Precipitation Based on Neural Network

Local Prediction of Precipitation Based on Neural Network Environmental Engineering 10th International Conference eissn 2029-7092 / eisbn 978-609-476-044-0 Vilnius Gediminas Technical University Lithuania, 27 28 April 2017 Article ID: enviro.2017.079 http://enviro.vgtu.lt

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: BFL Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.3 39.3 47.8

More information

SOUTH MOUNTAIN WEATHER STATION: REPORT FOR QUARTER 2 (APRIL JUNE) 2011

SOUTH MOUNTAIN WEATHER STATION: REPORT FOR QUARTER 2 (APRIL JUNE) 2011 SOUTH MOUNTAIN WEATHER STATION: REPORT FOR QUARTER 2 (APRIL JUNE) 2011 Prepared for ESTANCIA BASIN WATERSHED HEALTH, RESTORATION AND MONITORING STEERING COMMITTEE c/o CLAUNCH-PINTO SOIL AND WATER CONSERVATION

More information

Radial basis function neural networks model to estimate global solar radiation in semi-arid area

Radial basis function neural networks model to estimate global solar radiation in semi-arid area Leonardo Electronic Journal of Practices and Technologies ISSN 1583-1078 Issue 27, July-December 2015 p. 177-184 Radial basis function neural networks model to estimate global solar radiation in semi-arid

More information

Climatography of the United States No

Climatography of the United States No Climate Division: TN 3 NWS Call Sign: BNA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 45.6 27.9 36.8

More information

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region

Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region Yale-NUIST Center on Atmospheric Environment Interannual variation of MODIS NDVI in Lake Taihu and its relation to climate in submerged macrophyte region ZhangZhen 2015.07.10 1 Outline Introduction Data

More information

SHORT-TERM FORECASTING OF WEATHER CONDITIONS IN PALESTINE USING ARTIFICIAL NEURAL NETWORKS

SHORT-TERM FORECASTING OF WEATHER CONDITIONS IN PALESTINE USING ARTIFICIAL NEURAL NETWORKS 5 th May 28. Vol.96. No 9 25 ongoing JATIT & LLS ISSN: 992-8645 www.jatit.org E-ISSN: 87-395 SHORT-TERM FORECASTING OF WEATHER CONDITIONS IN PALESTINE USING ARTIFICIAL NEURAL NETWORKS IHAB HAMDAN, 2 MOHAMMED

More information

Application of Fully Recurrent (FRNN) and Radial Basis Function (RBFNN) Neural Networks for Simulating Solar Radiation

Application of Fully Recurrent (FRNN) and Radial Basis Function (RBFNN) Neural Networks for Simulating Solar Radiation Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 3 () January 04: 3-39 04 Academy for Environment and Life Sciences, India Online ISSN 77-808 Journal s URL:http://www.bepls.com

More information

Solar Irradiance Prediction using Neural Model

Solar Irradiance Prediction using Neural Model Volume-8, Issue-3, June 2018 International Journal of Engineering and Management Research Page Number: 241-245 DOI: doi.org/10.31033/ijemr.8.3.32 Solar Irradiance Prediction using Neural Model Raj Kumar

More information