Process Behavior Analysis Understanding Variation

Size: px
Start display at page:

Download "Process Behavior Analysis Understanding Variation"

Transcription

1 Process Behavior Analysis Understanding Variation Steven J Mazzuca ASQ

2 Why Process Behavior Analysis? Every day we waste valuable resources because we misunderstand or misinterpret what our data are telling us We do this in two ways: - We try to explain changes in the data that we should ignore because they are not significant - We fail to research and take action on changes in our data that we should pursue because they are significant There is a better way! We can improve the way we use data in our lives, make better decisions, and do all of this with less effort than we expend today. The key, is Understanding Variation. 2

3 Variation is All Around Us Consider Your Daily Commute to Work Most days, the time it takes to commute to work is about the same, but those individual times each differ by some small amount Every so often, however, the time is significantly longer, and this is usually due to some abnormal event like an accident, weather, construction, etc. The small variation most days is due to a collection of common causes, or sources of variation that are present at the same level, and we tend to give that variation little thought The exceptional variation is due to special causes, and we can identify these and understand the variation they cause 3

4 For Commuting, We Handle This Variation Naturally, and Logically We ignore the Common Cause Variation and intuitively understand that the times have some natural variability in them each day When Exceptional Variation occurs, we naturally look for the reason we want to know what happened Unfortunately, when we look at data in our businesses, we seldom react in the same logical manner we assume any movement in the data must have meaning The reality is, all data behave this way. All data have some level of variation that is normal, and we need to understand this variation before we can draw proper conclusions from our data. 4

5 An Example: Data Comparisons in our Life Average Temperature for y was 96.4 (F) Suppose we are further told: - This is 2.3 degrees higher than last y things must be getting hotter! - This is 3.1 degrees lower than the previous y things must be getting colder! The problem with both of these comparisons is that they are very limited in nature they provide no context! 5

6 Comparisons Between Two Values Can Never be Global in Nature Unfortunately, this is how we are often presented with data, for example: - Government Figures on inflation, unemployment, etc. - Annual Corporate Reports - Daily Stock Market Reports - Monthly Customer Reports The First Principle for Understanding Data No data have meaning apart from their context. 6

7 Unfortunately, Context Alone Is Not Enough 35 Daily Pct. Defective Pairs Sep 16-Sep 30-Sep 14-Oct 28-Oct 11-Nov 25-Nov 9-Dec 23-Dec A Time Series Plot of Percent Defective Pairs by Day 7

8 In Addition to Context, We Need a Method of Analysis Data Analysis Interpretation Input Transformation Output 8

9 Shewhart s Solution Walter Shewhart invented Process Behavior Analysis at AT&T s Bell Laboratories in the 1920 s. Process Behavior is the Voice of the Process - It starts with a time series - Adds a central line for detecting shifts - Natural process limits are computed from the data and placed symmetrically on either side of the central line 9

10 As It Turns Out, There Are Two Voices That We Must Consider The Voice of the Process tells us what the current system is capable of or in other words what its results are expected to be if we don t change the system. It is represented by the natural process limits on a Process Behavior chart. It is the extent of normal variation within the process itself. Specifications are the Voice of the Customer. They define what the customer expects or requires. Comparing numbers to the Voice of the Customer will not lead to improvement of the process--it only leads to wasted effort and confusion. In fact, in many cases, it actually leads to a degradation of the system over time. In other words, our best intentions are actually making things worse, not better! 10

11 Understanding Variation: An Individuals Process Behavior chart shows the individual data points Daily Pct. Defective Pairs Sep 16-Sep 30-Sep 14-Oct 28-Oct 11-Nov 25-Nov 9-Dec 23-Dec Unless this process is changed fundamentally, it can be expected to produce between 5.8% and 31.6% defective pairs each day, while averaging 18.7% defective pairs. This process demonstrates a state which is considered predictable 11

12 Signals Help Us to Identify Exceptional Variation Points that fall outside the upper and lower natural process limits A consecutive run of 8 points all below or above the central line Trends of 6 points in a row, all increasing or decreasing Non-random behavior 12

13 Examples of Exceptional Variation Point above the natural process limit Tickets Point below the natural process limit Tickets Aug Aug-07 9-Sep Sep-07 7-Oct Oct-07 4-Nov Nov-07 2-Dec Dec Dec Aug Aug-07 9-Sep Sep-07 7-Oct Oct-07 4-Nov Nov-07 2-Dec Dec Dec Run above the mean (8 consecutive points) Tickets Run below the mean (8 consecutive points) Tickets Aug Aug-07 9-Sep Sep-07 7-Oct Oct-07 4-Nov Nov-07 2-Dec Dec Dec Aug Aug-07 9-Sep Sep-07 7-Oct Oct-07 4-Nov Nov-07 2-Dec Dec Dec Trend up (6 consecutive points) Trend down (6 consecutive points) Tickets Tickets Aug Aug-07 9-Sep Sep-07 7-Oct Oct-07 4-Nov Nov-07 2-Dec Dec Dec Aug Aug-07 9-Sep Sep-07 7-Oct Oct-07 4-Nov Nov-07 2-Dec Dec Dec

14 Two Types of Mistakes 1. Interpreting common cause variation as if it were exceptional cause 2. Interpreting exceptional cause variation as if it were common cause Process Behavior Analysis strikes an economic balance between these two types of mistakes 14

15 Process Behavior Analysis - Step 1 Plot the Data and their Average on an Individuals Chart Mar May Individual Values (X) Sep Nov Mar May Sep Nov Mar May The value for y of year three is 28 and is the highest value that has ever occurred. BUT -- is it exceptional? (break in line is only to make chart easier to quickly interpret, not that data is missing) 15

16 Process Behavior Analysis - Step 2 Generate Moving Range Values to Understand Variation We need to filter out the common cause variation To do that, we have to measure the variation month-to-month This is done using successive differences, known as Moving Ranges (mr) Feb Mar Apr May Jun Aug Sep Oct Nov Dec Year One Moving Range V

17 Process Behavior Analysis - Step 3 Plot the Moving Range (mr) Values and their Average The center line is the average of the moving range data points. The Moving Ranges are plotted as a time series as well. The first two years were used here for the average. 15 mr Apr Oct Apr Oct Apr 17

18 The Base for Process Behavior Analysis The Individuals Chart and Moving Range Chart Individuals Chart Individual Values (X) Mar May Sep Nov Mar May Sep Nov Mar May 15 Moving Range Chart mr Apr Oct Apr Oct Apr

19 Process Behavior Analysis - Step 4 Calculate the Natural Process Limits for the Individuals Chart The Upper and Lower Natural Process Limits (UNPL and LNPL) for the Individuals Chart are computed by - multiplying the Average Moving Range by 2.66 and - adding and subtracting that value from the Central Line of the Individuals chart UNPL(Individual) = Average of the Individuals + (2.66 x Average Moving Range) = (2.66 x 4.35 ) = 31.6 LNPL(Individual) = Average of the Individuals - (2.66 x Average Moving Range) = (2.66 x 4.35 ) =

20 Process Behavior Analysis - Step 5 Plot the Upper and Lower Natural Process Limits on the Individuals Chart Note that based on this process behavior chart, the value 28 is NOT significant! If 28 does not meet our needs; we should not look at the event, but rather we should look at the process as a whole. Individual Values (X) Mar May Sep Nov Mar May Sep Nov Mar May x x

21 Process Behavior Analysis - Step 6 Calculate the Natural Process Limit for the Moving Range Chart The Moving Range Chart only has an Upper Natural Process Limit, which is computed by multiplying the Average Moving Range by UNPL(Moving Range) = 3.27 x Average Moving Range = 3.27 x 4.35 =

22 Process Behavior Analysis - Step 7 Plot the Upper Natural Process Limit on the Moving Range Chart There is no Lower Natural Process Limit on the Moving Range chart because we computed the positive difference between successive points - the red line is the extent of normal period-to-period variation - The green line is the average period-to-period variation Conclusion: there are no Moving Range signals (no evidence of an unpredictable situation) mr 3.27 x Apr Oct Apr Oct Apr 22

23 Process Behavior Analysis - Step 8 The MOST IMPORTANT Step: Interpret the Data Question: Can t This Process Do Better? Answer: No - the natural month-to-month variation in this process guarantees that the overall range for the process will be as wide as it is Improvement will only come as a result of changing the overall system seeking explanations for extreme values within the limits is a waste of time and resources! Individual Values (X) Mar May Sep Nov Mar May Sep Nov Mar May Asking the question Why did the 28 occur? is a non-value added activity, because the process is behaving predictably. We call this chasing noise chasing after explanations for data points that are actually within predictable limits. mr Apr Oct Apr Oct Apr

24 Some Rules of Thumb for Process Behavior Analysis More data is better than less data, but never let a small amount of data keep you from drawing a Process Behavior chart. Simply understand that the natural process limits are soft until the number of data points increases. Start with all the data, plot one set of limits, and see what the chart says. If there are no signals, and you have data points, set the limits and keep them until the data indicate there has been a change. If there is a signal, investigate it immediately. Your data are trying to tell you something! Remember, you don t get any credit for computing the limits, you get credit for taking action! Process Behavior Analysis is a tool, not an end in itself. 24

25 When to Adjust Natural Process Limits Natural process limits are not often adjusted - They are NOT automatically adjusted, e.g., at the beginning of each year or at the beginning of a project Before we can adjust the limits, we need to answer four natural process limit adjustment questions : 1. Do the data indicate a change has occurred? Is there a a) Run above the mean (8 consecutive points) b) Run below the mean (8 consecutive points) c) Trend up (6 consecutive points) d) Trend down (6 consecutive points) 2. Do we understand the cause of the change? 3. Is the change expected to continue? 4. Is the change desirable is it in the right direction? If we can answer Yes to all of these questions, it is appropriate to recompute the limits, starting with the first point that indicated a change in the process. 25

26 But, Aren t Specifications Important? Yes! They are the Voice of the Customer, but They don t help us understand how to improve, so We must work to align the processes to the specifications Voice of the Customer Results are IN Compliance with Specification Results are OUT of Compliance with Specification Voice of the Process Process is Predictable Process is NOT predictable Ideal State Process Behavior Charts help maintain the process in this state Brink of Chaos Quality of process could change to be out of specification at any time; prediction not possible Threshold State - Must change the process (more likely) or change the specifications (occasionally) State of Chaos Must first get process to be predictable (in control) 26

27 In Order to Meet the Customer s Needs, the Voice of the Process Must be Aligned with the Voice of the Customer. For example Measurement A 27 Customer Specification Units This process is not capable of consistently meeting the customer s needs. Corrective actions are to reduce 15 variability or move the process center line up (shifting the aim) Time Interval Out of specification! 27

28 Summary: Understanding Variation Before we can interpret data, we must have a method of analysis Process Behavior Analysis provide just such a method, as they focus on the behavior of the process The purpose of analysis is insight, and the best analysis is the simplest one that provides the needed insight 28

29 Analysis of Temperature Trends at Mohonk Mohonk is one of the oldest continuously operating meteorological stations in the US. It has been in operation since For the ease of display I calculated three sets of data: - Average of the average daily temperatures over each calendar year. - Average of the daily low temperatures over each calendar year. - Average of the daily high temperatures over each calendar year. 29

30 Temperature Trend Analysis Mean calculated on full data set. Annual Average Temperature (F) 60 Degrees (F) Annual Average Temperature (F) Mean Upper Natural Process Limit Low er Natural Process Limit 30

31 Temperature Trend Analysis 14 Year Mean Calculation ( ) Annual Average Temperature (F) 60 Degrees (F) Annual Average Temperature (F) Mean Upper Natural Process Limit Low er Natural Process Limit 31

32 Temperature Trend Analysis 14 Year Mean Calculation ( ) Annual Average Mininum Temperature (F) 50 Degrees (F) 40 Signal: 1920 seems to have been an exceptionally cold year. (33.95 F) Annual Average Mininum Temperature (F) Mean Upper Natural Process Limit Low er Natural Process Limit 32

33 Temperature Trend Analysis 14 Year Mean Calculation ( ) Annual Average Maximum Temperature (F) 60 Degrees (F) Signal: 1904 seems to have been an exceptionally cold year. (50.98 F) Annual Average Maximum Temperature (F) Mean Upper Natural Process Limit Low er Natural Process Limit 33

34 Analysis of Temperature Trends at Mohonk For the ease of display I calculated three sets of data: - Average of the average daily temperatures over each calendar year. - Average of the daily low temperatures over each calendar year. - Average of the daily high temperatures over each calendar year. Each set of data identified different signals. All data sets identified a signal in last several years. We don t know what if any effects are contained in the data. - Solar Sunspot Activity (11 year cycle) - Volcanic Eruptions - Industrial Pollution - Other industrial effects (deforestation, greenhouse gases, cities, etc) There seems to be a warming trend. 34

35 35 Solar Energy Is Not Constant

36 A century of Mohonk s weather records suggest a warming trend. Preliminary analysis of the Preserve s weather data shows that the average temperature has risen about two degrees over the past 110 years. Composed of more than 40,000 days of weather observations, these records comprise the collection of the Preserve s Mohonk Lake Cooperative Weather Station, established in 1896 by the U.S. Weather Bureau (now the National Weather Service). Weather readings at Mohonk began in the mid-1880s, taken by the Smiley family, founders of the neighboring Mohonk Mountain House, and are now continued by Preserve research staff. Beginning in the late 1970s, data collection expanded to include regular monitoring the ph of precipitation, lakes, and streams. Why is this data important? To identify the extent of global climate change, researchers need access to reliable data covering the longest period possible. The Preserve s weather data is dependable because the station has been in the same, comparatively stable location for over a century and the same protocol has been followed by the relatively few people involved in collecting the data. 36

Hudson River Estuary Climate Change Lesson Project. Grades 5-8 Teacher s Packet. Lesson 2. Observing Changes at Mohonk Preserve

Hudson River Estuary Climate Change Lesson Project. Grades 5-8 Teacher s Packet. Lesson 2. Observing Changes at Mohonk Preserve Grades 5-8 Teacher s Packet Lesson 2 Observing Changes at Mohonk Preserve 2 Observing Changes at Mohonk Preserve NYS Intermediate Level Science Standard 1: Analysis, Inquiry and Design/Scientific Inquiry

More information

Climatography of the United States No

Climatography of the United States No Climate Division: AK 5 NWS Call Sign: ANC Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 90 Number of s (3) Jan 22.2 9.3 15.8

More information

Climatography of the United States No

Climatography of the United States No Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 42.6 24.2 33.4 79 1950 25 44.2 1974-16 1994 19 18.8 1977 977

More information

Climatography of the United States No

Climatography of the United States No Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 63.9 39.3 51.6 86 1976 16 56.6 1986 20 1976 2 47.5 1973

More information

Climatography of the United States No

Climatography of the United States No Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 32.8 21.7 27.3 62 1918 1 35.8 1983-24 1950 29 10.5 1979

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 54.4 36.9 45.7 77+

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.3 31.8 42.6 74+ 1975

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 44.5 29.3 36.9 69 1951

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 56.0 35.7 45.9 83 1975

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.7 32.7 43.2 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 68.5 45.7 57.1 90 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 59.3 31.5 45.4 80 1976

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 53.3 37.1 45.2 77 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 70.4 44.2 57.3 95 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) 65.5 38.7 52.1 87 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) 64.8 45.4 55.1 85 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 7 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) 58.8 34.3 46.6 81+ 1948

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 58.5 38.8 48.7 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 49.4 37.5 43.5 73

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 67.5 42. 54.8 92 1971

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 57.9 38.9 48.4 85

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 69.4 46.6 58.0 92

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 44.8 25.4 35.1 72

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 56.6 36.5 46.6 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 39.3 47.5 77

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 57.8 39.5 48.7 85 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: ND 8 NWS Call Sign: BIS Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 21.1 -.6 10.2

More information

Climatography of the United States No

Climatography of the United States No Climate Division: TN 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 47.6 24.9 36.3 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: FAT Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 53.6 38.4 46. 78

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: 1L2 N Lon: 118 3W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 63.7

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: BFL Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.3 39.3 47.8

More information

Climatography of the United States No

Climatography of the United States No Climate Division: TN 3 NWS Call Sign: BNA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 45.6 27.9 36.8

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Elevation: 2 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Elevation: 6 Feet Lat: 37 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3)

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 5 NWS Call Sign: Elevation: 1,14 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Elevation: 13 Feet Lat: 36 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: LAX Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: TOA Elevation: 11 Feet Lat: 33 2W Temperature ( F) Month (1) Min (2) Month(1) Extremes Lowest (2) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number

More information

Climatography of the United States No

Climatography of the United States No Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 54.3 40.1 47.2 75 1998 17 53.0 1995 18 1949 11 41.7 1972

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 46646 Climate Division: CA 4 NWS Call Sign: 8W Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 4792 Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 43417 Climate Division: CA 4 NWS Call Sign: N Lon: 121 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1)

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 4795 Climate Division: CA 6 NWS Call Sign: SBA Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 51.5 35.0 43.3 80

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 56.4 43.6 50.0 77

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 52.4 35.4 43.9 69

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.9 42.0 52.0 89

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 6 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 66.1 38.3 52.2 91

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 1 Number of s (3) Jan 56.2 4.7 48.5 79 1962

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 55.6 38.8 47.2 81

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 4 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 61.4 33.1 47.3 82+

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 2 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 53.5 37.6 45.6 78

More information

Climatography of the United States No

Climatography of the United States No Climate Division: CA 1 NWS Call Sign: Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 50.2 31.2 40.7 65+

More information

In this activity, students will compare weather data from to determine if there is a warming trend in their community.

In this activity, students will compare weather data from to determine if there is a warming trend in their community. Overview: In this activity, students will compare weather data from 1910-2000 to determine if there is a warming trend in their community. Objectives: The student will: use the Internet to locate scientific

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 46175 Climate Division: CA 6 NWS Call Sign: 3L3 Elevation: 1 Feet Lat: 33 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1)

More information

Climatography of the United States No

Climatography of the United States No No. 2 1971-2 Asheville, North Carolina 2881 COOP ID: 42713 Climate Division: CA 7 NWS Call Sign: Elevation: -3 Feet Lat: 32 Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1)

More information

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities

WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and Rainfall For Selected Arizona Cities WHEN IS IT EVER GOING TO RAIN? Table of Average Annual Rainfall and 2001-2002 Rainfall For Selected Arizona Cities Phoenix Tucson Flagstaff Avg. 2001-2002 Avg. 2001-2002 Avg. 2001-2002 October 0.7 0.0

More information

Climatography of the United States No

Climatography of the United States No Climate Division: SC 7 NWS Call Sign: CHS Month (1) Min (2) Month(1) Extremes Lowest (2) Temperature ( F) Lowest Month(1) Degree s (1) Base Temp 65 Heating Cooling 100 Number of s (3) Jan 58.9 36.9 47.9

More information

Improve Forecasts: Use Defect Signals

Improve Forecasts: Use Defect Signals Improve Forecasts: Use Defect Signals Paul Below paul.below@qsm.com Quantitative Software Management, Inc. Introduction Large development and integration project testing phases can extend over many months

More information

Colorado s 2003 Moisture Outlook

Colorado s 2003 Moisture Outlook Colorado s 2003 Moisture Outlook Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu How we got into this drought! Fort

More information

Drought in Southeast Colorado

Drought in Southeast Colorado Drought in Southeast Colorado Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu 1 Historical Perspective on Drought Tourism

More information

Introduction to Forecasting

Introduction to Forecasting Introduction to Forecasting Introduction to Forecasting Predicting the future Not an exact science but instead consists of a set of statistical tools and techniques that are supported by human judgment

More information

2003 Moisture Outlook

2003 Moisture Outlook 2003 Moisture Outlook Nolan Doesken and Roger Pielke, Sr. Colorado Climate Center Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu Through 1999 Through 1999 Fort Collins Total Water

More information

Computing & Telecommunications Services Monthly Report January CaTS Help Desk. Wright State University (937)

Computing & Telecommunications Services Monthly Report January CaTS Help Desk. Wright State University (937) January 215 Monthly Report Computing & Telecommunications Services Monthly Report January 215 CaTS Help Desk (937) 775-4827 1-888-775-4827 25 Library Annex helpdesk@wright.edu www.wright.edu/cats/ Last

More information

Computing & Telecommunications Services

Computing & Telecommunications Services Computing & Telecommunications Services Monthly Report September 214 CaTS Help Desk (937) 775-4827 1-888-775-4827 25 Library Annex helpdesk@wright.edu www.wright.edu/cats/ Table of Contents HEAT Ticket

More information

Climate also has a large influence on how local ecosystems have evolved and how we interact with them.

Climate also has a large influence on how local ecosystems have evolved and how we interact with them. The Mississippi River in a Changing Climate By Paul Lehman, P.Eng., General Manager Mississippi Valley Conservation (This article originally appeared in the Mississippi Lakes Association s 212 Mississippi

More information

GAMINGRE 8/1/ of 7

GAMINGRE 8/1/ of 7 FYE 09/30/92 JULY 92 0.00 254,550.00 0.00 0 0 0 0 0 0 0 0 0 254,550.00 0.00 0.00 0.00 0.00 254,550.00 AUG 10,616,710.31 5,299.95 845,656.83 84,565.68 61,084.86 23,480.82 339,734.73 135,893.89 67,946.95

More information

What is the difference between Weather and Climate?

What is the difference between Weather and Climate? What is the difference between Weather and Climate? Objective Many people are confused about the difference between weather and climate. This makes understanding the difference between weather forecasts

More information

CLIMATE OF THE ZUMWALT PRAIRIE OF NORTHEASTERN OREGON FROM 1930 TO PRESENT

CLIMATE OF THE ZUMWALT PRAIRIE OF NORTHEASTERN OREGON FROM 1930 TO PRESENT CLIMATE OF THE ZUMWALT PRAIRIE OF NORTHEASTERN OREGON FROM 19 TO PRESENT 24 MAY Prepared by J. D. Hansen 1, R.V. Taylor 2, and H. Schmalz 1 Ecologist, Turtle Mt. Environmental Consulting, 652 US Hwy 97,

More information

Science Standard 1: Students analyze monthly precipitation and temperature records, displayed in bar charts, collected in metric units (mm).

Science Standard 1: Students analyze monthly precipitation and temperature records, displayed in bar charts, collected in metric units (mm). Title: Precipitation Patterns across the Globe NSF GK-12 Fellow: Terry Legg Type of Lesson: STEM Grade Level(s): 4 th - 7 th grade This activity can be tailored to older, more advanced students by having

More information

TILT, DAYLIGHT AND SEASONS WORKSHEET

TILT, DAYLIGHT AND SEASONS WORKSHEET TILT, DAYLIGHT AND SEASONS WORKSHEET Activity Description: Students will use a data table to make a graph for the length of day and average high temperature in Utah. They will then answer questions based

More information

GRADE 6 GEOGRAPHY TERM 1 LATITUDE AND LONGITUDE (degrees)

GRADE 6 GEOGRAPHY TERM 1 LATITUDE AND LONGITUDE (degrees) 1 GRADE 6 GEOGRAPHY TERM 1 LATITUDE AND LONGITUDE (degrees) Contents Lines of Latitude... 2 Lines of Longitude... 3 The hemispheres of The Earth... 4 Finding countries and cities on a map using latitude

More information

Global Climates. Name Date

Global Climates. Name Date Global Climates Name Date No investigation of the atmosphere is complete without examining the global distribution of the major atmospheric elements and the impact that humans have on weather and climate.

More information

LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S):

LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S): GEOG 101L PHYSICAL GEOGRAPHY LAB SAN DIEGO CITY COLLEGE SELKIN 1 LAB 3: THE SUN AND CLIMATE NAME: LAB PARTNER(S): The main objective of today s lab is for you to be able to visualize the sun s position

More information

Local Ctimatotogical Data Summary White Hall, Illinois

Local Ctimatotogical Data Summary White Hall, Illinois SWS Miscellaneous Publication 98-5 STATE OF ILLINOIS DEPARTMENT OF ENERGY AND NATURAL RESOURCES Local Ctimatotogical Data Summary White Hall, Illinois 1901-1990 by Audrey A. Bryan and Wayne Armstrong Illinois

More information

Lesson 8: Variability in a Data Distribution

Lesson 8: Variability in a Data Distribution Classwork Example 1: Comparing Two Distributions Robert s family is planning to move to either New York City or San Francisco. Robert has a cousin in San Francisco and asked her how she likes living in

More information

Funding provided by NOAA Sectoral Applications Research Project CLIMATE. Basic Climatology Colorado Climate Center

Funding provided by NOAA Sectoral Applications Research Project CLIMATE. Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral Applications Research Project CLIMATE Basic Climatology Colorado Climate Center Remember These? Factor 1: Our Energy Source Factor 2: Revolution & Tilt Factor 3: Rotation!

More information

The Colorado Drought of 2002 in Perspective

The Colorado Drought of 2002 in Perspective The Colorado Drought of 2002 in Perspective Colorado Climate Center Nolan Doesken and Roger Pielke, Sr. Prepared by Tara Green and Odie Bliss http://climate.atmos.colostate.edu Known Characteristics of

More information

Weather History on the Bishop Paiute Reservation

Weather History on the Bishop Paiute Reservation Weather History on the Bishop Paiute Reservation -211 For additional information contact Toni Richards, Air Quality Specialist 76 873 784 toni.richards@bishoppaiute.org Updated 2//214 3:14 PM Weather History

More information

Technical note on seasonal adjustment for M0

Technical note on seasonal adjustment for M0 Technical note on seasonal adjustment for M0 July 1, 2013 Contents 1 M0 2 2 Steps in the seasonal adjustment procedure 3 2.1 Pre-adjustment analysis............................... 3 2.2 Seasonal adjustment.................................

More information

2003 Water Year Wrap-Up and Look Ahead

2003 Water Year Wrap-Up and Look Ahead 2003 Water Year Wrap-Up and Look Ahead Nolan Doesken Colorado Climate Center Prepared by Odie Bliss http://ccc.atmos.colostate.edu Colorado Average Annual Precipitation Map South Platte Average Precipitation

More information

REPORT ON LABOUR FORECASTING FOR CONSTRUCTION

REPORT ON LABOUR FORECASTING FOR CONSTRUCTION REPORT ON LABOUR FORECASTING FOR CONSTRUCTION For: Project: XYZ Local Authority New Sample Project Contact us: Construction Skills & Whole Life Consultants Limited Dundee University Incubator James Lindsay

More information

Section II: Assessing Chart Performance. (Jim Benneyan)

Section II: Assessing Chart Performance. (Jim Benneyan) Section II: Assessing Chart Performance (Jim Benneyan) 1 Learning Objectives Understand concepts of chart performance Two types of errors o Type 1: Call an in-control process out-of-control o Type 2: Call

More information

Making a Climograph: GLOBE Data Explorations

Making a Climograph: GLOBE Data Explorations Making a Climograph: A GLOBE Data Exploration Purpose Students learn how to construct and interpret climographs and understand how climate differs from weather. Overview Students calculate and graph maximum

More information

Multivariate Regression Model Results

Multivariate Regression Model Results Updated: August, 0 Page of Multivariate Regression Model Results 4 5 6 7 8 This exhibit provides the results of the load model forecast discussed in Schedule. Included is the forecast of short term system

More information

FEB DASHBOARD FEB JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

FEB DASHBOARD FEB JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Positive Response Compliance 215 Compliant 215 Non-Compliant 216 Compliant 216 Non-Compliant 1% 87% 96% 86% 96% 88% 89% 89% 88% 86% 92% 93% 94% 96% 94% 8% 6% 4% 2% 13% 4% 14% 4% 12% 11% 11% 12% JAN MAR

More information

Table of Contents. Page

Table of Contents. Page Eighteen Years (1990 2007) of Climatological Data on NMSU s Corona Range and Livestock Research Center Research Report 761 L. Allen Torell, Kirk C. McDaniel, Shad Cox, Suman Majumdar 1 Agricultural Experiment

More information

Regents Earth Science Unit 7: Water Cycle and Climate

Regents Earth Science Unit 7: Water Cycle and Climate Regents Earth Science Unit 7: Water Cycle and Climate Name Section Coastal and Continental Temperature Ranges Lab # Introduction: There are large variations in average monthly temperatures among cities

More information

How are adding integers and subtracting integers related? Work with a partner. Use integer counters to find 4 2. Remove 2 positive counters.

How are adding integers and subtracting integers related? Work with a partner. Use integer counters to find 4 2. Remove 2 positive counters. . How are adding integers and subtracting integers related? ACTIVITY: Work with a partner. Use integer counters to find 4. Start with 4 positive counters. Remove positive counters. What is the total number

More information

What Does It Take to Get Out of Drought?

What Does It Take to Get Out of Drought? What Does It Take to Get Out of Drought? Nolan J. Doesken Colorado Climate Center Colorado State University http://ccc.atmos.colostate.edu Presented at the Insects, Diseases and Drought Workshop, May 19,

More information

2016 Meteorology Summary

2016 Meteorology Summary 2016 Meteorology Summary New Jersey Department of Environmental Protection AIR POLLUTION AND METEOROLOGY Meteorology plays an important role in the distribution of pollution throughout the troposphere,

More information

Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University

Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University Tracking the Climate Of Northern Colorado Nolan Doesken State Climatologist Colorado Climate Center Colorado State University Northern Colorado Business Innovations November 20, 2013 Loveland, Colorado

More information

Communicating Climate Change Consequences for Land Use

Communicating Climate Change Consequences for Land Use Communicating Climate Change Consequences for Land Use Site: Prabost, Skye. Event: Kyle of Lochalsh, 28 th February 28 Further information: http://www.macaulay.ac.uk/ladss/comm_cc_consequences.html Who

More information

CGE TRAINING MATERIALS ON VULNERABILITY AND ADAPTATION ASSESSMENT. Climate change scenarios

CGE TRAINING MATERIALS ON VULNERABILITY AND ADAPTATION ASSESSMENT. Climate change scenarios CGE TRAINING MATERIALS ON VULNERABILITY AND ADAPTATION ASSESSMENT Climate change scenarios Outline Climate change overview Observed climate data Why we use scenarios? Approach to scenario development Climate

More information

Champaign-Urbana 1998 Annual Weather Summary

Champaign-Urbana 1998 Annual Weather Summary Champaign-Urbana 1998 Annual Weather Summary ILLINOIS STATE WATER SURVEY Audrey Bryan, Weather Observer 2204 Griffith Dr. Champaign, IL 61820 wxobsrvr@sparc.sws.uiuc.edu The development of the El Nìno

More information

SEPTEMBER 2013 REVIEW

SEPTEMBER 2013 REVIEW Monthly Long Range Weather Commentary Issued: October 21, 2013 Steven A. Root, CCM, President/CEO sroot@weatherbank.com SEPTEMBER 2013 REVIEW Climate Highlights The Month in Review The average temperature

More information

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem

Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem Constructing a typical meteorological year -TMY for Voinesti fruit trees region and the effects of global warming on the orchard ecosystem ARMEANU ILEANA*, STĂNICĂ FLORIN**, PETREHUS VIOREL*** *University

More information

Champaign-Urbana 1999 Annual Weather Summary

Champaign-Urbana 1999 Annual Weather Summary Champaign-Urbana 1999 Annual Weather Summary ILLINOIS STATE WATER SURVEY 2204 Griffith Dr. Champaign, IL 61820 wxobsrvr@sws.uiuc.edu Maria Peters, Weather Observer A major snowstorm kicked off the new

More information

Variability of Reference Evapotranspiration Across Nebraska

Variability of Reference Evapotranspiration Across Nebraska Know how. Know now. EC733 Variability of Reference Evapotranspiration Across Nebraska Suat Irmak, Extension Soil and Water Resources and Irrigation Specialist Kari E. Skaggs, Research Associate, Biological

More information

Monthly Long Range Weather Commentary Issued: February 15, 2015 Steven A. Root, CCM, President/CEO

Monthly Long Range Weather Commentary Issued: February 15, 2015 Steven A. Root, CCM, President/CEO Monthly Long Range Weather Commentary Issued: February 15, 2015 Steven A. Root, CCM, President/CEO sroot@weatherbank.com JANUARY 2015 Climate Highlights The Month in Review During January, the average

More information