The relative importance of deep/very deep vs. shallow/moderate convection to rapid intensification: Results from 14 years of TRMM

Size: px
Start display at page:

Download "The relative importance of deep/very deep vs. shallow/moderate convection to rapid intensification: Results from 14 years of TRMM"

Transcription

1 The relative importance of deep/very deep vs. shallow/moderate convection to rapid intensification: Results from 14 years of TRMM Haiyan Jiang Florida International University Former & Current Graduate Students: Cheng Tao, Joe Zagrodnik (at UW now), Margie Kieper Acknowledgements: Ed Zipser, Dan Cecil, Rob Rogers, Fuqing Zhang, and two anonymous reviewers HFIP RI workshop, UM RSMAS, Nov. 18,

2 Proposed Mechanisms for TC Intensification Symmetric Mechanism: symmetric heating is more important (Ooyama 1969, Shapiro and Willoughby 1982, Nolan et al. 2007). Asymmetric Mechanism: Asymmetric heating by deep convection is the preferred spin-up mechanism vortical hot towers (VHTs) (Hendricks et al. 2004, Montgomery et al. 2006, Nguyen et al. 2008, Montgomery and Smith 2011). For Rapid Intensification (RI) particularly, observational evidence of asymmetric deep convection in TCs undergoing RI is reported in several case studies (Reasor et al. 2009, Guimond et al. 2010; Molinari and Vollaro 2012; Nguyen and Molinari 2012). However, satellite-based statistical studies have indicated that the symmetry of widespread precipitation is important in predicting/initiating RI (Jiang 2012, Kieper and Jiang 2012, Jiang and Ramirez 2013, Zagrodnik and Jiang 2014). 2

3 Definition of Rapid Intensification (RI) General definition: 24 hour Intensity Increase >= 30 kt (Kaplan and DeMaria 2003). This only defines the intensification rate, not the duration, although forecasters usually consider each 24-h period. The concept of RI event: A RI event can continue for hours and contain multiple, continuous, and overlapping 24-h periods in which the intensity increased in each period by 30 kt or more (Kieper and Jiang 2012). Each RI event includes the onset of RI, in the middle of RI, and the ending period of RI. To forecast RI, at least 24-h lead time is generally required. A careful examination found that most above-mentioned observational case studies on deep convection focused on the ending period of RI: Reasor et al (2009) and Reasor and Eastin (2012): the asymmetric deep convection in Hurriane Guillermo (1997) was observed around 18 hours before RI ended and 32 hours after the onset of RI. Guimond et al. (2010): Hot towers in Hurricane Dennis (2005) were observed 22 hours before RI ended. Molinari and Vollaro (2010): supercell/strong lightning was observed only 7 hours before RI ended. Nguyen and Molinari (2012): Deep convection/hot tower in Hurricane Irene (1999) was observed only 5 hours before the RI event ended. 3

4 Review of Satellite-based Statistical Studies All studies reviewed below focused on the precipitation and convective properties in the inner core for RI Initial and/or RI continuing categories (not the RI ending period). So their results have implications on both RI prediction and physical understanding of how RI is initiated and maintained. Jiang (2012) tested the hot tower hypothesis on RI using 11-yr TRMM radar data. It was found that the probability of future 24-h RI does not increase significantly when one or more hot towers (defined as 20 dbz echo top >= 14.5 km) exists in the inner core, and more than 50% of storms underwent RI without hot towers in the inner core. Jiang and Ramirez (2013) found that storms that will undergo RI in the next 24 hours do not necessarily have the most intense convection in the inner core, but they always have the largest raining area & volumetric rain in the inner core than non-ri storms. Zagrondik and Jiang (2014) found that the rainfall frequency is better correlated to TC future intensity change than convective intensity parameters. 4

5 Review of Satellite-based Statistical Studies Kieper and Jiang (2012) found that a symmetric ring ( Margie s ring ) on NRL 37 GHz color images is a very good predictor of RI in the next 24-h. The ring is closed by bright cyan color with some pink regions scattered mostly on the outer edge of the ring asymmetrically. [Lee et al. (2002): Cyan: low-level clouds or warm rain; Pink: deep convection] The bright cyan+pink color ring appeared during RI initial and RI continuing period of 23 out of 28 (82%)RI events in the Atlantic during By using the SHIPS RI Index to select only favorable environmental conditions, the realtime test conducted by M. Kieper predicted all Atlantic RI event in 2008 correctly. 5

6 What s in the 37 GHz ring? Is it convective? Precipitative? Or Just an indication of increased surface winds? Harnos and Nesbitt (2011) claimed a moderately intense convective ring forming 6-h before RI begins and intensifying over the following 24-h period: 50% occurrence of ice scattering signature (85 GHz PCT<250 K, equivalent to 17 dbz radar echo reaching 10 km, Cecil and Zipser 2002). However, they did not mirror SH microwave overpasses relative to shear before compositing with NH overpasses. If they did, the % occurrence would be much lower. Zagrodnik and Jiang (2014): a ring of only 5% occurrence of TRMM precipitation radar (PR) reflectivity > 20 dbz reaching 10 km for RI continuing storms; but a ring of 70% occurrence of near-surface reflectivity > 20 dbz. This indicates that Margie s ring is more likely to be precipitative than moderately intense convective. From Fig. 3 of Harnos and Nesbitt (2011)) % occurrence of moderately intense convection (reflectivity >20 dbz reaching 10 km) % occurrence of rainfall (nearsfc reflectivity >20dBZ), Zagrodnik and Jiang (2014) 6

7 Questions to answer However, the rain ring found by Zagrodnik and Jiang (2014) is only at 70% occurrence. Could that be due to the smaller footprint size of PR than 37 GHz? Although observational case studies emphasized the role of asymmetric deep convection in RI, satellite-based composite studies suggested that the symmetry of precipitation containing not much asymmetric deep convection is important in predicting and initiating RI. An important question raised from here is, What is the relative importance of convection in different depth/convective intensity to RI? 7

8 A recent work by Tao and Jiang (2014, JCLI manuscript under revision): NEXT, a series of slides will show the statistics/composites from the 14-yr TRMM Precipitation Radar (PR) over 1139 TC inner cores (yes, we flipped SH overpasses relative to shear), all having moderately favorable conditions for RI, showing the frequency distribution with respect to the hpa shear vector, of Very deep convection (20 dbz top > 14 km) Moderately deep convection (20 dbz top km) Moderate convection (20 dbz top 6 10 km) Shallow convection (20 dbz top below 6 km) sorted by the 24-h future TC intensity change of Weakening (W) Neutral (N; little change) Slowly intensifying (SI), or Rapidly intensifying (RI), with these split into Near the onset of RI (RI initial), or In the middle of RI (RI continuing)

9 Percent Occurrence of VERY DEEP Convection (20 dbz top > 14 km; shear direction pointing upward) - In general, very deep convection is very rare in all TCs (<4% occurrence). - More very deep convection for SI storms and the peak is closer to the TC center than weakening and neutral storms (Consistent with Rogers et al. 2013) - The least amount of very deep convection is found in storms near the onset of RI. So it s very unlikely to be a trigger of RI. - As RI continues, very deep convection increases a bit and becomes upshear-left dominant.

10 Percent Occurrence of MODERATELY DEEP Convection (20 dbz top km) - Moderately deep convection is downshear-left dominant for W, N, SI storms, but upshear-left dominant for RI storms. - Significantly increase of moderately deep convection occur in RI continuing storms only, suggesting that RI is likely triggered by other mechanisms and the appearance of more deep convection in the middle of RI is more likely a response or positive feedback to changes in the vortex that occur earlier in the SI to beginning of RI period.

11 Percent Occurrence of MODERATE Convection (20 dbz top 6 10 km) - Moderate convection is downshear-left dominant for all TCs (Corbosiero and Molinari 2002, Chen et al. 2006). - Moderate convection becomes more widespread (max. frequency >= 50%) and more symmetric at the onset of RI, and further more as RI continues.

12 Percent Occurrence of SHALLOW Convection (20 dbz top below 6 km) - Similar as moderate convection, shallow convection also becomes more widespread (max. frequency >= 35%) and more symmetric, and the peak is closer to the storm center for storms near the onset of RI. - As RI continues, the shallow convection does not increase much, just becomes more symmetric. - Shallow convection is downshear left dominant for non-ri storms, but downshear-right dominant for both RI initial and RI continuing storms.

13 Percent Occurrence of ALL Convection (Downgraded to 37 GHz footprint size) - Downshear-left dominant for total convection in all TCs (Corbosiero and Molinari 2002, Chen et al. 2006) - A ring of ~90% occurrence of all convection is found for RI continuing storms (storms that have undergone RI for at least 12 hours and will undergo RI in the next 24 hours). - Finally this is almost exactly Margie s ring (recall that only 82% of RI storms had the 37 GHz ring, as in Kieper and Jiang 2012). - Margie s ring is mostly contributed by shallow-to-moderate convection. Therefore, we argue that it s reasonable to call it a precipitative ring.

14

15 Conclusions The contribution to total volumetric rain and total latent heating in the inner core from deep-to-very deep convection is less in RI storms than in non-ri storms, suggesting that deep convection is more likely a symptom rather than a trigger of RI. More widespread and more symmetric shallow-tomoderate convection seems to be the most reliable indicator/predictor of RI. Margie s 37 GHz ring is mainly precipitative. Thanks for you attention! 15

Necessary Conditions for Tropical Cyclone Rapid Intensification as Derived from 11 Years of TRMM Data

Necessary Conditions for Tropical Cyclone Rapid Intensification as Derived from 11 Years of TRMM Data 1SEPTEMBER 2013 J I A N G A N D R A M I R E Z 6459 Necessary Conditions for Tropical Cyclone Rapid Intensification as Derived from 11 Years of TRMM Data HAIYAN JIANG Department of Earth and Environment,

More information

The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection

The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection 1164 M O N T H L Y W E A T H E R R E V I E W VOLUME 140 The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection HAIYAN JIANG Department of Earth and Environment,

More information

Inner core dynamics: Eyewall Replacement and hot towers

Inner core dynamics: Eyewall Replacement and hot towers Inner core dynamics: Eyewall Replacement and hot towers FIU Undergraduate Hurricane Internship Lecture 4 8/13/2012 Why inner core dynamics is important? Current TC intensity and structure forecasts contain

More information

Topic 1: Tropical Cyclone Structure and Intensity Change

Topic 1: Tropical Cyclone Structure and Intensity Change Topic 1: Tropical Cyclone Structure and Intensity Change Topic 1.2: Inner-core Impacts Rapporteur: Elizabeth Ritchie (USA) Working Group: Mai Nguyen (AUS) Peter Otto (AUS) Gregory Tripoli (USA) Jonathan

More information

Convective and Rainfall Properties of Tropical Cyclone Inner Cores and Rainbands from 11 Years of TRMM Data

Convective and Rainfall Properties of Tropical Cyclone Inner Cores and Rainbands from 11 Years of TRMM Data FEBRUARY 2013 J I A N G E T A L. 431 Convective and Rainfall Properties of Tropical Cyclone Inner Cores and Rainbands from 11 Years of TRMM Data HAIYAN JIANG Department of Earth & Environment, Florida

More information

10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat

10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat 10D.2 Methods for Introducing Vortical Hot Tower Heating in Numerical Models: Retrieving Latent Heat Stephen R. Guimond Florida State University, Department of Meteorology and Center for Ocean-Atmospheric

More information

Vertical Structure of Hurricane Eyewalls as Seen by the TRMM Precipitation Radar

Vertical Structure of Hurricane Eyewalls as Seen by the TRMM Precipitation Radar AUGUST 2011 H E N C E A N D HOUZE 1637 Vertical Structure of Hurricane Eyewalls as Seen by the TRMM Precipitation Radar DEANNA A. HENCE AND ROBERT A. HOUZE JR. University of Washington, Seattle, Washington

More information

Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006)

Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006) ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 27, NO. 3, 2010, 552 561 Effects of Vertical Wind Shear on Intensity and Rainfall Asymmetries of Strong Tropical Storm Bilis (2006) YU Jinhua 1,2 (

More information

Operational and Statistical Prediction of Rapid Intensity Change. Mark DeMaria and Eric Blake, NCEP/NHC John Kaplan, AOML/HRD

Operational and Statistical Prediction of Rapid Intensity Change. Mark DeMaria and Eric Blake, NCEP/NHC John Kaplan, AOML/HRD Operational and Statistical Prediction of Rapid Intensity Change Mark DeMaria and Eric Blake, NCEP/NHC John Kaplan, AOML/HRD Outline Evaluation of NHC forecasts and deterministic models for rapid intensification

More information

Quantification of Precipitation Asymmetries in Tropical Cyclones and Their Relationship to Storm Intensity Changes Using TRMM Data

Quantification of Precipitation Asymmetries in Tropical Cyclones and Their Relationship to Storm Intensity Changes Using TRMM Data Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 10-12-2017 Quantification of Precipitation Asymmetries in Tropical Cyclones and Their

More information

PUBLICATIONS. Journal of Advances in Modeling Earth Systems

PUBLICATIONS. Journal of Advances in Modeling Earth Systems PUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE./MS7 Key Points: Predictability of TCs varies under different environmental shear conditions The larger the shear, the less predictable

More information

11D.6 DIURNAL CYCLE OF TROPICAL DEEP CONVECTION AND ANVIL CLOUDS: GLOBAL DISTRIBUTION USING 6 YEARS OF TRMM RADAR AND IR DATA

11D.6 DIURNAL CYCLE OF TROPICAL DEEP CONVECTION AND ANVIL CLOUDS: GLOBAL DISTRIBUTION USING 6 YEARS OF TRMM RADAR AND IR DATA 11D.6 DIURNAL CYCLE OF TROPICAL DEEP CONVECTION AND ANVIL CLOUDS: GLOBAL DISTRIBUTION USING 6 YEARS OF TRMM RADAR AND IR DATA 1. INTRODUCTION Before the launch of the TRMM satellite in late 1997, most

More information

DANIEL HARNOS THESIS. Urbana, Illinois

DANIEL HARNOS THESIS. Urbana, Illinois CONVECTIVE STRUCTURE AND ITS EVOLUTION IN TROPICAL CYCLONES AS OBSERVED BY PASSIVE MICROWAVE SENSORS IN RELATION TO INTENSITY CHANGE BY DANIEL HARNOS THESIS Submitted in partial fulfillment of the requirements

More information

A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of Inner-core Processes

A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of Inner-core Processes A Numerical Study on Rapid Intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of Inner-core Processes Xiaomin Chen 1,2, Yuqing Wang 2, *, Juan Fang 1, and Ming Xue 1,3 1 Key

More information

A simulation study on the rapid intensification of Typhoon Megi (2010) in vertical wind shear

A simulation study on the rapid intensification of Typhoon Megi (2010) in vertical wind shear ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 17: 630 638 (2016) Published online 11 November 2016 in Wiley Online Library (wileyonlinelibrary.com) DOI:.02/asl.713 A simulation study on the rapid intensification

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Mesoscale Aspects of the Downshear Reformation of a Tropical Cyclone

Mesoscale Aspects of the Downshear Reformation of a Tropical Cyclone JANUARY 2006 MOLINARI ET AL. 341 Mesoscale Aspects of the Downshear Reformation of a Tropical Cyclone JOHN MOLINARI Department of Earth and Atmospheric Sciences, The University at Albany, State University

More information

The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones

The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones 2110 MONTHLY WEATHER REVIEW VOLUME 130 The Effects of Vertical Wind Shear on the Distribution of Convection in Tropical Cyclones KRISTEN L. CORBOSIERO AND JOHN MOLINARI Department of Earth and Atmospheric

More information

Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size

Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size Improving Tropical Cyclone Guidance Tools by Accounting for Variations in Size John A. Knaff 1, Mark DeMaria 1, Scott P. Longmore 2 and Robert T. DeMaria 2 1 NOAA Center for Satellite Applications and

More information

地球系统科学前沿讲座 台风研究现状和问题 林岩銮

地球系统科学前沿讲座 台风研究现状和问题 林岩銮 地球系统科学前沿讲座 台风研究现状和问题 林岩銮 2013.3.18 Satellite image of Hurricane Floyd approaching the east coast of Florida in 1999. The image has been digitally enhanced to lend a three-dimensional perspective. Credit:

More information

Advanced Satellite Remote Sensing: Microwave Remote Sensing. August 11, 2011

Advanced Satellite Remote Sensing: Microwave Remote Sensing. August 11, 2011 Advanced Satellite Remote Sensing: Microwave Remote Sensing FIU HRSSERP Internship August 11, 2011 What can Microwave Satellites Measure? Ocean Surface Wind Speed SeaIce Concentration, Edge, and age Precipitation

More information

8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures

8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures 8.2 Numerical Study of Relationships between Convective Vertical Velocity, Radar Reflectivity Profiles, and Passive Microwave Brightness Temperatures Yaping Li, Edward J. Zipser, Steven K. Krueger, and

More information

The Energetics of the Rapid Intensification of Hurricane Earl (2010) Daniel Nielsen

The Energetics of the Rapid Intensification of Hurricane Earl (2010) Daniel Nielsen The Energetics of the Rapid Intensification of Hurricane Earl (2010) Daniel Nielsen A scholarly paper in partial fulfillment of the requirements for the degree of Master of Science August 2016 Department

More information

A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins

A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins 220 W E A T H E R A N D F O R E C A S T I N G VOLUME 25 A Revised Tropical Cyclone Rapid Intensification Index for the Atlantic and Eastern North Pacific Basins JOHN KAPLAN NOAA/AOML/Hurricane Research

More information

Program Overview/Syllabus 2013 FIU Hurricane and Remote Sensing Summer Education and Research Internship Program (HRSSERP)

Program Overview/Syllabus 2013 FIU Hurricane and Remote Sensing Summer Education and Research Internship Program (HRSSERP) Data/Time: August 12-23, 2013 10:00 AM 3:00 PM Location: FIU Modesto A. Maidique Campus, Room PC 442 PI: Haiyan Jiang, FIU Department of Earth & Environment (Office PC 342B) Email: haiyan.jiang@fiu.edu

More information

Tropical Cyclone Formation: Results

Tropical Cyclone Formation: Results Tropical Cyclone Formation: Results from PREDICT (PRE Depression Investigation of Cloud systems in the Tropics) collaborator on this presentation: Dave Ahijevych (NCAR) Chris Davis National Center for

More information

Quadrant Distribution of Tropical Cyclone Inner-Core Kinematics in Relation to Environmental Shear

Quadrant Distribution of Tropical Cyclone Inner-Core Kinematics in Relation to Environmental Shear JULY 2014 D E H A R T E T A L. 2713 Quadrant Distribution of Tropical Cyclone Inner-Core Kinematics in Relation to Environmental Shear JENNIFER C. DEHART AND ROBERT A. HOUZE JR. University of Washington,

More information

Copyright Jennifer DeHart

Copyright Jennifer DeHart Copyright 2014 Jennifer DeHart Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear Jennifer C. DeHart A thesis submitted in partial fulfillment of the requirements

More information

Mélicie Desflots* RSMAS, University of Miami, Miami, Florida

Mélicie Desflots* RSMAS, University of Miami, Miami, Florida 15B.6 RAPID INTENSITY CHANGE IN HURRICANE LILI (2002) Mélicie Desflots* RSMAS, University of Miami, Miami, Florida 1. INTRODUCTION Rapid intensity change in tropical cyclones is one of the most difficult

More information

The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear

The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear The Operational Challenges of Forecasting TC Intensity Change in the Presence of Dry Air and Strong Vertical Shear Jamie R. Rhome,* and Richard D. Knabb NOAA/NWS/NCEP/Tropical Prediction Center/National

More information

Aircraft Observations of Tropical Cyclones. Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL

Aircraft Observations of Tropical Cyclones. Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL Aircraft Observations of Tropical Cyclones Robert Rogers NOAA/AOML Hurricane Research Division Miami, FL 1 Motivation Why are observations important? Many important physical processes within hurricanes

More information

A Tropical Cyclone with a Very Large Eye

A Tropical Cyclone with a Very Large Eye JANUARY 1999 PICTURES OF THE MONTH 137 A Tropical Cyclone with a Very Large Eye MARK A. LANDER University of Guam, Mangilao, Guam 9 September 1997 and 2 March 1998 1. Introduction The well-defined eye

More information

Eight Years of TRMM Data: Understanding Regional Mechanisms Behind the Diurnal Cycle

Eight Years of TRMM Data: Understanding Regional Mechanisms Behind the Diurnal Cycle Eight Years of TRMM Data: Understanding Regional Mechanisms Behind the Diurnal Cycle Steve Nesbitt, Rob Cifelli, Steve Rutledge Colorado State University Chuntao Liu, Ed Zipser University of Utah Funding

More information

Mentor: Edward Zipser Professor, Atmospheric Sciences University of Utah. Presenter: Petra Miku

Mentor: Edward Zipser Professor, Atmospheric Sciences University of Utah. Presenter: Petra Miku Presenter: Petra Miku Mentor: Edward Zipser Professor, Atmospheric Sciences University of Utah Split Workshop in Atmospheric Physics and Oceanography, May 22-28, 2011 Split, Croatia 1. Part I: convective

More information

P2.19 COMPOSITE STRUCTURE OF VORTICAL HOT TOWERS IN HURRICANE GUILLERMO (1997)

P2.19 COMPOSITE STRUCTURE OF VORTICAL HOT TOWERS IN HURRICANE GUILLERMO (1997) P2.19 COMPOSITE STRUCTURE OF VORTICAL HOT TOWERS IN HURRICANE GUILLERMO (1997) Kelly C. Smith* Matthew D. Eastin Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte,

More information

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17

Chapter 24. Tropical Cyclones. Tropical Cyclone Classification 4/19/17 Chapter 24 Tropical Cyclones Tropical Cyclones Most destructive storms on the planet Originate over tropical waters, but their paths often take them over land and into midlatitudes Names Hurricane (Atlantic

More information

LIGHTNING DISTRIBUTION AND EYEWALL OUTBREAKS IN TROPICAL CYCLONES DURING LANDFALL

LIGHTNING DISTRIBUTION AND EYEWALL OUTBREAKS IN TROPICAL CYCLONES DURING LANDFALL LIGHTNING DISTRIBUTION AND EYEWALL OUTBREAKS IN TROPICAL CYCLONES DURING LANDFALL Wenjuan Zhang* 1, Yijun Zhang 1,2, Dong Zheng 1, Xiuji Zhou 1,2 1 Laboratory of Lightning Physics and Protection Engineering,

More information

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall. Measuring Mission (TRMM) Microwave Imager: A Global Perspective

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall. Measuring Mission (TRMM) Microwave Imager: A Global Perspective Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective Manuel Lonfat 1, Frank D. Marks, Jr. 2, and Shuyi S. Chen 1*

More information

Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes

Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes Chapter 3 Convective Dynamics 3.4. Bright Bands, Bow Echoes and Mesoscale Convective Complexes Photographs Todd Lindley Bright band associated with stratiform precipitation in a squall line system 1 Bright

More information

Assessing Relations Between Changes in Tropical Cyclone Intensity and Lightning Patterns Using GIS Based Methods

Assessing Relations Between Changes in Tropical Cyclone Intensity and Lightning Patterns Using GIS Based Methods Assessing Relations Between Changes in Tropical Cyclone Intensity and Lightning Patterns Using GIS Based Methods Marcus D. Austin Henry E. Fuelberg Department of Meteorology Florida State University Tallahassee,

More information

PUBLICATIONS. Journal of Advances in Modeling Earth Systems

PUBLICATIONS. Journal of Advances in Modeling Earth Systems PUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE 10.1002/2016MS000709 Key Points: Eye excess energy results predominantly from surface entropy flux in the eye region of a TC

More information

P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES

P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES Thomas A. Jones* and Daniel J. Cecil Department of Atmospheric Science University of Alabama in Huntsville Huntsville, AL 1. Introduction

More information

Advanced diagnostics of tropical cyclone inner-core structure using aircraft observations

Advanced diagnostics of tropical cyclone inner-core structure using aircraft observations Advanced diagnostics of tropical cyclone inner-core structure using aircraft observations Jun Zhang, David Nolan, Robert Rogers, Paul Reasor and Sylvie Lorsolo HFIP Proposal Review, 5/15/2013 Acknowledgements

More information

Feel free to ask for help also, we will try our best to answer your question or at least direct you to where you can find the answer.

Feel free to ask for help also, we will try our best to answer your question or at least direct you to where you can find the answer. Page 1 Objectives: Become familiar with online resources and image searching tools Interpret different types of satellite imagery Learn about the variety of different types of TCs Part 1: Browse available

More information

A Geospatial Analysis of Convective Rainfall Regions Within Tropical Cyclones After Landfall

A Geospatial Analysis of Convective Rainfall Regions Within Tropical Cyclones After Landfall International Journal of Applied Geospatial Research, 1(2), 69-89, April-June 2010 69 A Geospatial Analysis of Convective Rainfall Regions Within Tropical Cyclones After Landfall Corene J. Matyas, University

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

PUBLICATIONS. Journal of Geophysical Research: Atmospheres PUBLICATIONS RESEARCH ARTICLE Key Points: Lightning in TCs over NP is more likely to occur in TD and TS intensity level Lightning in the inner core may be a better indicator for NP RI prediction A different

More information

Tropical Cyclones. Objectives

Tropical Cyclones. Objectives Tropical Cyclones FIU Undergraduate Hurricane Internship Lecture 2 8/8/2012 Objectives From this lecture you should understand: Global tracks of TCs and the seasons when they are most common General circulation

More information

Initialization of Tropical Cyclone Structure for Operational Application

Initialization of Tropical Cyclone Structure for Operational Application DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Initialization of Tropical Cyclone Structure for Operational Application PI: Tim Li IPRC/SOEST, University of Hawaii at

More information

8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES. Miami, FL. Miami, FL

8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES. Miami, FL. Miami, FL 8B.2 MULTISCALE OBSERVATIONS OF TROPICAL CYCLONE STRUCTURE USING AIRBORNE DOPPLER COMPOSITES Robert Rogers 1, Sylvie Lorsolo 2, Paul Reasor 1, John Gamache 1, Frank Marks 1 1 NOAA/AOML Hurricane Research

More information

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective

Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective JULY 2004 LONFAT ET AL. 1645 Precipitation Distribution in Tropical Cyclones Using the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager: A Global Perspective MANUEL LONFAT Rosenstiel School

More information

Effects of Environmental Water Vapor on Tropical Cyclone Structure and Intensity

Effects of Environmental Water Vapor on Tropical Cyclone Structure and Intensity University of Miami Scholarly Repository Open Access Theses Electronic Theses and Dissertations 2007-01-01 Effects of Environmental Water Vapor on Tropical Cyclone Structure and Intensity Derek Ortt University

More information

1C.4 TROPICAL CYCLONE TORNADOES: SYNOPTIC SCALE INFLUENCES AND FORECASTING APPLICATIONS

1C.4 TROPICAL CYCLONE TORNADOES: SYNOPTIC SCALE INFLUENCES AND FORECASTING APPLICATIONS 1C.4 TROPICAL CYCLONE TORNADOES: SYNOPTIC SCALE INFLUENCES AND FORECASTING APPLICATIONS Daniel J. Cecil and Lori A. Schultz University of Alabama in Huntsville, Huntsville, AL, 35805 1. INTRODUCTION Several

More information

Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2. University of Alabama - Huntsville. University Space Research Alliance

Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2. University of Alabama - Huntsville. University Space Research Alliance 12A.4 SEVERE STORM ENVIRONMENTS ON DIFFERENT CONTINENTS Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2 1 University of Alabama - Huntsville 2 University Space Research Alliance 1. INTRODUCTION

More information

Collaborative Research: Impact of Externally and Internally Modulated Convection on Tropical Cyclone Evolution

Collaborative Research: Impact of Externally and Internally Modulated Convection on Tropical Cyclone Evolution Collaborative Research: Impact of Externally and Internally Modulated Convection on Tropical Cyclone Evolution PI: Dr. Matthew D Eastin, University of North Carolina at Charlotte PI: Dr. Paul R. Reasor,

More information

Hurricane Eyewall Slope as Determined from Airborne Radar Reflectivity Data: Composites and Case Studies

Hurricane Eyewall Slope as Determined from Airborne Radar Reflectivity Data: Composites and Case Studies 368 W E A T H E R A N D F O R E C A S T I N G VOLUME 28 Hurricane Eyewall Slope as Determined from Airborne Radar Reflectivity Data: Composites and Case Studies ANDREW T. HAZELTON AND ROBERT E. HART Department

More information

The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification

The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification OCTOBER 2005 C O R B O S I E R O E T A L. 2905 The Structure and Evolution of Hurricane Elena (1985). Part I: Symmetric Intensification KRISTEN L. CORBOSIERO AND JOHN MOLINARI Department of Earth and Atmospheric

More information

16D.3 EYEWALL LIGHTNING OUTBREAKS AND TROPICAL CYCLONE INTENSITY CHANGE

16D.3 EYEWALL LIGHTNING OUTBREAKS AND TROPICAL CYCLONE INTENSITY CHANGE 16D.3 EYEWALL LIGHTNING OUTBREAKS AND TROPICAL CYCLONE INTENSITY CHANGE Nicholas W. S. Demetriades and Ronald L. Holle Vaisala Inc., Tucson, Arizona, USA Steven Businger University of Hawaii Richard D.

More information

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing

Remote Sensing in Meteorology: Satellites and Radar. AT 351 Lab 10 April 2, Remote Sensing Remote Sensing in Meteorology: Satellites and Radar AT 351 Lab 10 April 2, 2008 Remote Sensing Remote sensing is gathering information about something without being in physical contact with it typically

More information

Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012

Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012 Introduction Data & Methodology Results Robert Rogers, Sylvie Lorsolo, Paul Reasor, John Gamache, and Frank Marks Monthly Weather Review January 2012 SARAH DITCHEK ATM 741 02.01.16 Introduction Data &

More information

Effect of the Initial Vortex Structure on Intensification of a Numerically Simulated Tropical Cyclone

Effect of the Initial Vortex Structure on Intensification of a Numerically Simulated Tropical Cyclone April Journal 2018 of the Meteorological Society of Japan, Vol. J. 96, XU No. and 2, Y. pp. WANG 111 126, 2018 111 DOI:10.2151/jmsj.2018-014 Effect of the Initial Vortex Structure on Intensification of

More information

Sensitivity of intensifying Atlantic hurricanes to vortex structure

Sensitivity of intensifying Atlantic hurricanes to vortex structure Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. (5) DOI:./qj.54 Sensitivity of intensifying Atlantic hurricanes to vortex structure Bonnie R. Brown a,b * and Gregory J. Hakim

More information

P1.16 WARM-SECLUSION EXTRATROPICAL CYCLONE DEVELOPMENT: SENSITIVITY TO THE NATURE OF THE INCIPIENT VORTEX

P1.16 WARM-SECLUSION EXTRATROPICAL CYCLONE DEVELOPMENT: SENSITIVITY TO THE NATURE OF THE INCIPIENT VORTEX P1.16 WARM-SECLUSION EXTRATROPICAL CYCLONE DEVELOPMENT: SENSITIVITY TO THE NATURE OF THE INCIPIENT VORTEX Ryan N. Maue* 1 and Robert E. Hart 1 1 Department of Meteorology, Florida State University 1. INTRODUCTION

More information

Convection and Shear Flow in TC Development and Intensification

Convection and Shear Flow in TC Development and Intensification DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Convection and Shear Flow in TC Development and Intensification C.-P. Chang Department of Meteorology Naval Postgraduate

More information

Introduction. One way to monitor the status of this energy is though monitoring sea surface

Introduction. One way to monitor the status of this energy is though monitoring sea surface Sears 1 Understanding Hurricane Intensity Using Sea Surface Height and Temperature Information John Sears (Plymouth State University) Robbie Hood (NASA-MSFC) Frank LaFontaine (Raytheon) Abstract Warmer

More information

Tropical Cyclone Genesis: What we know, and what we don t!

Tropical Cyclone Genesis: What we know, and what we don t! Tropical Cyclone Genesis: What we know, and what we don t! Allison Wing! NSF Postdoctoral Research Fellow! Lamont-Doherty Earth Observatory! Columbia University! Overview! Climatology! What We Know! Theories!

More information

Recent COAMPS-TC Development and Future Plans

Recent COAMPS-TC Development and Future Plans Recent COAMPS-TC Development and Future Plans James D. Doyle, Jon Moskaitis, Rich Hodur1, Sue Chen, Hao Jin, Yi Jin, Will Komaromi, Alex Reinecke, David Ryglicki, Dan Stern2, Shouping Wang Naval Research

More information

J1.2 OBSERVED REGIONAL AND TEMPORAL VARIABILITY OF RAINFALL OVER THE TROPICAL PACIFIC AND ATLANTIC OCEANS

J1.2 OBSERVED REGIONAL AND TEMPORAL VARIABILITY OF RAINFALL OVER THE TROPICAL PACIFIC AND ATLANTIC OCEANS J1. OBSERVED REGIONAL AND TEMPORAL VARIABILITY OF RAINFALL OVER THE TROPICAL PACIFIC AND ATLANTIC OCEANS Yolande L. Serra * JISAO/University of Washington, Seattle, Washington Michael J. McPhaden NOAA/PMEL,

More information

State of the art of satellite rainfall estimation

State of the art of satellite rainfall estimation State of the art of satellite rainfall estimation 3-year comparison over South America using gauge data, and estimates from IR, TRMM radar and passive microwave Edward J. Zipser University of Utah, USA

More information

Tropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow

Tropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Tropical Cyclone Intensity and Structure Changes in relation to Tropical Cyclone Outflow Patrick A. Harr Department of

More information

Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification

Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification Tropical cyclones in ver/cal shear: dynamic, kinema/c, and thermodynamic aspects of intensity modification Michael Riemer 1, Michael T. Montgomery 2,3, Mel E. Nicholls 4 1 Johannes Gutenberg-Universität,

More information

40-115kn and DT 2.5 to 7.0 kn in 24 hours!

40-115kn and DT 2.5 to 7.0 kn in 24 hours! Intensity forecasting TCs can change intensity rapidly TC Ernie 2017 Rapid Intensification 1/27 40-115kn and DT 2.5 to 7.0 kn in 24 hours! TCs can change intensity rapidly 2/27 Gwenda 1999 Rapid Weakening

More information

The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves

The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves NOVEMBER 2006 C ORBOSIERO ET AL. 3073 The Structure and Evolution of Hurricane Elena (1985). Part II: Convective Asymmetries and Evidence for Vortex Rossby Waves KRISTEN L. CORBOSIERO,* JOHN MOLINARI,

More information

On the Rapid Intensification of Hurricane Wilma (2005). Part II: Convective Bursts and the Upper-Level Warm Core

On the Rapid Intensification of Hurricane Wilma (2005). Part II: Convective Bursts and the Upper-Level Warm Core 146 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 70 On the Rapid Intensification of Hurricane Wilma (2005). Part II: Convective Bursts and the Upper-Level Warm Core HUA CHEN AND

More information

Importance of the upper-level warm core in the rapid intensification of a tropical cyclone

Importance of the upper-level warm core in the rapid intensification of a tropical cyclone GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2011gl050578, 2012 Importance of the upper-level warm core in the rapid intensification of a tropical cyclone Da-Lin Zhang 1 and Hua Chen 1 Received

More information

CURRICULUM VITAE. Haiyan Jiang

CURRICULUM VITAE. Haiyan Jiang CURRICULUM VITAE Haiyan Jiang Department of Earth & Environment Florida International University 11200 SW 8 th Street, AHC5 Rm371, Miami, FL 33199 Phone: (305) 348-2984 Email: haiyan.jiang@fiu.edu Research

More information

USING GIS TO ASSESS THE SYMMETRY OF TROPICAL CYCLONE RAIN SHIELDS. Corene J. Matyas University of Florida PO Box , Gainesville, FL 32611

USING GIS TO ASSESS THE SYMMETRY OF TROPICAL CYCLONE RAIN SHIELDS. Corene J. Matyas University of Florida PO Box , Gainesville, FL 32611 Papers of the Applied Geography Conferences (2006) 29: 31-39 USING GIS TO ASSESS THE SYMMETRY OF TROPICAL CYCLONE RAIN SHIELDS Corene J. Matyas University of Florida PO Box 117315, Gainesville, FL 32611

More information

CAPE in Tropical Cyclones

CAPE in Tropical Cyclones 2452 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69 CAPE in Tropical Cyclones JOHN MOLINARI Department of Atmospheric and Environmental Sciences, University at Albany, State University

More information

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997)

Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Multiscale Analyses of Inland Tropical Cyclone Midlatitude Jet Interactions: Camille (1969) and Danny (1997) Matthew Potter, Lance Bosart, and Daniel Keyser Department of Atmospheric and Environmental

More information

16th AMS Conference on Satellite Meteorology and Oceanography, Jan , 2009, Phoenix, AZ 1

16th AMS Conference on Satellite Meteorology and Oceanography, Jan , 2009, Phoenix, AZ 1 P. APPLICATIONS OF LIGHTNING OBSERVATIONS TO TROPICAL CYCLONE INTENSITY FORECASTING Mark DeMaria* NOAA/NESDIS/StAR, Fort Collins, CO Robert T. DeMaria CIRA/Colorado State University, Fort Collins, CO.

More information

Meteorology Lecture 19

Meteorology Lecture 19 Meteorology Lecture 19 Robert Fovell rfovell@albany.edu 1 Important notes These slides show some figures and videos prepared by Robert G. Fovell (RGF) for his Meteorology course, published by The Great

More information

Hurricane Rainband and Intensity Experiment 2005: RAINEX. Principal Investigators:

Hurricane Rainband and Intensity Experiment 2005: RAINEX. Principal Investigators: Hurricane Rainband and Intensity Experiment 2005: RAINEX Principal Investigators: Shuyi S. Chen University of Miami Robert A. Houze University of Washington PROJECT OVERVIEW Abstract The Hurricane Rainband

More information

LOCATING CONVECTION IN LANDFALLING TROPICAL CYCLONES: A GIS-BASED ANALYSIS OF RADAR REFLECTIVITIES AND COMPARISON TO LIGHTNING-BASED OBSERVATIONS

LOCATING CONVECTION IN LANDFALLING TROPICAL CYCLONES: A GIS-BASED ANALYSIS OF RADAR REFLECTIVITIES AND COMPARISON TO LIGHTNING-BASED OBSERVATIONS LOCATING CONVECTION IN LANDFALLING TROPICAL CYCLONES: A GIS-BASED ANALYSIS OF RADAR REFLECTIVITIES AND COMPARISON TO LIGHTNING-BASED OBSERVATIONS Corene J. Matyas Department of Geography University of

More information

Department of Earth and Environment, Florida International University, Miami, Florida

Department of Earth and Environment, Florida International University, Miami, Florida DECEMBER 2013 Z A G R O D N I K A N D J I A N G 2809 Investigation of PR and TMI Version 6 and Version 7 Rainfall Algorithms in Landfalling Tropical Cyclones Relative to the NEXRAD Stage-IV Multisensor

More information

High-Resolution Simulation of Hurricane Bonnie (1998). Part I: The Organization of Eyewall Vertical Motion

High-Resolution Simulation of Hurricane Bonnie (1998). Part I: The Organization of Eyewall Vertical Motion JANUARY 2006 BRAUN ET AL. 19 High-Resolution Simulation of Hurricane Bonnie (1998). Part I: The Organization of Eyewall Vertical Motion SCOTT A. BRAUN Mesoscale Atmospheric Processes Branch, Laboratory

More information

Lec 10: Interpreting Weather Maps

Lec 10: Interpreting Weather Maps Lec 10: Interpreting Weather Maps Case Study: October 2011 Nor easter FIU MET 3502 Synoptic Hurricane Forecasts Genesis: on large scale weather maps or satellite images, look for tropical waves (Africa

More information

NHC Ensemble/Probabilistic Guidance Products

NHC Ensemble/Probabilistic Guidance Products NHC Ensemble/Probabilistic Guidance Products Michael Brennan NOAA/NWS/NCEP/NHC Mark DeMaria NESDIS/STAR HFIP Ensemble Product Development Workshop 21 April 2010 Boulder, CO 1 Current Ensemble/Probability

More information

Tri-Agency Forecast Discussion for August 24, 2010

Tri-Agency Forecast Discussion for August 24, 2010 Created 1600 UTC August 24, 2010 Tri-Agency Forecast Discussion for August 24, 2010 GRIP Forecast Team: Cerese Inglish, Matt Janiga, Andrew Martin, Dan Halperin, Jon Zawislak, Ellen Ramirez, Amber Reynolds,

More information

1.4 GLOBAL STUDIES OF TROPICAL CYCLONES USING THE WORLD WIDE LIGHTNING LOCATION NETWORK

1.4 GLOBAL STUDIES OF TROPICAL CYCLONES USING THE WORLD WIDE LIGHTNING LOCATION NETWORK 1.4 GLOBAL STUDIES OF TROPICAL CYCLONES USING THE WORLD WIDE LIGHTNING LOCATION NETWORK Natalia N. Solorzano 1 *, Jeremy N. Thomas 2,3, and Robert H. Holzworth 2 1 Digipen Institute of Technology, Redmond,

More information

Western North Pacific Typhoons with Concentric Eyewalls

Western North Pacific Typhoons with Concentric Eyewalls 3758 M O N T H L Y W E A T H E R R E V I E W VOLUME 137 Western North Pacific Typhoons with Concentric Eyewalls HUNG-CHI KUO Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

More information

DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited.

DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. INITIALIZATION OF TROPICAL CYCLONE STRUCTURE FOR OPERTAIONAL APPLICATION PI: Tim Li IPRC/SOEST, University

More information

1. INTRODUCTION. investigating the differences in actual cloud microphysics.

1. INTRODUCTION. investigating the differences in actual cloud microphysics. MICROPHYSICAL PROPERTIES OF DEVELOPING VERSUS NON-DEVELOPING CLOUD CLUSTERS DURING TROPICAL CYCLOGENESIS 4B.5 Nathan D. Johnson,* William C. Conant, and Elizabeth A. Ritchie Department of Atmospheric Sciences,

More information

Air Mass Thunderstorms. Air Mass Thunderstorms. Air Mass Thunderstorms. Lecture 26 Air Mass Thunderstorms and Lightning

Air Mass Thunderstorms. Air Mass Thunderstorms. Air Mass Thunderstorms. Lecture 26 Air Mass Thunderstorms and Lightning Lecture 26 and Lightning Life Cycle Environment Climatology Lightning 1 2 Short-lived, isolated thunderstorms that are not severe are often called air-mass thunderstorms. There are three stages describing

More information

The Properties of Convective Clouds over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones

The Properties of Convective Clouds over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. The Properties of Convective Clouds over the Western Pacific and Their Relationship to the Environment of Tropical Cyclones

More information

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA

Myung-Sook Park, Russell L. Elsberry and Michael M. Bell. Department of Meteorology, Naval Postgraduate School, Monterey, California, USA Latent heating rate profiles at different tropical cyclone stages during 2008 Tropical Cyclone Structure experiment: Comparison of ELDORA and TRMM PR retrievals Myung-Sook Park, Russell L. Elsberry and

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

TOWARDS A BETTER UNDERSTANDING OF AND ABILITY TO FORECAST THE WIND FIELD EXPANSION DURING THE EXTRATROPICAL TRANSITION PROCESS

TOWARDS A BETTER UNDERSTANDING OF AND ABILITY TO FORECAST THE WIND FIELD EXPANSION DURING THE EXTRATROPICAL TRANSITION PROCESS P1.17 TOWARDS A BETTER UNDERSTANDING OF AND ABILITY TO FORECAST THE WIND FIELD EXPANSION DURING THE EXTRATROPICAL TRANSITION PROCESS Clark Evans* and Robert E. Hart Florida State University Department

More information

An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005)

An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) 2414 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69 An Axisymmetric View of Concentric Eyewall Evolution in Hurricane Rita (2005) MICHAEL M. BELL Naval Postgraduate School, Monterey,

More information

Wet weeks in the warm season: Patterns and processes supporting widespread multi-day precipitation episodes!

Wet weeks in the warm season: Patterns and processes supporting widespread multi-day precipitation episodes! Wet weeks in the warm season: Patterns and processes supporting widespread multi-day precipitation episodes! Russ S. Schumacher and Samantha L. Lynch! Department of Atmospheric Science, Colorado State

More information

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Meteorological Satellite Image Interpretations, Part III Acknowledgement: Dr. S. Kidder at Colorado State Univ. Dates EAS417 Topics Jan 30 Introduction & Matlab tutorial Feb 1 Satellite orbits & navigation

More information

Simulating the formation of Hurricane Katrina (2005)

Simulating the formation of Hurricane Katrina (2005) GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L11802, doi:10.1029/2008gl033168, 2008 Simulating the formation of Hurricane Katrina (2005) Yi Jin, 1 Melinda S. Peng, 1 and Hao Jin 2 Received 2 January 2008; revised

More information